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Introduction to modelling with
differential equations
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Key ideas about dynamic models

© Dynamic models describe the change in the state of a system with time.
© solution/trajectory: the set of future states given a particular initial state.
& Steady state: a solution which is steady/constant/not changing in time.

& Periodic solution/limit cycle: an oscillatory solution, i.e. one that repeats
exactly the same values at an interval known as the period.

& The stability of a steady state describes what happens to the system if it
starts close to that steady state:

@ stable: if we start close to the steady state, the system converges to that
steady state
9@ unstable: if we start close to the steady state, the system diverges from
that steady state
& Bifurcation: the number or stability of steady states (or periodic solutions)
changes as a parameter varies.

¢ Qualitative analysis: determines information about qualitative properties of
solutions and bifurcations. Steady states and stability are important here.

& Quantitative analysis: determines numerical values for solutions,
bifurcations, etc, usually via computer simulation (except for special cases).

Stability: examples

® Consider a ball rolling on a smooth landscape.

® The ball can be placed at the top of a hill and will stay
there for all time - this is a steady state.
In practice, any small disturbance will lead to the ball
rolling down one side or the other.
This is an example of an unstable steady state.

® Another steady state is at the bottom of a valley.
After any small disturbance the ball will roll back to .4/
the bottom.
This is an example of a stable steady state.
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® Another example is a rigid pendulum:
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[t order Ordinary Differential Equations

® Dynamic models for the dependence of single state variable, x on the

independent variable r. The solution is x(?)
dx

® Describe the rate of change of x, written E

® In general, this may depend on x itself and on time, #: @ = fx D)
(e.g. time dependent parameters in circadian models) dr ~ ’

® We will consider the autonomous case, when the rate of change ﬂ = f(x)
of x does not depend on ¢, but only on the state variable x itself. dt

® |n this case qualitative analysis is reasonably straightforward

® Steady states are where f(x)=0.

® The phase-line diagram shows us where x is increasing, where it is
decreasing, and where any steady states lie.

® Relies on being able to sketch or plot the graph of f{x)

Phase-line diagrams (1)
® Enable qualitative analysis of |t order autonomous ODEs.
® Given dx/dt=f(x), sketch f{x)

® Remember that f{x) is the rate of change of x

dx/dt =f(x) > 0, x increasing
Jx)

dx/dt =f{x) < 0, x decreasing

Phase-line diagrams (2)
e Steady states where f{x) crosses the horizontal axis (dx/dt=f{x)=0)
e Stable if f{x) crosses from positive to negative

e Unstable if f(x) crosses from negative to positive
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Phase-line diagrams (3)
Also tells you how fast x is increasing or decreasing
Easiest to indicate graphically with arrows
Arrows to right (left) for x increasing (decreasing)

This reinforces our understanding of (in)stability
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Sketching the graph of a function f(x)

® f(0) - where the graph crosses the vertical axis

® f°(0) - slope at x=0 (f”is shorthand for df/dx, the gradient of f(x))

anywhere else obvious where f{x)=0?

is f{x) polynomial (ax" + bx"! + ¢x"? +... +dx + e)?

® quadratic (highest power is 2), ax? + bx + ¢ - always one max or min
® cubic (highest power is 3) - one inflection, or one max and one min
® |n general, at most n-1 turning points

what about f{x) as x get very large positive (negative)?
Does it go up, down, or become flat
(i.e. approach a horizontal asymptote)?

Any vertical asymptotes?

Sketching the graph of a function f(x)
Example: f(x) = rx(I-x/K) = rx - rx’/K
. f(0)=0
2. f’(x)=r-2rx/K, so f’(0)=r, f(x) is increasing through the origin
3. clearly f(K)=rK(I-1)=rK(0)=0 so crosses at x=K

4. f(x) is quadratic, so one turning point.

fx) = rx(1-x/K)




Sketching the graph of a function f(x)
e Example: fi(x) = rx(1-x/K)(x-a)
I. fl0)=0, f’(x) is harder to work out
2. clearly f(K)=rK(I-1)(K-a)=1(0)(K-a)=0 so crosses at x=K
3. clearly f(a)=ra(1-a/K)(a-a)=ra(I1-a/K)(0)=0 so crosses at x=a

4. As x gets very large, f(x) gets very large negative...
r.(large).(-large/K).(large) = -r(large)’/K
could also see this by expanding brackets...

5. f(x) is cubic, so one max and one min (or one inflection).

fx) = rx(1-x/K)(x-a)
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Sketching the graph of a function f(x)
e Example: f(x) =x%/(1+x?)
l. f(0)=0

2. f2()=2x/(1+x"2)? so f’(0)=0,and as x gets large, f’(x) goes to zero
(horizontal asymptote).
Another way to see f’(0)=0, for small x, f{x) looks like x?).

3. clearly f(0) = 0

4. As x gets large, f{x) approaches one (the I on the bottom is insignificant).
If you're not convinced, consider x=10, 100, ...
10%/(1+102) = 100/101 = 0.99
100%(1+1002) = 10000/10001 = 0.9999
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Exponential population growth % =rx

® Examples from Population growth illustrate many key points

x is the number of individuals Jx) =rx

r is a parameter;, the rate of growth per capita.
It has dimensions of //(time)

Steady state: any steady solution has dx/dt =0
Hence rx =0. Assuming r >0, this must mean x =0
Can see this, and more, from phase-line diagram:

unstable

® for small values of x, x grows slowly
® as x increases, its rate of growth increases

® this gives characteristic exponential growth:
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dx
' ' ? ==
Exponential population growth? ——=rx

® Solution is x(2) = x(0)e'" (quiz Q16). Take logs of both sides: In(x()) = rt +x(0)
® |og of population data should be straight line...

® Here we show global human population data

http://www.census.gov/ipc/www/idb/worldpop.html
http://www.census.gov/ipc/www/worldhis.html
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® Growth rate is slowing (after a period of acceleration)

.. dx X
Logistic growth — =rx (1 — —]

gistic g dt K

®  measures the maximum rate of growth. It has dimensions of //(time).

® K measures the carrying capacity for the population.
It has dimensions of number of individuals.

® Effectively, we have replaced a constant per capita growth rate r, with a rate
that decreases as the population size increases. This models the depletion of
resources as a population grows.

® Steady states are where dx/dt =0, which is where x =0 or x =K

f(x) = mx(1-x/K) X

unstable representative solutions

s 3t dx X
Logistic growth? — =rx(1- =]

® Consider experimental data on the growth of yeast.

® Dynamics look a bit like logistic growth ...

Yeast growth (Saccharomyces cerevisiae CEN.PK113)
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® But logistic growth is too slow at first, and too fast later.
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dx X
Allee effect ——= rx(l - E) (x—a)

® Many species exhibit lower or even negative growth rates at low numbers.
. ) x
® Here, the per capita growth rateis: 1 (1 - }) (x—a)

® This is negative if x <a, i.e.if the population is too small (NB: 0<a<K)

ftx) = rx(1-x/K)(x-a) X

representative solutions t

stable unstable stable

e Bistability: two stable steady states. Final state depends on initial value, x(0).

Production & degradation models

® |n each of the preceding cases, the form of f{x) (straight line, quadratic, cubic)
makes it easy to sketch the phase-line diagram (and there is no
qualitative dependence on parameter values)

® Next we will consider models for simple feedback loops, such as may arise
with transcriptional autoregulation

Rate of )
( change of x ) = ( production ) - ( decay )
|
Px ox dx ~
—

® P(x) represents the effect of a Transcription Factor x on its own synthesis
® We will consider various common forms for P(x)
® What are we interested in?

® Steady states: production and turnover of x are balanced

® How fast are steady states reached? Any bifurcations (ideal for exp’tal validation)?

Constant production % =A-0x

® P(x) =A, a constant. This could model constitutive transcription

® As usual, steady states satisfy dx/dt =0, hence 4 = ox

So the steady state TF level is x = 4/0

Does this fit with our biological understanding and intuition?

dx/dt = A-0x

\ y No bifurcations
A5

A/S representative solutions

stable Larger 0 - faster decay to steady state
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Ax

Saturating positive feedback P(x)=

h+x
® Transcription rate increases with TF, x,
but saturates to a maximum rate P 4
® ¢.g.TF binds to its own promoter
Ax/(h+x)

® This is an example of a Hill function:

A2
pry o A"

h™ + x™
h X
® Half maximal response atx =/
® Model equation becomes: ﬂ = Ax —
dt h+x

® How to sketch the phase-line diagram and find steady states?

: . Ax
Saturating positive feedback P(x)=
h+x
dx _ Ax X
dt  h+x

® |t turns out there are two qualitatively different phase-line diagrams
® Algebra: steady states satisfy Ax/(h+x) = ox

One obvious solution is x=0 the other has 4/(h+x) = J, hence
A = 0h + Ox, hence

0x = A - 0h, hence

X = (4-6h)/0

® |f 4 < Jh then this steady state is negative and not biologically relevant
® [nterpretation: if TF turnover rate too large, TF level decays to zero

® There is a bifurcation at 4 = Jh,
(i.e. change in number or stability of steady states)

e Graphically, dx/dt is the difference between the curve P(x) and the line dx

. . Ax
Saturating positive feedback P(x)=
h+x
e Graphically, dx/dt is the difference between the
ﬂ _ Ax _ curve P(x) and the line ox
dt - h+x ® |t is easy to see the effect of increasing ¢ which is the
slope of the line
Sx ox
Increasing
R —
Ax/(h+x) Ax/(h+x)
X X
(A-0h)/0 stable

unstable
stable
The difference is always negative: x is

always decreasing to zero
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Ax
h+x

e Graphically, dx/dt is the difference between the curve P(x) and the line ox

Saturating positive feedback P(x)=

® |t is easy to see the effect of increasing 0 which is the slope of the line

Increasing 6
 ——

Ax/(h+x) - ox

Ax/(h+x) - ox

unstable stable
stable

Increasing o effectively pulls the curve
of dx/dt down through the axis

A
Saturating positive feedback P(x)= thx

® We see that as J increases, the steady state TF level decreases, until it reaches
zero. Beyond this point TF production cannot be sustained.

® We can summarise this information in a Bifurcation diagram, which shows
steady states and their stability as a parameter varies

® Solid lines indicate stable steady states, dashed lines unstable steady states

steady state bifurcation point
TF level,
A-6h
X =
9
0

A/h TF turnover rate, 0

® Could test this structure against experiment...

® ... but bifurcation will be at TF levels below detection threshold.

o . Ax"
Sigmoidal positive feedback P(x)=——
h™ + x™
® Transcription rate increases with TE. x, A
but saturates to a maximum rate P
® A Hill function with order > | is an AL
example of a sigmoid curve -
® Half maximal response atx = h / quiz Ql2
X
h
dx Ax"
® Model equation becomes: —_— — = (5x
dt h"4+x"

® How to sketch the phase-line diagram and find steady states?
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n

A
Sigmoidal positive feedback P(x)= PR fx”

dx_ Ax"
dt  h"+x"

® Again there are two qualitatively different phase-line diagrams

® Algebra: steady states satisfy Ax"/(h"+x") = ox

One obvious solution is x=0 the other has Ax"!/(h"+x") =6 ...
... hard to solve in general.

® We resort to graphical analysis.

Ax"
Sigmoidal positive feedback P(x) = -————
dx Axh e Graphically, dx/dt is the difference between

the curve P(x) and the line dx

_ X
d t hn + x" ® |t is easy to see the effect of increasing 0
which is the slope of the line

Increasing & 5
—_— X

ox

A n N4y
X /(h x) Ax"/(h"+x”)

X
X
stable
stable unstable stable
The difference is always negative: x is
Three steady states - BISTABILITY always decreasing to zero

Sigmoidal positive feedback P(x) = #

xl’l
® We see that the zero steady state is always stable.

® As J increases, the nonzero stable steady state TF level decreases, until it
disappears in a bifurcation. Beyond this point TF production cannot be sustained.

® We can summarise this information in a Bifurcation diagram, which shows
steady states and their stability as a parameter varies.

Solid lines indicate stable steady states, dashed lines unstable steady states.

steady state bifurcation point

TF level

TF turnover rate, 0

©® Could test this structure against experiment...
® ... at bifurcation TF levels could be above detection threshold.
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Ah
h+x

Negative feedback P(x)=

Transcription rate decreases
with TF, x. A

Maximum rate 4, minimum zero Ah/(h+x)
A decreasing Hill function: AP

n

Px) =

h" + xn X

Half maximal response at x = &

dx_ Ah
dt  h+x

® Model equation becomes:

® How to sketch the phase-line diagram and find steady states?

. _ Ah
Negative feedback P(x)= o

e Algebra: steady states satisfy Ah/(h+x) = ox
No obvious solutions - need to cross multiply and solve a quadratic ....

* Graphically, dx/dt is the difference between the curve P(x) and the line Jx

ox

dx/dt = Ax/(h+x) - ox

Ah/(h+x)

stable

* The pictures are qualitatively the same whatever the parameters
¢ Always just one stable steady state TF level

e As ¢ increases the TF level falls

Discussion

We have introduced simple ordinary differential equation (ODE) models for single
state variables.

Steady states and their stability are crucial determinant of system dynamics.
Changes in number or stability of steady states are called bifurcations.

For It order autonomous ODEs, the phase-line diagram can tell us most
of the qualitative information we'd like to know about the system dynamics:

® if you can sketch the graph, you can sketch the dynamics...

® steady states, stability AND qualitative solution behaviour (fast, slow,
increasing, decreasing, etc), bifurcations.

® solutions cannot oscillate

For It order non-autonomous ODEs (e.g. circadian models with time
dependent parameters) solutions can oscillate (driven by e.g. day-night cycle)

Next:
® Using MATLAB to help sketch phase-line diagrams and simulate ODEs

® models with >1 state variable - more complex dynamics possible, analysis
more difficult, often resort to computer simulation
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