GSTDMB 2010: DYNAMICAL MODELLING FOR BIOLOGY AND MEDICINE

Lecture 2.1
 Multi-variable differential equation models

Markus Owen

Recap...

- We have introduced simple ordinary differential equation (ODE) models for single state variables.
- Steady states and their stability are crucial determinant of system dynamics.
- Changes in number or stability of steady states are called bifurcations.
- For $I^{\text {st }}$ order autonomous ODEs, the phase-line diagram can tell us most of the qualitative information we'd like to know about the system dynamics:
- if you can sketch the graph, you can sketch the dynamics...
- steady states, stability AND qualitative solution behaviour (fast, slow, increasing, decreasing, etc), bifurcations.
- solutions cannot oscillate
- For $I^{\text {st }}$ order non-autonomous ODEs (e.g. circadian models with time dependent parameters) solutions can oscillate (driven by e.g. day-night cycle)
- We used MATLAB to help sketch phase-line diagrams and simulate ODEs
- Next, models with more than one state variable: more complex dynamics possible, analysis more difficult, often resort to computer simulation

Signalling networks

- Central dogma of molecular biology:
- DNA transcribed to RNA (regulated by transcription factors),
- RNA is translated into Protein.
- Proteins interact, can regulate translation, RNA stability, and transcription.
- RNA can also modulate transcription.
- Signalling networks: interactions between these elements, typically complex and extensive.
- Fundamental approach: decompose into modules that are sufficiently separate from other pathways to be considered on their own.
- Mathematical models: prediction of network behaviour with given topology and interactions.
- Ideas don't just apply to "gene networks", but to many kinds of network: Physiological models, metabolic networks, ecological networks, epidemiology...

The law of Mass Action (I)

- The law of mass action states that the rate of a chemical reaction is proportional to the product of the concentrations of the reactants.
- It is based on the assumptions of i) a well stirred solution and ii) low molecular concentrations, where the probability of diffusing molecules to get close enough, for a reaction to occur, is proportional to the concentrations.
- A rate parameter is used to define the 'probability' of a reaction to occur if two molecules approach each other.
- The mass action formalism has been validated in many experimental settings.
- Given: $\quad n_{1} S_{1}+n_{2} S_{2}+\cdots \xrightarrow{k_{f}} m_{1} P_{1}+m_{2} P_{2}+\cdots$
- The reaction rate is $K_{f}\left(S_{1}^{n_{1}} \cdot S_{2}^{n_{2}} \ldots\right)$
- The rate of change of a species depends on the rate of reaction and the net change in the number of molecules of that species.
- In reality, all reactions should be broken down into bimolecular steps.

The law of Mass Action (2)

- Consider a simple example: $A+B \underset{k_{b}}{\stackrel{k_{f}}{\rightleftharpoons}} C$
- This is two reactions.
- The forward reaction has reactants A and B, and rate $k_{f}[A][B]$. It consumes one molecule of A and B, and produces one molecule of C.
- The reverse reaction has a single reactant C, and rate $k_{b}[C]$. It consumes one molecule of C, and produces one molecule of A and B.

$$
\begin{aligned}
& \frac{d[A]}{d t}=-k_{f}[A][B]+k_{b}[C] \\
& \frac{d[B]}{d t}=-k_{f}[A][B]+k_{b}[C] \\
& \frac{d[C]}{d t}=+k_{f}[A][B]-k_{b}[C] \\
& \uparrow \uparrow \\
& \text { Forward Reverse }
\end{aligned}
$$

The law of Mass Action (3)

- Another example, the "Brusselator":

- We assume the concentrations of substrates A and B are constant.
- E is a product. We are interested in the dynamics of X and Y.
- $x=[X], y=[Y]$, the concentrations of X and Y.
- 3 has rate $k_{3} x^{2} y$ which produces one molecule of X and consumes one of Y.

$$
\begin{aligned}
\frac{d x}{d t} & =k_{1}^{1} A-\left(k_{2} B+k_{4}\right) x+k_{3} x^{2} y \\
\frac{d y}{d t} & =k_{2}^{2} B x-k_{3}^{3} x^{2} y .
\end{aligned}
$$

- This system is a famous example which can have oscillatory solutions.
- Three reactions, + law of mass action:

$$
\begin{aligned}
& \frac{d[S]}{d t}=-k_{1}\left[\begin{array}{|c}
\square \\
1
\end{array}\right]+k_{2}\left[\begin{array}{l}
2 \\
1
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d[P]}{d t}=k_{3}\left[\frac{3}{S E}\right]
\end{aligned}
$$
 \title{

Michaelis-Menten enzyme kinetics
 \title{
Michaelis-Menten enzyme kinetics

}

Michaelis-Menten kinetics $S+E \underset{k_{2}}{\stackrel{k_{1}}{\rightleftharpoons}} S E \xrightarrow{k_{3}} P+E$

- Constant total enzyme: $[E]+[S E]=E_{0}$
- Substrate assumed in excess, $d[S] / d t=0$
- [SE] assumed to be at quasi-steady state

$$
0 \frac{\partial[S \not C]}{d t}=k_{1}[S][E]-k_{2}[S E]-k_{3}[S E]
$$

- A bit more algebra, using the definition: $K=k_{1} /\left(k_{2}+k_{3}\right)$

$$
\begin{aligned}
{[S E]=K[S][E] } & =K[S]\left(E_{0}-[S E]\right) \\
{[S E](1+K[S]) } & =K E_{0}[S] \\
{[S E]=\frac{K E_{0}[S]}{1+K[S]} } & =\frac{E_{0}[S]}{(1 / K+[S])}
\end{aligned}
$$

Finally: $\frac{d[P]}{d t}=\frac{V_{\max }[S]}{K_{m}+[S]}$

$$
\begin{aligned}
& V_{\max }=k_{3} E_{0} \\
& K_{m}=1 / K
\end{aligned}
$$

Transcriptional/translational activation

- TF binds to DNA, this complex activates production of protein P.

$$
T F+D N A \underset{k_{2}}{\stackrel{k_{1}}{\rightleftharpoons}} T F D N A \xrightarrow{k_{3}} P+T F D N A
$$

- Assuming TF binding is fast enables use of Michaelis-Menten approach.
- DNA acts as enzyme, $[D N A]+[T F-D N A]=1$
$\frac{d[P]}{d t}=V_{\max } \frac{[T F]}{K+[T F]}$

Transcriptional/translational repression

- TF binds to DNA, blocking production of protein P.

- This time, synthesis is a decreasing function of TF concentration:

$$
\frac{d[P]}{d t}=\frac{V_{\max } K}{K+[T F]}
$$

Hill functions

- With the previous expression, the response to changes in substrate (TF) concentration is weak.
- Cooperativity can lead to sharper responses.
- Suppose n molecules of substrate bind to the DNA:

$$
n T F+D N A \underset{k_{2}}{\stackrel{k_{1}}{\rightleftharpoons}} T F_{n} D N A \xrightarrow{k_{3}} P+T F_{n} D N A
$$

- After some mass action and some algebra...
$\frac{d[P]}{d t}=V_{\max } \frac{[T F]^{n}}{K^{n}+[T F]^{n}}$
- Larger $n \rightarrow$ steeper switch
- Same idea for repression

Multiple Transcription Factors?

- What about multiple transcription factors?
- What if some are activating and some repressing?
- Basically need to catalogue all the relevant states and the contribution of each to transcription rate.
- Write down ODEs and simplify using Michaelis-Menten approach.
- E.g. Lac-operon: [I] activates and $[R]$ represses:

$$
\frac{d P}{d t}=\frac{V_{\max }\left(1+k_{2}[I]+k_{3}[R][I]\right)}{1+k_{1}[R]+k_{2}[I]+k_{3}[R][I]}
$$

- or use the Shea-Ackers approach...

Shea-Ackers (I)

- Method originally developed for the lysis/lysogeny switch in Lambda phage
- Two time scales:
- Slow:Transcription/Translation/Degradation
- Fast: Binding/unbinding of TFs to gene - thermal equilibrium
- Possible cases:TF, TF+RNAp, RNAp - probability associated with each
- Enumerate all cases, compute probability of bound RNAp
- Transcription rate is proportional to promoter occupancy

Shea-Ackers (2)

- Example: two transcription factors, A and B
- Enumerate all possibilities - binding/unbinding of A, B and RNAP
- The "partition function" Z contain $2^{3}=8$ terms

$$
Z=\sum_{i j k}[A]^{i}[B]^{j}[R]^{k} \delta_{i j k}=Z_{\text {RNAp bound RNAP unbound }}+Z_{o f f}
$$

$i, j, k=0$ (unbound) or $\boldsymbol{1}$ (bound)

- $\delta_{i j k}$ related to binding energy, $\delta_{000}=1$

Shea-Ackers: simple example

- The trp operon of E . coli is regulated by the TrpR repressor protein A.
- Tryptophan binds the TrpR repressor enabling $\operatorname{Tr} p R$ to bind the trp operator.
- This prevents transcription: the trp operator overlaps the RNAp binding site. A and R cannot be simultaneously bound:

$[\mathrm{A}]$	$[\mathrm{RNAP}]$	Rate
0	0	I
I	0	$\delta_{10} A$
0	I	$\delta_{01} R$
I	I	-

$$
Z=[A]^{0}[R]^{0} \delta_{00}+[A]^{1}[R]^{0} \delta_{10}+[A]^{0}[R]^{1} \delta_{01}
$$

- Only the last term corresponds to a transcriptionally active state, so

$$
T \propto \frac{\delta_{01}[R]}{1+\delta_{10}[A]+\delta_{01}[R]}
$$

- For constant RNAp (R) this is like a decreasing Hill function of order 1 .

Lac-operon revisited

- Write down ODEs and simplify using Michaelis-Menten approach.
- E.g. Lac-operon: [I] activates and [R] represses:

$$
\frac{d P}{d t}=\frac{V_{\max }\left(1+k_{2}[I]+k_{3}[R][I]\right)}{1+k_{1}[R]+k_{2}[I]+k_{3}[R][I]}
$$

- or use the Shea-Ackers approach...
assuming [RNAp] is constant yields the same form as above

$[1]$	$[\mathrm{R}]$	$[\mathrm{RNAp}]$	Rate
0	0	0	I
I	0	0	$\delta_{100}[I]$
0	I	0	$\delta_{010}[R]$
0	0	I	$\delta_{001}[R N A p]$
I	I	0	$\delta_{110}[I][R]$
I	0	I	$\delta_{101}[I][R N A p]$
0	I	I	$\delta_{011}[R][R N A p]$
I	I	I	$\delta_{111}[I][R][R N A p]$

Two-gene repressor network

$$
\begin{aligned}
& \frac{d u}{d t}=\frac{\alpha_{1}}{1+v^{\beta}}-u \\
& \frac{d v}{d t}=\frac{\alpha_{2}}{1+u^{\gamma}}-v
\end{aligned}
$$

- Can behave as a bistable switch, depending on Hill coefficients
- Phase-plane analysis very useful
- Nullclines are curves on which one variable is not changing
- u-nullcline: $d u / d t=0$, here $u=\frac{\alpha_{1}}{1+v^{\beta}}$
- v-nullcline: $d v / d t=0$, here $v=\frac{\alpha_{2}}{1+u^{\gamma}}$
- Steady states where nullclines cross
- Stability requires more maths - linear algebra, eigenvalues, etc ...

Two-gene repressor network: $\beta=\gamma=1$

Two-gene repressor network: $\boldsymbol{\beta}, \boldsymbol{\gamma}>\boldsymbol{1}$

Two-gene repressor network: $\boldsymbol{\beta}, \boldsymbol{\gamma}>\boldsymbol{1}$

A synthetic toggle switch

Regulatory logic:

$\frac{\mathrm{d} u}{\mathrm{~d} t}=-\delta_{1} u+\frac{\alpha_{1}}{1+v^{m}}$
$\frac{\mathrm{d} v}{\mathrm{~d} t}=-\delta_{2} v+\frac{\alpha_{2}}{1+u^{n}}$

A synthetic toggle switch

Gardner, T.S., Cantor, C.R. \& Collins, J.J. (2000). Nature 403, 339-342.

Transcriptional regulation revisited

- Protein synthesis requires transcription and translation.
- Phase plane analysis quite straightforward.

Transcriptional regulation revisited

$\frac{d x}{d t}=P(y)-\delta x \quad \bullet x$-Nullcline is: $x=P(y) / \delta$ and y-nullcline is $x=d y / A$
$\frac{d y}{d t}=A x-d y$

- Easier to think of y as a function of x , otherwise we have $y=P^{-1}(\delta x)$ where P^{-1} is the inverse function...
$P(y)=A y /(h+y)$
- Increasing d or δ leads to loss of the nonzero steady state, $(0,0)$ becomes stable

Transcriptional regulation revisited

$$
\frac{d x}{d t}=P(y)-\delta x
$$

- x-Nullcline is: $x=P(y) / \delta$ and y-nullcline is $x=d y / A$
- Easier to think of y as a function of x , otherwise we have $y=P^{-1}(\delta x)$ where P^{-1} is the inverse function...

$P(y)=A y^{2} /\left(h^{2}+y^{2}\right)$

- Bistability again ...
- Increasing d or δ leads to loss of the nonzero steady states.

Gene network modelling

Variables: mRNAs and proteins.
ODE models: mass action, sigmoidal transcriptional activation and repression, linear decay and translation.

$$
\frac{d x}{d t}=\text { synthesis }- \text { decay } \pm \text { transformation } \pm \text { transport }
$$

- Parameters:
- Thresholds for the sigmoidal functions;
- effective co-operativities, can be high for indirect pathways;
- half-lives;
- relative contributions of multiple transcriptional regulators
- transfer rates, e.g. cytosol to cell surface;
- transformation rates, e.g. cleavage, phosphorylation, binding.
- intracellular species: single equation per cell
cell-surface: multiple equations per cell (e.g. six if we assume hexagonal cells).

Epidemiology

Simplest model: SIR model.

- Closed population. Individuals do not enter, and leave only by death due to disease.
- Population in 3 compartments: Susceptible, Infective, or Removed (cured and now immune, or dead).
- No spatial effects (uniform mixing), and no heterogeneity in activity (important in, e.g., STDs such as AIDS).
- Negligible incubation time.
- Susceptibles move into Infective class at rate proportional to number of contacts between Susceptibles and Infectives (like law of mass action).
- Infectives removed at some rate into Removed class (which decouples).
- An EPIDEMIC if $I(t)>I(0)$ for some $t>0$ (i.e. if the number of infectives goes up)

$$
\begin{array}{lr}
\frac{d S}{d t}=-\beta S I & \\
\frac{d I}{d t}=\beta S I-\gamma I & S+I+R=N \\
\frac{d R}{d t}=\gamma I & S+I \leq N
\end{array}
$$

Discussion

- Mathematical models can encode our knowledge about signalling networks.
- Gene transcription, mRNA translation, protein interactions, decay, etc, can be described using differential equations.
- There are different approaches to combining multiple transcription factors.
- Simple and complex models can be used to test hypotheses.
- Mathematical analysis of relatively simple models can be done using phaseplane methods.
- Mutual repression can lead to bistability - but we have also seen that cooperative positive autoregulation can lead to bistability.
- Other simple motifs can be analysed in considerable detail.
- Complex signalling networks often require a more computational approach.
- Network topology may be more important than parameter values.
- Similar modelling and analysis techniques apply to other areas of biology and medicine.

ODE Example - Auxin signalling

- Auxin is a plant hormone, which stimulates degradation of Aux/IAAs.
- Aux/IAAs repress their own transcription.
- Hence Auxin stimulates Aux/IAA transcription.

