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Course Outline

Aims: 
•
To introduce modelling and quantitative approaches to biology
•
To explain where equations come from and what they mean, placing 

the mathematics into a context that is relevant for the life scientist.
•
To enable life scientists to gain a better understanding of what a model 

is, and how to go about building one.

Objectives - By the end of the session, participants will:
•
understand key concepts in how to build models of biological systems
•
know how to investigate the behaviour of those models
• be able to interpret the results of those models.

KEY THEMES

• The kinds of behaviour that dynamic models can exhibit (e.g. 
exponential growth or decay, steady states, oscillations), and their 
stability.

• Single variable models: How to work out their dynamics by sketching 
one simple graph - applications, including to population growth and 
gene regulation.

• Multi-variable models: Interacting populations, signalling networks and 
biochemical reactions. How to turn a set of reactions into a 
mathematical model with the law of mass action. More about 
transcriptional and translational regulation. How to work out a lot 
about their dynamics by sketching two (or more) graphs.
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Course Schedule

Day 1 (Monday 17 May 2010): 
09:30 Lecture 1.1: Data, networks and models (Pope C17)
10:30 Coffee (Pope C17)
11:00 Lecture 1.2: Introduction to modelling with differential equations (Pope C17)
12:30 Lunch
13:30 Practical 1.1: Introduction to MATLAB (Pope A16)
15:00 Coffee (Pope C17)
15:30 Practical 1.2: Qualitative and quantitative model analysis (Pope A16)

Day 2 (Tuesday 18 May 2010):  
09:30 Lecture 2.1: Multi-variable models (Pope C17)
10:30 Coffee (Pope C17)
11:00 Practical 2.1: Building multi-variable models in MATLAB (Pope A16)
12:30 Lunch
13:30 Lecture 2.2: Parameter estimation and sensitivity analysis (Pope C17)
15:00 Coffee (Pope C17)
15:30 Practical 2.2: Parameter estimation and sensitivity analysis (Pope A16)

GSTDMB Dynamical Modelling for 
Biology and Medicine

Markus Owen

Lecture 1.1
Data, Networks and Models

Mechanistic Process Models

• Biological processes understood as emergent properties of complex 
networks of interacting components.

• Question: what are the mechanisms regulating emergence?

Masamizu et al., PNAS. 2006

Hes1 (and other Notch pathway genes) 
oscillate in the presomitic mesoderm of 
developing vertebrate embryos.
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What kinds of processes?

How to make a switch?
• Important for Cell differentiation, quorum sensing, lac operon inducible 

system, lysis-lysogeny decision by phage Lambda, ...
• Delta-Notch signalling is a simple example. Negative feedback + 

coupling selects a subpopulation of cells for a neuronal fate. 

How to make an oscillator?
• Cell cycle, circadian rhythms, cardiac action-potential

How to make an organism?
• Fate determination + cell movements, proliferation, etc, etc, ...

Population growth and interactions
• From bacteria to humans; cancer (mutant cells invading a normal host); 

epidemiology; ecology; ...

  A Systems Approach

• Choose the process/system and characterise it
– Scoring; boundary drawing; (quantitative) data availability

• Map out the interaction network:
– “Parts list” (components)
– Topology (pairwise interactions)
– Functional characterisation of interactions

• Model: explore how observed behaviour can emerge from the network
– Need to identify appropriate questions that can be addressed

• Validate the model: focused experimental studies
– Works best if quantification is possible

System Characterisation: State

• As a first step, we need to identify measurable properties of the 
system that we believe to be relevant (and preferably fairly 
comprehensive) indicators of its nature, and make measurements 
of these.

• Examples: mRNA concentration, protein concentration, cell 
volume, membrane potential, population density, …

• This gives us knowledge of the state of the system.

• But we seek understanding. In particular, we want to 
understand the past and present and predict the future.

• To achieve this, we need a model.
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Variables and Dynamic Models

• The first step of modelling is to pose questions. 

 
 
 e.g. Given a set of observations and/or measurements today, 

 
 
 what will be the result of making those observations and/or 

 
 
 
 
 measurements tomorrow?

• A model is a representation of the system that we can use to 
answer such questions. If the state of the system is changing in 
time, then the model is dynamical — the properties of the 
representation change in time.

• In this case, the time-varying components of the system state are 
referred to as variables. 

State evolution models

• If the values of the model variables change in time, then we 
represent them as x1(t), x2(t), ..., xN(t), where t is time. 

• The state of the model at time t is just the set of all the variables 
at time t:

 
 
 
 
 
 
 
 
 
 
 S(t) = {x1(t), x2(t), ..., xN(t)}.

• The form of model we shall study is:

 
 
 
 
 
 
 
 S(t2) = f (S(t1); p1, p2, ..., pM),     t2 >  t1

where f  is a function, and p1, p2, ..., pM are model parameters.

• This simply states that the future state of the system is some 
function of its past state (i.e. that the future is predictable). 

Parameters

• The model parameters are numerical values that encode other 
information about the system that is not included in the dynamic 
state.

• Typically, parameters are independent of the model state, and do 
not vary in time.

• Time-varying parameters are sometimes used (e.g. when a 
system property changes because of an influence external to the 
model — such as light input to a circadian clock).

• e.g. The concentration of a mRNA species is a variable; the linear 
degradation rate of the mRNA is a parameter.

10

11

12



Networks

• In this course, we are interested in mechanistic models of 
processes occurring in cells, tissues, organisms and populations.

• The state of the system is defined by the quantities of each of the 
relevant components of the system (e.g. mRNAs, proteins, 
hormones, metabolites, number of bacteria, …)

• The functions in a state interaction model encode the mechanisms 
that regulate interactions between these components.

• The set of system components and their mutual interactions 
constitute a network.

Network terminology

• The components and interactions can be represented as a graph.
• Each node represents a system component (e.g. a type of mRNA).
• Each edge represents a pairwise interaction between two components. 

An edge need not encode the nature of the interaction.

A B

C D
E

A B

C D
E

undirected graph directed graph

• Undirected edge: two components can interact with each other.
• Directed edge: one component has a causal influence on the other.
• e.g. undirected: protein A and protein B form a dimer  (A–––B)
          directed: protein A regulates the production of mRNA B (A→B)

Inferring Networks

• Components and interactions can be inferred from a wide range of 
data sources:

• Genetic screens
• RNAi screens
• mRNA profiling (e.g. microarrays)
• Metabolic profiling
• Protein-protein interaction screens (e.g. yeast-two-hybrid, 

TAP mass spec.)
• ChIP-on-chip analysis of transcription factor binding
• Biochemistry
• Population data (e.g. on predator-prey or epidemiological 

interactions)
• Each has strengths and limitations
• Integration of multiple data sources is important for reliable inference.
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The Circadian Oscillator Network

Cermakian & Sassone-Corsi, Nature Rev. Cell Molec. Biol. 1, 59–67 (2000).

Mathematical network representation

• The form of model we shall study (the state evolution equation) is:

 
 
 
 
 
 
 
 S(t2) = f (S(t1); p1, p2, ..., pM),     t2 >  t1

This can be written in index notation as

where <i> is the set of nodes that connect to node i in the graph 
(including i itself, if appropriate)

• The functions fi encode the form of the interactions between components.

• In the context of network inference, these functions are hard to 
determine. There are no high-throughput methodologies for getting them.

• In practice, models are often based on a small set of standard 
representative forms for the fi  (see Lecture 1.2 for examples).

  

€ 

xi t2( ) = f i x i (t1){ };p1, p2,…, pM( ), i =1,2,...,N

Continuous Process Models

• In reality, the state of each network component should be represented 
by a discretely varying quantity (e.g. the number of molecules of a 
particular mRNA in a cell, the number of individuals in a population — 
an integer). 

• Also, changes in state over time are discrete events (production or 
degradation of a network component, births/deaths in a population).

• In practice, if the amount of each component is sufficiently large, then 
its state can be approximated by a continuous variable that changes 
smoothly and continuously in time (e.g. concentration, population 
density).

• In doing this, we are essentially representing a continuous process 
rather than a set of events.
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Ordinary differential equations (ODEs)

• If we represent the network state S(t) as continuous, then it has a well-
defined rate of change:

• A (first order) ordinary differential equation (ODE) model is a set of 
equations that relate the rate of change of the system state at each 
moment in time to the state of the system at that time.

• In component form, an ODE representation of a network can be written

  

€ 

dxi
dt

t( ) = fi x i (t){ };p1, p2,…, pM( ), i =1,2,...,n

€ 

dS
dt

t( )

where <i> is the set of nodes that connect to node i in the graph 
(including i itself, if appropriate)          

ODE Example - Auxin signalling
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Figure 1: An Aux/IAA negative feedback loop. Free ARF monomers can bind either (a) ARFs

(to form homodimers) or (b) Aux/IAAs (to form heterodimers). Both (c) ARF homodimers

and (d) monomers can bind Aux/IAA response elements (AuxRE), activating the Aux/IAA

genes. Aux/IAA proteins may mediate the repression of the Aux/IAA gene either by binding

ARFs (see (b)), thereby reducing the number of free ARFs, or (see (e)) by binding the AuxRE

and repressing Aux/IAA genes transcriptionally. (f) Aux/IAA is transcribed. (g) Aux/IAA

mRNA is translated into Aux/IAA protein, completing the negative feedback loop. Auxin can

disrupt this negative feedback loop by mediating the ubiquitination of the Aux/IAA monomers

as follows. (h) Auxin binds to the TIR1 complex. (i) The auxin-TIR1 complex in turn binds

free Aux/IAA. (j) This complex then facilitates the ubiquitination of Aux/IAA proteins. This

reduces (as represented by dashed arrows in (b),(e)) levels of the Aux/IAA-ARF complex and

releases ARF monomers, which may then form homodimers (a). Thus, sufficiently high levels

of auxin will cause the Aux/IAA genes to be de-repressed, (c),(d).
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• Auxin is a plant hormone, which stimulates degradation of Aux/IAAs. 
• Aux/IAAs repress their own transcription.  
• Hence Auxin stimulates Aux/IAA transcription. 
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Thus, the auxin-mediated regulation of Aux/IAA is taken to be governed by

d[IAAm]

dt
= λ1F1([ARF], [IAAp], [ARF-IAA], [ARF2])

+ λ2F2([ARF], [IAAp], [ARF-IAA], [ARF2]) − µIAAm
[IAAm], (9a)

d[IAAp]

dt
= δ[IAAm] − la[IAAp][auxin–TIR1] + ld[auxin–TIR1–IAA]− (9b)

pa[IAAp][ARF] + pd[ARF-IAA],

d[TIR1]

dt
= −ka[auxin][TIR1] + kd[auxin–TIR1], (9c)

d[auxin–TIR1]

dt
= ka[auxin][TIR1]− kd[auxin–TIR1] (9d)

+ (ld + lm)[auxin–TIR1–IAA] − la[auxin–TIR1][IAAp] (9e)

d[auxin–TIR1–IAA]

dt
= la[IAAp][auxin–TIR1]− (ld + lm)[auxin–TIR1–IAA], (9f)

d[IAA∗]

dt
= lm[auxin–TIR1–IAA]− µIAA∗ [IAA∗], (9g)

d[ARF]

dt
= −2qa[ARF]2 + 2qd[ARF2] − pa[ARF][IAAp] + pd[ARF-IAA], (9h)

d[ARF-IAA]

dt
= pa[ARF][IAAp] − pd[ARF-IAA], (9i)

d[ARF2]

dt
= qa[ARF]2 − qd[ARF2], (9j)

d[auxin]

dt
= ω + kd[auxin–TIR1]− ka[auxin][TIR1] − µAuxin[auxin]. (9k)

It follows from (9c), (9e), (9f) that

[TIR1] + [auxin–TIR1] + [auxin–TIR1–IAA] = [TIR1]T, (10)

where the constant [TIR1]T is the total concentration of TIR1. Similarly, it follows from (9h),

(9i) and (9j) that

[ARF] + [ARF-IAA] + 2[ARF2] = [ARF]T, (11)

where the constant [ARF]T is the total concentration of ARF present. The relevant protein and

mRNA species are summarised in Table 1.
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ODE Models: Basic assumptions

Assumption Relaxation

The numbers of each molecular species are 
large enough to represent as continuous 
variables

Discrete models

Production and degradation processes are 
continuous Discrete models

Outputs of processes begin to change as soon 
as the inputs change

Delay differential 
equations

Processes are deterministic Stochastic differential 
equations

Spatial distribution in a cellular compartment is 
not important

Partial differential 
equations

Hes1 oscillations: somites

• Hes1 (and other Notch pathway genes) oscillate in the presomitic 
mesoderm of developing vertebrate embryos.

• Can we understand the origin of these oscillations using simple 
models?

Masamizu et al., PNAS. 2006

Quantitative Data: Hes1 in mouse fibroblasts

Hirata et al., Science 298, 840–843 (2002); Masamizu et al., PNAS. 103, 1313–1318 (2006). 

Population average

Single cells
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Hes1: direct intracellular negative feedback

Mhes1 Hes1 mRNA

Hes1 protein P

€ 

dM /dt = kMG P(t − τ1)[ ] − dM M(t)
dP /dt = kPM(t − τ 2) − dPP(t)

• kM, kP: transcription/translation rates

• dM, dP: linear degradation rates

• τ1, τ2: transcription/translation 
delays

• G: transcriptional repression 
function (G’ < 0) e.g. Hill function Monk. Curr. Biol. 13, 1409–1413 (2003).

• τ1 = 16min, τ2 = 2.5min

• G = decreasing Hill function (n = 5)

Which mechanisms do we need to model?

• Simple model (basic mechanisms we know to be involved) has 16 
parameters, each of which would require substantial effort to measure. 

• Explore model behaviour to find parameters that affect amplitude.

Mhes1 Hes1 mRNA

Hes1 protein P

Summary

• The properties of a system can be represented by a set of variables that 
collectively constitute the state of a model

• In dynamic models, the state is a dynamical variable (i.e. changes in 
time)

• State evolution models encode mathematically the way that the state 
changes over time

• ODEs are based on the assumption that the state changes 
continuously, at a rate that depends only on the current state 
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Success stories in Mathematical Biology

• R.M. Anderson, G.F. Medley, R.M. May, A.M. Johnson: A preliminary study of 
the transmission dynamics of the human immunodeficiency virus (HIV ), the 
causative agent of AIDS. Math. Med. Biol. 3(4):229-263 (1986). 

• N. Barkai, S. Leibler: Robustness in simple biochemical networks. 
Nature 387(6636):913-917 (1997). 

• G. Dupont, A. Goldbeter: One-pool model for ca2+ oscillations involving ca2+ 
and inositol 1,4,5-trisphosphate as co-agonists for ca2+ release. 
Cell Calcium 14(4):311-322, (1993). 

• P. Hahnfeldt, D. Panigrahy, J. Folkman, L. Hlatky: Tumor development under 
angiogenic signaling: A dynamical theory of tumor growth, treatment response, 
and postvascular dormancy. Cancer Research 59(19):4770-4775 (1999). 

• A.L. Hodgkin, A.F. Huxley: A quantitative description of membrane current and 
its application to conduction and excitation in nerve. 
J. Physiology, 117(4):500-544 (1952).

Success stories in Mathematical Biology

• A.D. Lander, Q. Nie, F.W.M. Wan: Do morphogen gradients arise by diffusion. 
Dev. Cell. 2:785-796 (2002). 

• M. Mackey, L. Glass: Oscillation and chaos in physiological control systems. 
Science 197(4300):287-289 (1977). 

• N.A.M. Monk: Oscillatory expression of Hes1, p53, and NF-κB driven by 
transcriptional time delays. Curr. Biol. 13:1409-1413 (2003). 

• A.M. Turing: The chemical basis of morphogenesis. 
Phil. Trans. R. Soc. Lond. B, 237:37-72 (1952). 

• J.J. Tyson, B. Novak: Regulation of the eukaryotic cell cycle: Molecular 
antagonism, hysteresis, and irreversible transitions. 
J. Theor. Biol. 210:249-263, 2001.

• ... AND MANY MORE ...
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