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Lecture 1.2
Introduction to modelling with 

differential equations

Key ideas about dynamic models
Dynamic models describe the change in the state of a system with time. 

Solution/trajectory: the set of future states given a particular initial state.

Steady state: a solution which is steady/constant/not changing in time. 

Periodic solution/limit cycle: an oscillatory solution, i.e. one that repeats 
exactly the same values at an interval known as the period. 

The stability of a steady state describes what happens to the system if it 
starts close to that steady state: 

stable: if we start close to the steady state, the system converges to that 
steady state
unstable: if we start close to the steady state, the system diverges from 
that steady state

Bifurcation: the number or stability of steady states (or periodic solutions) 
changes as a parameter varies.

Qualitative analysis: determines information about qualitative properties of 
solutions and bifurcations. Steady states and stability are important here. 

Quantitative analysis: determines numerical values for solutions, 
bifurcations, etc, usually via computer simulation (except for special cases).

Stability: examples

• Consider a ball rolling on a smooth landscape.

• The ball can be placed at the top of a hill and will stay 
there for all time - this is a steady state.
In practice, any small disturbance will lead to the ball 
rolling down one side or the other.
This is an example of an unstable steady state. 

• Another steady state is at the bottom of a valley. 
After any small disturbance the ball will roll back to 
the bottom. 
This is an example of a stable steady state.

stable

• Another example is a rigid pendulum:

unstable
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1st order Ordinary Differential Equations

• Dynamic models for the dependence of single state variable, x on the 
independent variable t.    The solution is x(t)

• Describe the rate of change of x, written
  

• In general, this may depend on x itself and on time, t:
(e.g. time dependent parameters in circadian models)

• We will consider the autonomous case, when the rate of change 
of x does not depend on t, but only on the state variable x itself. 

• In this case qualitative analysis is reasonably straightforward

• Steady states are where f(x)=0. 

• The phase-line diagram shows us where x is increasing, where it is 
decreasing, and where any steady states lie.

• Relies on being able to sketch or plot the graph of f(x)

d x
d t

= f (x)

d x
d t

d x
d t

= f (x, t )

Phase-line diagrams (1)
• Enable qualitative analysis of 1st order autonomous ODEs. 

• Given dx/dt=f(x), sketch f(x) 

• Remember that f(x) is the rate of change of x

x

f(x)

dx/dt =f(x) < 0, x decreasing

dx/dt =f(x) > 0, x increasing

Phase-line diagrams (2)
• Steady states where f(x) crosses the horizontal axis (dx/dt=f(x)=0)

• Stable if f(x) crosses from positive to negative

• Unstable if f(x) crosses from negative to positive

x

f(x)

stable

stable

unstableunstable
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Phase-line diagrams (3)
• Also tells you how fast x is increasing or decreasing

• Easiest to indicate graphically with arrows

• Arrows to right (left) for x increasing (decreasing)

• This reinforces our understanding of (in)stability

x

f(x)

stable

stable

unstable
unstable

Sketching the graph of a function f(x)
• f(0) - where the graph crosses the vertical axis 

• f’(0) - slope at x=0    

• anywhere else obvious where f(x)=0 ?

• is f(x) polynomial (axn + bxn-1 + cxn-2 + ... + dx + e)?  

• quadratic (highest power is 2), ax2 + bx + c - always one max or min

• cubic (highest power is 3) - one inflection, or one max and one min

• In general, at most n-1 turning points 

• what about f(x) as x get very large positive (negative)? 
Does it go up, down, or become flat 
(i.e. approach a horizontal asymptote)? 

• Any vertical asymptotes? 

(f’ is shorthand for df/dx, the gradient of f(x))

Sketching the graph of a function f(x)
• Example:   f(x) = rx(1-x/K) = rx - rx2/K

1.  f(0)=0
2. f’(x)=r-2rx/K, so f’(0)=r,  f(x) is increasing through the origin

3. clearly f(K)=rK(1-1)=rK(0)=0 so crosses at x=K
4. f(x) is quadratic, so one turning point.

f(x) = rx(1-x/K)

x
K

quiz Q9
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Sketching the graph of a function f(x)
• Example:   f(x) = rx(1-x/K)(x-a)

1. f(0)=0,  f’(x) is harder to work out

2. clearly f(K)=rK(1-1)(K-a)=1(0)(K-a)=0 so crosses at x=K
3. clearly f(a)=ra(1-a/K)(a-a)=ra(1-a/K)(0)=0 so crosses at x=a
4. As x gets very large, f(x) gets very large negative...

r.(large).(-large/K).(large) = -r(large)3/K
could also see this by expanding brackets...

5. f(x) is cubic, so one max and one min (or one inflection).

f(x) = rx(1-x/K)(x-a)

x
Ka

quiz Q10
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Sketching the graph of a function f(x)
• Example:   f(x) = x2/(1+x2)

1. f(0)=0

2. f’(x)=2x/(1+x^2)2, so f’(0)=0, and as x gets large, f’(x) goes to zero 
(horizontal asymptote).
Another way to see f’(0)=0,  for small x,  f(x) looks like x2). 

3. clearly f(0) ≥ 0 
4. As x gets large, f(x) approaches one (the 1 on the bottom is insignificant). 

If you’re not convinced, consider x=10, 100, ...

102/(1+102) = 100/101 = 0.99
1002/(1+1002) = 10000/10001 = 0.9999

x

1

1/2

1

quiz Q12
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Exponential population growth

• x is the number of individuals

• r is a parameter,  the rate of growth per capita. 
It has dimensions of 1/(time)

• Steady state: any steady solution has dx/dt =0

• Hence rx =0.  Assuming r >0, this must mean x =0

• Can see this, and more, from phase-line diagram:

d x
d t

= r x

x

f(x) = rx

unstable

• for small values of x, x grows slowly

• as x increases, its rate of growth increases

• this gives characteristic exponential growth:

x

t

• Examples from Population growth illustrate many key points

10

11

12



Exponential population growth?

• Solution is x(t) = x(0)ert  (quiz Q16).     Take logs of both sides:  ln(x(t)) = rt +x(0)

• Log of population data should be straight line...

• Here we show global human population data 
http://www.census.gov/ipc/www/idb/worldpop.html
http://www.census.gov/ipc/www/worldhis.html

d x
d t

= r x
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• Growth rate is slowing (after a period of acceleration)

Logistic growth

• r measures the maximum rate of growth. It has dimensions of 1/(time). 

• K measures the carrying capacity for the population. 
It has dimensions of number of individuals. 

• Effectively, we have replaced a constant per capita growth rate r, with a rate 
that decreases as the population size increases. This models the depletion of 
resources as a population grows. 

• Steady states are where dx/dt =0, which is where x =0 or x =K

d x
d t

= r x
(
1− x

K

)

f(x) = rx(1-x/K)

unstable

x

stable

x

t

K

representative solutions
K

quiz Q9
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Expt 1

Expt 2

Expt 3

Gratuitous transition...
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Expt 1

Expt 2

Expt 3

Logistic model

Logistic growth?

• Consider experimental data on the growth of yeast. 

• Dynamics look a bit like logistic growth ...

d x
d t

= r x
(
1− x

K

)

• But logistic growth is too slow at first, and too fast later. 
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Allee effect

• Many species exhibit lower or even negative growth rates at low numbers.

• Here, the per capita growth rate is: 

• This is negative if x <a,  i.e. if the population is too small (NB: 0<a<K)

d x
d t

= r x
(
1− x

K

)
(x −a)

r
(
1− x

K

)
(x −a)

f(x) = rx(1-x/K)(x-a)

unstable

x

stablestable

x

t

K

representative solutions
Ka

a

• Bistability: two stable steady states. Final state depends on initial value, x(0).

quiz Q10

Production & degradation models

• In each of the preceding cases, the form of f(x) (straight line, quadratic, cubic) 
makes it easy to sketch the phase-line diagram (and there is no 
qualitative dependence on parameter values)

• Next we will consider models for simple feedback loops, such as may arise 
with transcriptional autoregulation

d x
d t

= P (x)−δx

(
Rate of
change of x

)
=

(
production

)
−

(
decay

)

• P(x) represents the effect of a Transcription Factor x on its own synthesis

• We will consider various common forms for P(x)

• What are we interested in?

• Steady states: production and turnover of x are balanced

• How fast are steady states reached?  Any bifurcations (ideal for exp’tal validation)? 

TF (x)
P(x) δx

TF (x)

Constant production

• P(x) =A,  a constant.  This could model constitutive transcription 

• As usual, steady states satisfy dx/dt =0, hence A = δx

• So the steady state TF level is x = A/δ 

• Does this fit with our biological understanding and intuition?

dx/dt = A-δx

x

stable

A

A/δ

x

t
representative solutions

A/δ

Larger δ ➔ faster decay to steady state

No bifurcations

d x
d t

= A−δx
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Saturating positive feedback

• Transcription rate increases with TF,  x,  
but saturates to a maximum rate P

• e.g. TF binds to its own promoter

• This is an example of a Hill function: 

• Half maximal response at x = h

• Model equation becomes:  

• How to sketch the phase-line diagram and find steady states?

Ax/(h+x)

x

A

A/2

h
P (x) = Axn

hn +xn

d x
d t

= Ax
h +x

−δx

P (x) = Ax
h +x

quiz Q11

• It turns out there are two qualitatively different phase-line diagrams

• Algebra: steady states satisfy Ax/(h+x) = δx

One obvious solution is x=0 the other has A/(h+x) = δ, hence
A = δh + δx, hence 
δx = A - δh, hence
x = (A-δh)/δ

• If A < δh then this steady state is negative and not biologically relevant

• Interpretation: if TF turnover rate too large, TF level decays to zero

• There is a bifurcation at A = δh,
(i.e. change in number or stability of steady states)

• Graphically, dx/dt is the difference between the curve P(x) and the line δx

Saturating positive feedback P (x) = Ax
h +x

d x
d t

= Ax
h +x

−δx

• Graphically, dx/dt is the difference between the 
curve P(x) and the line δx

• It is easy to see the effect of increasing δ which is the 
slope of the line 

Ax/(h+x)

x
(A-δh)/δ

δx

Ax/(h+x)

x

δx

The difference is always negative: x is 
always decreasing to zero

unstable
stable

stable

Increasing δ

Saturating positive feedback

d x
d t

= Ax
h +x

−δx

P (x) = Ax
h +x
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• Graphically, dx/dt is the difference between the curve P(x) and the line δx

• It is easy to see the effect of increasing δ which is the slope of the line 

Ax/(h+x) - δx

x
(A-δh)/δ

x

Increasing δ effectively pulls the curve 
of dx/dt down through the axis

unstable
stable

stable

Increasing δ

Ax/(h+x) - δx

Saturating positive feedback P (x) = Ax
h +x

• We see that as δ increases, the steady state TF level decreases, until it reaches 
zero. Beyond this point TF production cannot be sustained. 

• We can summarise this information in a Bifurcation diagram, which shows 
steady states and their stability as a parameter varies

• Solid lines indicate stable steady states, dashed lines unstable steady states

TF turnover rate, δ

steady state
TF level,

A/h

bifurcation point

Saturating positive feedback

• Could test this structure against experiment...

• ... but bifurcation will be at TF levels below detection threshold. 

P (x) = Ax
h +x

x = A−δh
δ

0

Sigmoidal positive feedback

• Transcription rate increases with TF,  x,  
but saturates to a maximum rate P

• A Hill function with order > 1 is an 
example of a sigmoid curve 

• Half maximal response at x = h

• Model equation becomes:  

• How to sketch the phase-line diagram and find steady states?

x

A

A/2

h

P (x) = Axn

hn +xn

d x
d t

= Axn

hn +xn −δx

quiz Q12
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• Again there are two qualitatively different phase-line diagrams

• Algebra: steady states satisfy Axn/(hn+xn) = δx

One obvious solution is x=0 the other has Axn-1/(hn+xn) = δ ...
 ... hard to solve in general. 

• We resort to graphical analysis.

Sigmoidal positive feedback P (x) = Axn

hn +xn

d x
d t

= Axn

hn +xn −δx

Sigmoidal positive feedback P (x) = Axn

hn +xn

d x
d t

= Axn

hn +xn −δx
• Graphically, dx/dt is the difference between 

the curve P(x) and the line δx

• It is easy to see the effect of increasing δ 
which is the slope of the line 

Axn/(hn+xn)

x

δx

x

δx

The difference is always negative: x is 
always decreasing to zero

unstable stable
stable

Increasing δ

Axn/(hn+xn)

Three steady states - BISTABILITY

stable

• We see that the zero steady state is always stable. 

• As δ increases, the nonzero stable steady state TF level decreases, until it 
disappears in a bifurcation. Beyond this point TF production cannot be sustained. 

• We can summarise this information in a Bifurcation diagram, which shows 
steady states and their stability as a parameter varies.

• Solid lines indicate stable steady states, dashed lines unstable steady states.

TF turnover rate, δ

steady state
TF level

bifurcation point

• Could test this structure against experiment...

• ... at bifurcation TF levels could be above detection threshold. 

Sigmoidal positive feedback P (x) = Axn

hn +xn

25

26

27



Negative feedback

• Transcription rate decreases 
with TF,  x.

• Maximum rate A, minimum zero

• A decreasing Hill function: 

• Half maximal response at x = h

Ah/(h+x)

x

A

A/2

h

• Model equation becomes:  

• How to sketch the phase-line diagram and find steady states?

P (x) = Ah
h +x

d x
d t

= Ah
h +x

−δx

P (x) = Ahn

hn +xn

Negative feedback

• Algebra: steady states satisfy Ah/(h+x) = δx
No obvious solutions - need to cross multiply and solve a quadratic .... 

• Graphically, dx/dt is the difference between the curve P(x) and the line δx

Ah/(h+x)

x

δx

stable

dx/dt = Ax/(h+x) - δx

x
stable

• The pictures are qualitatively the same whatever the parameters

• Always just one stable steady state TF level

• As δ increases the TF level falls

P (x) = Ah
h +x

Discussion

• We have introduced simple ordinary differential equation (ODE) models for single 
state variables. 

• Steady states and their stability are crucial determinant of system dynamics. 

• Changes in number or stability of steady states are called bifurcations.

• For 1st order autonomous ODEs, the phase-line diagram can tell us most 
of the qualitative information we’d like to know about the system dynamics: 

• if you can sketch the graph, you can sketch the dynamics...

• steady states, stability AND qualitative solution behaviour (fast, slow, 
increasing, decreasing, etc), bifurcations.

• solutions cannot oscillate

• For 1st order non-autonomous ODEs (e.g. circadian models with time 
dependent parameters) solutions can oscillate (driven by e.g. day-night cycle)

• Next: 

• Using MATLAB to help sketch phase-line diagrams and simulate ODEs

• models with >1 state variable - more complex dynamics possible, analysis 
more difficult, often resort to computer simulation
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