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Lecture 2.1
Multi-variable differential equation models

Recap...

• We have introduced simple ordinary differential equation (ODE) models for single 
state variables. 

• Steady states and their stability are crucial determinant of system dynamics. 

• Changes in number or stability of steady states are called bifurcations.

• For 1st order autonomous ODEs, the phase-line diagram can tell us most 
of the qualitative information we’d like to know about the system dynamics: 

• if you can sketch the graph, you can sketch the dynamics...

• steady states, stability AND qualitative solution behaviour (fast, slow, 
increasing, decreasing, etc), bifurcations.

• solutions cannot oscillate

• For 1st order non-autonomous ODEs (e.g. circadian models with time 
dependent parameters) solutions can oscillate (driven by e.g. day-night cycle)

• We used MATLAB to help sketch phase-line diagrams and simulate ODEs

• Next, models with more than one state variable: more complex 
dynamics possible, analysis more difficult, often resort to computer simulation
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Figure 1: An Aux/IAA negative feedback loop. Free ARF monomers can bind either (a) ARFs

(to form homodimers) or (b) Aux/IAAs (to form heterodimers). Both (c) ARF homodimers

and (d) monomers can bind Aux/IAA response elements (AuxRE), activating the Aux/IAA

genes. Aux/IAA proteins may mediate the repression of the Aux/IAA gene either by binding

ARFs (see (b)), thereby reducing the number of free ARFs, or (see (e)) by binding the AuxRE

and repressing Aux/IAA genes transcriptionally. (f) Aux/IAA is transcribed. (g) Aux/IAA

mRNA is translated into Aux/IAA protein, completing the negative feedback loop. Auxin can

disrupt this negative feedback loop by mediating the ubiquitination of the Aux/IAA monomers

as follows. (h) Auxin binds to the TIR1 complex. (i) The auxin-TIR1 complex in turn binds

free Aux/IAA. (j) This complex then facilitates the ubiquitination of Aux/IAA proteins. This

reduces (as represented by dashed arrows in (b),(e)) levels of the Aux/IAA-ARF complex and

releases ARF monomers, which may then form homodimers (a). Thus, sufficiently high levels

of auxin will cause the Aux/IAA genes to be de-repressed, (c),(d).
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Thus, the auxin-mediated regulation of Aux/IAA is taken to be governed by

d[IAAm]

dt
= λ1F1([ARF], [IAAp], [ARF-IAA], [ARF2])

+ λ2F2([ARF], [IAAp], [ARF-IAA], [ARF2]) − µIAAm
[IAAm], (9a)

d[IAAp]

dt
= δ[IAAm] − la[IAAp][auxin–TIR1] + ld[auxin–TIR1–IAA]− (9b)

pa[IAAp][ARF] + pd[ARF-IAA],

d[TIR1]

dt
= −ka[auxin][TIR1] + kd[auxin–TIR1], (9c)

d[auxin–TIR1]

dt
= ka[auxin][TIR1]− kd[auxin–TIR1] (9d)

+ (ld + lm)[auxin–TIR1–IAA] − la[auxin–TIR1][IAAp] (9e)

d[auxin–TIR1–IAA]

dt
= la[IAAp][auxin–TIR1]− (ld + lm)[auxin–TIR1–IAA], (9f)

d[IAA∗]

dt
= lm[auxin–TIR1–IAA]− µIAA∗ [IAA∗], (9g)

d[ARF]

dt
= −2qa[ARF]2 + 2qd[ARF2] − pa[ARF][IAAp] + pd[ARF-IAA], (9h)

d[ARF-IAA]

dt
= pa[ARF][IAAp] − pd[ARF-IAA], (9i)

d[ARF2]

dt
= qa[ARF]2 − qd[ARF2], (9j)

d[auxin]

dt
= ω + kd[auxin–TIR1]− ka[auxin][TIR1] − µAuxin[auxin]. (9k)

It follows from (9c), (9e), (9f) that

[TIR1] + [auxin–TIR1] + [auxin–TIR1–IAA] = [TIR1]T, (10)

where the constant [TIR1]T is the total concentration of TIR1. Similarly, it follows from (9h),

(9i) and (9j) that

[ARF] + [ARF-IAA] + 2[ARF2] = [ARF]T, (11)

where the constant [ARF]T is the total concentration of ARF present. The relevant protein and

mRNA species are summarised in Table 1.
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Signalling networks

•  Central dogma of molecular biology: 

• DNA transcribed to RNA (regulated by transcription factors ), 

• RNA is translated into Protein. 

• Proteins interact, can regulate translation, RNA stability, and transcription. 

• RNA can also modulate transcription. 

• Signalling networks: interactions between these elements, typically complex and 
extensive. 

• Fundamental approach: decompose into modules that are sufficiently separate 
from other pathways to be considered on their own. 

• Mathematical models: prediction of network behaviour with given topology and 
interactions.

• Ideas don’t just apply to “gene networks”, but to many kinds of network: 
Physiological models, metabolic networks, ecological networks, epidemiology... 
 

The law of Mass Action (1)

• The law of mass action states that the rate of a chemical reaction is 
proportional to the product of the concentrations of the reactants. 

• It is based on the assumptions of i) a well stirred solution and ii) low molecular 
concentrations, where the probability of diffusing molecules to get close 
enough, for a reaction to occur, is proportional to the concentrations. 

• A rate parameter is used to define the ‘probability’ of a reaction to occur if 
two molecules approach each other. 

• The mass action formalism has been validated in many experimental settings. 

• Given: 

• The reaction rate is

• The rate of change of a species depends on the rate of reaction and the net 
change in the number of molecules of that species.

• In reality, all reactions should be broken down into bimolecular steps.  

n1S1 +n2S2 +·· ·
k f−→ m1P1 +m2P2 +·· ·

k f
(
Sn1

1 ·Sn2
2 · · ·

)

The law of Mass Action (2)

• Consider a simple example: 

• This is two reactions. 

• The forward reaction has reactants A and B, and rate kf[A][B]. 
It consumes one molecule of A and B, and produces one molecule of C. 

• The reverse reaction has a single reactant C, and rate kb[C]. 
It consumes one molecule of C, and produces one molecule of A and B.
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where the varaibles S1, S2, ... are defining the reactants and the P1, P2, ... are defining the
products. The parameters s1, s2, ..., p1, p2, ... are called stoichometric coefficients and kf

is the rate parameter. The stoichometric coefficients are typically chosen such that the
total mass is conserved in the reaction (or such that atom numbers are the same before
and after the reaction).

Example: a simple mass action reaction

Consider the simple reaction of species A and B forming complex C.

A + B
kf!
kb

C.

kf is the rate of the forward reaction of unit [time]−1[conc]−1, while kb is the rate of
the backward reaction of unit [time]−1. Note that reaction rate units are not uniquely
defined, but rather depends on the reaction. In a differential equation formalism the
equations are defined by

d[A]

dt
=

d[B]

dt
= −d[C]

dt
= −kf [A][B] + kb[C], (1.5)

which will have an equilibrium point (fixed point) for [C]/[A][B] = kf/kb where K =
kf/kb defines a relation between concentrations of reactants and products which is inde-
pendent on initial concentrations. K is often defined as the reaction constant. "

1.4.2 Thermodynamics and rate constants

In experiments it can be seen that the logarithm of the rate constant, ln k, is linearly
related to the inverse temperature 1/T . The parameters for the slope and intercept is
formulated in Arrhenius law

k = Ae−Ea/TR (1.6)

where Ea is the activation energy, R is the gas constant and A is the steric factor, a
constant measuring the efficiency of a molecular collision leading to a reaction.

In transition state theory the energy is replaced by the Gibbs free energy, G =
E + PV − TS, where P is the pressure V is the volume, T is the temperature and
S is the entropy. The idea is that the a molecule is in a local minima in a “reaction
space”, and that for a reaction to happen, it has to find a path to the product within this
space, and a maxima needs to be passed (see figure below). Values for the Gibbs free
energy for different molecules can be found in the literature and the reaction constant of
a bidirectional reaction can be related to the difference in G.

d [A]
d t

=−k f [A][B ]+kb[C ]

d [B ]
d t

=−k f [A][B ]+kb[C ]

d [C ]
d t

=+k f [A][B ]−kb[C ]

Forward Reverse

4

5
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The law of Mass Action (3)
• Another example, the “Brusselator”: 

• We assume the concentrations of substrates A and B are constant.

•  E is a product.  We are interested in the dynamics of X and Y. 

•  x =[X], y = [Y], the concentrations of X and Y.

•      has rate k3 x2y which produces one molecule of X and consumes one of Y.

which is negative if δ > r(k − 1), and hence if the coexistence steady state is relevant.

Now the determinant is given by

det(A) = −r(k − 1)

δ

[

r(
r(k − 1) − δ

δ
) − (

r(k − 1) − δ

δ
)(δ + r)

]

= −r(k − 1)

δ

r(k − 1) − δ

δ
(r − δ + r)

=
r(k − 1)

δ

r(k − 1) − δ

δ
δ

=
r(k − 1)[r(k − 1) − δ]

δ
,

which is negative if δ > r(k − 1), and hence if the coexistence steady state is relevant.

So the trace and determinant are both negative when coexistence is relevant, and this steady
state is unstable (a saddle).

(e) When is a state with no tumour cells stable?

(m = 0, n = 1) is stable if δ > r(k − 1).

(f) Why might it be a good medical strategy to reduce the number of tumour cells?

Recall from our study of one variable models that with more than one stable steady state, the
one that is aproached as t → ∞ will depend on initial conditions. From our phase plane we
can see that, roughly speaking, we can divide the plane into two regions, called the basins of
attraction of the two stable steady states.

Above and to the left of the coexistence state, the flow is towards the “healthy” steady state
(0, 1), but below and to the right it is towards the “tumour” steady state. So a good medical
strategy might be to reduce the number of tumour cells so that the state of the system is in
the basin of attraction of the “healthy” state.

For those who are interested, the boundary between the two basins of attraction will be the
stable manifold of the coexistence steady state.

22. rkbrusselator:

The ’Brusselator’ reaction mechanism proposed by Prigogene and Lefever (1968) is

A
k1→ X, B + X

k2→ Y + D, 2X + Y
k3→ 3X, X

k4→ E

where the k’s are the rate constants, and the reactant concentrations of A and B are kept constant.

(a) Write down the governing differential equation system for the concentrations of X and Y , and
nondimensionalise the equations so that they become

du

dτ
= 1 − (b + 1)u + au2v,

dv

dτ
= bu − au2v,

where u and v correspond to X and Y , τ = k4t, a = k3(k1A)2/k3
4, and b = k2B/k4.

(b) Find the nullclines and the direction of trajectories, and sketch them in the (u, v) phase plane.
What does this tell you about solutions?

(c) Determine the positive steady state and show that there is a bifurcation value b = bc = 1 + a
at which the steady state becomes unstable via a Hopf bifurcation.
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(d) Why should we expect to see small amplitude limit cycles solutions for b just greater than bc?
What should the period of those limit cycles be?

(e) Show how you could construct a closed region in which trajectories are bounded. How can you
use this to prove the existence of a limit cycle even when we are not close to b = bc?

rkbrusselator Solution

(a) The reaction mechanism gives the differential equations:

dx

dt
= k1A − (k2B + k4)x + k3x

2y,

dy

dt
= k2Bx − k3x

2y.

To nondimensionalise, we begin by applying the rescaling τ = k4t:

dx

dτ
=

k1A

k4
−

(
k2B

k4
+ 1

)

x +
k3

k4
x2y,

dy

dτ
=

k2B

k4
x − k3

k4
x2y.

Now we need to be able to cancel the k1A
k4

, so we let x = k1A
k4

u:

du

dτ

k1A

k4
=

k1A

k4
−

(
k2B

k4
+ 1

)
k1A

k4
u +

k3

k4

(k1A)2

k2
4

u2y,

dy

dτ
=

k2B

k4

k1A

k4
u − k3

k4

(k1A)2

k2
4

u2y.

Then we can cancel k1A
k4

throughout the u equation:

du

dτ
= 1 −

(
k2B

k4
+ 1

)

u +
k3

k4

k1A

k4
u2y,

dy

dτ
=

k2B

k4

k1A

k4
u − k3

k4

(k1A)2

k2
4

u2y.

Now we just need to scale y appropriately—we’d like to get rid of the k1A
k4

on the first term in
the y equation, so that it is the same as the corresponding term in the u equation. We rescale
y in the same way as we did x, i.e. y = k1A

k4
v:

du

dτ
= 1 −

(
k2B

k4
+ 1

)

u +
k3

k4

(k1A)2

k2
4

u2v,

dv

dτ
=

k2B

k4
u − k3

k4

(k1A)2

k2
4

u2v.

So our full set of rescalings is x = k1A
k4

u, y = k1A
k4

v, τ = k4t; with dimensionless parameters
a = k3(k1A)2/k3

4, and b = k2B/k4:

du

dτ
= 1 − (b + 1)u + au2v,

dv

dτ
= bu − au2v.
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• This system is a famous example which can have oscillatory solutions. 

3

Michaelis-Menten enzyme kinetics

1.4. BIOCHEMICAL RATE EQUATIONS 13

The rate equations for this system can be written as

d[S]

dt
= −k1[S][E] + k2[SE]

d[E]

dt
= −k1[S][E] + k2[SE] + k3[SE]

d[SE]

dt
= k1[S][E]− k2[SE]− k3[SE]

d[P ]

dt
= k3[SE] (1.10)

The first reaction is assumed to be fast (and in equilibrium) and we assume that
d[SE]/dt ≈ 0. Solving the fixed point equation gives K = k1/(k2 + k3) = [SE]/[S][E].
If we also assume a constant amount of total enzyme, [E] + [SE] = E0, the complex
concentration can be written as a function of the substrate concentration,

[SE] = K[S][E] = K[S](E0 − [SE])

[SE] (1 + K[S]) = KE0[S]

[SE] =
KE0[S]

1 + K[S]
=

E0[S]

(1/K + [S])
. (1.11)

The production of P as a function of the substrate concentration is then

d[P ]

dt
=

Vmax[S]

Km + [S]
(1.12)

where the constants Vmax = k3E0 and Km = 1/K. The choice of parameters is due to
the fact that Vmax is the saturated maximal rate of production and Km is the amount
of substrate that corresponds to half the maximal rate (Fig. 1.1). A problem with the
Michaelis-Menten equation is the “slow” response to substrate concentration compared
with what is often seen in experiments. To get the rate 0.1Vmax a substrate concentration
of S0.1 = Km/9 is needed and to get a rate of 0.9Vmax, the substrate concentration needs
to be S0.9 = 9Km. Hence an 81-fold change in concentration is needed between ’on’ and
’off’ states. This is often handled by using a Hill-type kinetics as will be discussed in
more detail later.

It should also be noted here that the dependence on the enzyme concentration is
built into the Vmax parameter and assumed to be constant. The amount of enzyme is
often also a dynamic variable and the reaction can then be described by

d[P ]

dt
=

V ′
max[S][E]

Km + [S]
(1.13)

where it is assumed that the concentration of the enzyme changes slowly compared to
the change in P.

12 CHAPTER 1. MODELING IN SYSTEMS BIOLOGY

1.4.3 Enzyme kinetics

Many reactions have a far too high activation energy to ever occur spontanously. A
common type of reaction is an enzyme reaction, where a helper molecule (the enzyme)
fascilitate a reaction to occur. The enzyme is not used up in the reaction itself.

Example: a simple enzymatic reaction

Consider the simple reaction of species A forming compound B with the help of enzyme
E.

A + E
k→ B + E.

k is the rate of the reaction of unit [time]−1[conc]−1. Using a differential equation for-
malism the equations are defined by

d[A]

dt
= −d[B]

dt
= −k[A][E], (1.7)

d[E]

dt
= 0. (1.8)

The problem with this formulation is that there is no upper limit on how much a single
enzyme molecule can facilitate the reaction. Often there is an upper limit on the rate
due to the fact that the enzyme is occupied during the reaction, and a model accounting
for this is described in the next section. !

1.4.4 Enzyme kinetics, Michaelis-Menten

A more proper description of an enzyme reaction is to let the enzyme E bind to the
substrate S and letting the substrate turn into a product P while the enzyme is released

S + E
k1"
k2

SE
k3→ P + E. (1.9)• S, substrate; E, enzyme; P, product:

• Three reactions, + law of mass action:  

1

2
3

1

1

1

2

2

2

3

3

3

• A bit more algebra, using the definition: 

Michaelis-Menten kinetics

• Constant total enzyme: [E] + [SE] = E0
• Substrate assumed in excess, d[S]/dt = 0 
•  [SE] assumed to be at quasi-steady state
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1.4.3 Enzyme kinetics
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dt
= 0. (1.8)
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S + E
k1"
k2

SE
k3→ P + E. (1.9)
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Transcriptional/translational activation
• TF binds to DNA, this complex activates production of protein P.
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1.5.2 Michaelis-Menten

The transcription/translation process can be modeled as a transcription factor (TF )
binding to DNA (creating a complex) which activates or represses the production of a
protein P . A model describing an activator is

TF + DNA
k1!
k2

TFDNA
k3→ P + TFDNA (1.18)

Assuming that the binding/release of the transcription factor is fast compared to the
production of the protein allows for a Michaelis-Menten formalism to be used. The
’enzyme’ in this case is the DNA, and it can be assumed to exist as a single copy within
a cell (DNA+TFDNA = 1). Solving for the equilibrium of the left part of the reaction
leads to TFDNA = TF/(K + TF ) where K = k2/k1. This can be interpreted as the
relative occupation of the binding site or the fraction of time the transcription factor
TF is bound. The production of P can then be seen as this fraction times the rate of
production when the regulation is active (given by k3 = Vmax), which results in

d[P ]

dt
= Vmax

[TF ]

K + [TF ]
(1.19)

Note that the reactions described in Eq. 1.18 is not exactly the same as in the Michaeli-
Menten enzyme reaction Eq.1.9. How are the parameters Vmax and Km defined in this
transcription version? When is there no difference compared to the enzymatic case?

Example: Michaelis-Menten repressor

Assume instead that transcription is active if no transcription factor is bound to the
DNA, and inactive when the transcription factor (TF ) binds

TF + DNA
k1!
k2

TFDNA

DNA
k3→ P + DNA (1.20)

This leads to a repressor model and working out the Michaelis-Menten formalism (try
it!) leads to a production of P described by

d[P ]

dt
=

VmaxK

K + [TF ]
(1.21)

which have the behavior shown in the figure below

transcription
off

DNA

transcription
on

TF DNA
k1

k2

TF

• Assuming TF binding is fast enables use of Michaelis-Menten approach.

• DNA acts as enzyme, [DNA] + [TF-DNA] = 1
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Transcriptional/translational repression
• TF binds to DNA, blocking production of protein P.
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off

TF DNA
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TF

• This time, synthesis is a decreasing function 
of TF concentration:
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K

Hill functions

• With the previous expression, the response to changes in substrate (TF) 
concentration is weak. 

• Cooperativity can lead to sharper responses. 

• Suppose n molecules of substrate bind to the DNA:

n
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• After some mass action and some algebra...
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• Larger n ➔ steeper switch

• Same idea for repression
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Multiple Transcription Factors?

• What about multiple transcription factors?

• What if some are activating and some repressing?

• Basically need to catalogue all the relevant states and the contribution of each 
to transcription rate. 

• Write down ODEs and simplify using Michaelis-Menten approach.

• E.g. Lac-operon: [I] activates and [R] represses:

• or use the Shea-Ackers approach...
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If these probabilities are assumed to be independent, the probability that TF1 is bound
and TF2 is not is given by

PTF1boundANDTF2notbound = PTF1boundPTF2notbound =

=
[TF1]/K1

1 + [TF1]/K1 + [TF2]/K2 + [TF1][TF2]/K1K2
(1.28)

This probability can then be multiplied with a maximal rate for transcription resulting
in a function as shown in the figure below
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In the previous example only one specific bounding pattern resulted in transcription,
but this can be generalized to transcription for more than one combination, as e.g. for
the lac-operon as discussed previously.

Example: Michaelis-Menten version of the lac-operon

A simplified model for lac-operon regulation using a Michaelis-Menten formalism for a
lac-repressor (R) and IPTG (I) could be assumed by letting transcription occur as soon
as the repressor is not the only molecule present (compare with the boolean rule in the
earlier example). Show that this leads to

dP

dt
=

Vmax(1 + k2[I] + k3[R][I])

1 + k1[R] + k2[I] + k3[R][I]
. (1.29)

This function is shown in the figure below, and it can be seen that when I is not present
R represses the activity, and that the activity increases with increasing concentration
of I. Note that all active states leads to the same maximal production (Vmax) in this
example.

Shea-Ackers (1)

• Method originally developed for the lysis/lysogeny switch in Lambda phage  

• Two time scales: 

• Slow: Transcription/Translation/Degradation 

• Fast: Binding/unbinding of TFs to gene – thermal equilibrium 

• Possible cases: TF,  TF+RNAp,  RNAp - probability associated with each 

• Enumerate all cases, compute probability of bound RNAp 

• Transcription rate is proportional to promoter occupancy  

A B RNAp

PromoterOperons Gene

Shea-Ackers (2)
• Example: two transcription factors,  A and B 

• Enumerate all possibilities - binding/unbinding of A,B and RNAP 

• The “partition function” Z contain 23 = 8 terms 

A B RNAp

PromoterOperators Gene

• i,j,k = 0 (unbound) or 1 (bound)

• δijk related to binding energy, δ000 =1

RNAp bound RNAp unbound

Zon

Zon +Zoff

Transcription rate 
proportional to: 

Z =
∑

i j k
[A]i [B ] j [R]kδi j k = Zon +Zoff
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Shea-Ackers: simple example
• The trp operon of E. coli is regulated by the TrpR repressor protein A. 

• Tryptophan binds the TrpR repressor enabling TrpR to bind the trp operator. 

• This prevents transcription: the trp operator overlaps the RNAp binding site. 
A and R cannot be simultaneously bound: 

[A] [RNAp] Rate

0 0 1

1 0 δ10A
0 1 δ01R
1 1 -

Z = [A]0[R]0δ00 + [A]1[R]0δ10 + [A]0[R]1δ01

T ∝ δ01[R]
1+δ10[A]+δ01[R]

• For constant RNAp (R) this is like a decreasing Hill function of order 1.  

• Only the last term corresponds 
to a transcriptionally active state, so   

A
RNAp

PromoterOperator Gene

A

Lac-operon revisited
• Write down ODEs and simplify using Michaelis-Menten approach.

• E.g. Lac-operon: [I] activates and [R] represses:

• or use the Shea-Ackers
approach...
assuming [RNAp] is 
constant yields the same 
form as above

1.5. GENE REGULATION 29

If these probabilities are assumed to be independent, the probability that TF1 is bound
and TF2 is not is given by

PTF1boundANDTF2notbound = PTF1boundPTF2notbound =

=
[TF1]/K1

1 + [TF1]/K1 + [TF2]/K2 + [TF1][TF2]/K1K2
(1.28)

This probability can then be multiplied with a maximal rate for transcription resulting
in a function as shown in the figure below

 0.01

 0.1

 1

 10

 100

TF1
 0.01

 0.1
 1

 10
 100 TF2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

dP/dt

!

In the previous example only one specific bounding pattern resulted in transcription,
but this can be generalized to transcription for more than one combination, as e.g. for
the lac-operon as discussed previously.

Example: Michaelis-Menten version of the lac-operon

A simplified model for lac-operon regulation using a Michaelis-Menten formalism for a
lac-repressor (R) and IPTG (I) could be assumed by letting transcription occur as soon
as the repressor is not the only molecule present (compare with the boolean rule in the
earlier example). Show that this leads to

dP

dt
=

Vmax(1 + k2[I] + k3[R][I])

1 + k1[R] + k2[I] + k3[R][I]
. (1.29)

This function is shown in the figure below, and it can be seen that when I is not present
R represses the activity, and that the activity increases with increasing concentration
of I. Note that all active states leads to the same maximal production (Vmax) in this
example.

[I] [R] [RNAp] Rate

0 0 0 1

1 0 0 δ100[I]
0 1 0 δ010[R]
0 0 1 δ001[RNAp]
1 1 0 δ110[I][R]
1 0 1 δ101[I][RNAp]
0 1 1 δ011[R][RNAp]
1 1 1 δ111[I][R][RNAp]

• Can behave as a bistable switch, depending on Hill coefficients

• Phase-plane analysis very useful

• Nullclines are curves on which one variable is not changing

• u-nullcline: du/dt = 0, here 

• v-nullcline: dv/dt = 0, here

• Steady states where nullclines cross

• Stability requires more maths - linear algebra, eigenvalues, etc ...

Two-gene repressor network

26 CHAPTER 1. MODELING IN SYSTEMS BIOLOGY

which shows a n dependance as in the figure below.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

d
[P

]/
d

t

[S]

n=1
n=2
n=4
n=8

!

Example, bistable switch

In a beautiful work by Gardner et.al. a genetic switch is created by direct manipulation
of the DNA in E. coli (figure below). A network of two genes repressing each other is
constructed, and this novel technique allows for creating simple systems where direct
comparisons between models and experiments are more tractable.

The equations used in this model are of Hill-type plus addition of a constant degradation
term.

du

dt
=

α1

1 + vβ
− u

dv

dt
=

α2

1 + uγ
− v (1.26)

The model can behave as a bistable switch where two stable fixed points are defined
by (u, v)=(high,low) and (low,high) respectively. A phase plane plot with the nullclines

u = α1

1+ vβ

v = α2

1+uγ

16

17

18



Two-gene repressor network:  β = γ = 1

u

v

u = α1

1+ vβ

v = α2

1+uγ

u-nullcline: du/dt = 0, 
arrows vertical 
(only v is changing)

v-nullcline: dv/dt = 0, 
arrows horizontal 
(only u is changing)

stable steady state

Two-gene repressor network:  β, γ > 1

u

v

u = α1

1+ vβ

v = α2

1+uγ

u-nullcline: du/dt = 0, 
arrows vertical 
(only v is changing)

v-nullcline: dv/dt = 0, 
arrows horizontal 
(only u is changing)

two stable steady states: bistability

unstable
steady 
state

Two-gene repressor network:  β, γ > 1

u

v

u = α1

1+ vβ

v = α2

1+uγ

• increase α1 (moves blue curve to right) and 
decrease α2 (moves red curve down):  
lose bistability

• similar effect by decreasing α1 and increasing α2
• these are examples of bifurcations 
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5

Regulatory logic:

€ 

du
dt

= −δ1u +
α1

1+ vm

dv
dt

= −δ2v +
α2

1+ un

A synthetic toggle switch

6

A synthetic toggle switch

Gardner, T.S., Cantor, C.R. & Collins, J.J. (2000). Nature 403, 339–342.

External inducers:

Implementation:

Inducer 2 (IPTG)Inducer 1

7

A synthetic toggle switch

Bistability of steady states

Induced switching

Bimodal behaviour near the bifurcation point
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Transcriptional regulation revisited

d x
d t

= P (y)−δx

d y
d t

= Ax −d y

tf (x)
P(y) δx

tf (x)

TF (y)

TF (y)

Ax
dy

• Protein synthesis requires transcription and translation. 

• Phase plane analysis quite straightforward.

Transcriptional regulation revisited
d x
d t

= P (y)−δx

d y
d t

= Ax −d y

•  x-Nullcline is:  x = P(y)/δ and y-nullcline is x = dy/A
• Easier to think of y as a function of x, otherwise we have 

y = P-1(δx) where P-1 is the inverse function... 

P(y)=Ay/(h+y)

y, TF

x, mRNA
x=dy/A

x=P(y)/δ

• Increasing d or δ leads to 
loss of the nonzero steady 
state, (0,0) becomes stable 

low d 

high d 

Transcriptional regulation revisited
d x
d t

= P (y)−δx

d y
d t

= Ax −d y

•  x-Nullcline is:  x = P(y)/δ and y-nullcline is x = dy/A
• Easier to think of y as a function of x, otherwise we have 

y = P-1(δx) where P-1 is the inverse function...

P(y)=Ay2/(h2+y2)

y, TF

x, mRNA

x=dy/A

x=P(y)/δ

• Bistability again ...

• Increasing d or δ leads to 
loss of the nonzero steady 
states.

low d 

high d 
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Gene network modelling
Variables: mRNAs and proteins. 

ODE models: mass action, sigmoidal 
transcriptional activation and repression, 
linear decay and translation. 

d x
d t

= synthesis−decay± transformation± transport

Parameters: 
Thresholds for the sigmoidal functions; 
effective co-operativities, can be high for indirect pathways; 
half-lives; 
relative contributions of multiple transcriptional regulators; 
transfer rates, e.g. cytosol to cell surface; 
transformation rates, e.g. cleavage, phosphorylation, binding. 

intracellular species: single equation per cell 

cell-surface: multiple equations per cell (e.g. six if we assume hexagonal cells). 

Epidemiology
Simplest model: SIR model. 

•Closed population. Individuals do not enter, and leave only by death due to disease. 

• Population in 3 compartments: Susceptible, Infective, or Removed (cured and now 
immune, or dead). 

•No spatial effects (uniform mixing), and no heterogeneity in activity (important in, 
e.g., STDs such as AIDS). 

•Negligible incubation time.  

• Susceptibles move into Infective class at rate proportional to number of contacts 
between Susceptibles and Infectives (like law of mass action). 

• Infectives removed at some rate into Removed class (which decouples). 

•An EPIDEMIC if I(t)>I(0) for some t>0 (i.e. if the number of infectives goes up)

dS
d t

=−βSI

d I
d t

=βSI −γI

dR
d t

=γI

S + I +R = N

S + I ≤ N

•Constant total population

Epidemiology

S

I

S-nullcline: dS/dt = 0.

S = 0 and I = 0.
Arrows vertical (only I is changing)

I-nullcline: dI/dt = 0.

I = 0 or S = γ /β, but S <= N, so only 
relevant if γ/β <N.
Arrows horizontal (only S is changing)

S = γ /β <N

S+I =N

S

I S = γ/β>N

S+I =N

dS
d t

=−βSI ,
d I
d t

=βSI −γI

EPIDEMICS
NO
EPIDEMICS
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Discussion

• Mathematical models can encode our knowledge about signalling networks. 

• Gene transcription, mRNA translation, protein interactions, decay, etc, can be 
described using differential equations. 

• There are different approaches to combining multiple transcription factors. 

• Simple and complex models can be used to test hypotheses. 

• Mathematical analysis of relatively simple models can be done using phase-
plane methods. 

• Mutual repression can lead to bistability - but we have also seen that 
cooperative positive autoregulation can lead to bistability. 

• Other simple motifs can be analysed in considerable detail.  

• Complex signalling networks often require a more computational approach. 

• Network topology may be more important than parameter values. 

• Similar modelling and analysis techniques apply to other areas of biology and 
medicine.

ODE Example - Auxin signalling

AuxRE

(c)

(a)
(b)

(e)
(f)

(g)

(h) (i) (j)

(d)

(Protein)

Translation

Aux/IAA

Auxin

Auxin
AuxinAuxin

ARF

ARF

ARF

ARF

ARF Aux/

Aux/

Aux/

Aux/

IAA

IAA

IAA

IAA

Aux/
IAA

SCF-

SCF-

SCF-

SCF-
TIR1

TIR1

TIR1

TIR1

(mRNA)

Proteolysis

Transcription

Figure 1: An Aux/IAA negative feedback loop. Free ARF monomers can bind either (a) ARFs

(to form homodimers) or (b) Aux/IAAs (to form heterodimers). Both (c) ARF homodimers

and (d) monomers can bind Aux/IAA response elements (AuxRE), activating the Aux/IAA

genes. Aux/IAA proteins may mediate the repression of the Aux/IAA gene either by binding

ARFs (see (b)), thereby reducing the number of free ARFs, or (see (e)) by binding the AuxRE

and repressing Aux/IAA genes transcriptionally. (f) Aux/IAA is transcribed. (g) Aux/IAA

mRNA is translated into Aux/IAA protein, completing the negative feedback loop. Auxin can

disrupt this negative feedback loop by mediating the ubiquitination of the Aux/IAA monomers

as follows. (h) Auxin binds to the TIR1 complex. (i) The auxin-TIR1 complex in turn binds

free Aux/IAA. (j) This complex then facilitates the ubiquitination of Aux/IAA proteins. This

reduces (as represented by dashed arrows in (b),(e)) levels of the Aux/IAA-ARF complex and

releases ARF monomers, which may then form homodimers (a). Thus, sufficiently high levels

of auxin will cause the Aux/IAA genes to be de-repressed, (c),(d).

4

• Auxin is a plant hormone, which stimulates degradation of Aux/IAAs. 
• Aux/IAAs repress their own transcription.  
• Hence Auxin stimulates Aux/IAA transcription. 
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Figure 1: An Aux/IAA negative feedback loop. Free ARF monomers can bind either (a) ARFs

(to form homodimers) or (b) Aux/IAAs (to form heterodimers). Both (c) ARF homodimers

and (d) monomers can bind Aux/IAA response elements (AuxRE), activating the Aux/IAA

genes. Aux/IAA proteins may mediate the repression of the Aux/IAA gene either by binding

ARFs (see (b)), thereby reducing the number of free ARFs, or (see (e)) by binding the AuxRE

and repressing Aux/IAA genes transcriptionally. (f) Aux/IAA is transcribed. (g) Aux/IAA

mRNA is translated into Aux/IAA protein, completing the negative feedback loop. Auxin can

disrupt this negative feedback loop by mediating the ubiquitination of the Aux/IAA monomers

as follows. (h) Auxin binds to the TIR1 complex. (i) The auxin-TIR1 complex in turn binds

free Aux/IAA. (j) This complex then facilitates the ubiquitination of Aux/IAA proteins. This

reduces (as represented by dashed arrows in (b),(e)) levels of the Aux/IAA-ARF complex and

releases ARF monomers, which may then form homodimers (a). Thus, sufficiently high levels

of auxin will cause the Aux/IAA genes to be de-repressed, (c),(d).

4

Thus, the auxin-mediated regulation of Aux/IAA is taken to be governed by

d[IAAm]

dt
= λ1F1([ARF], [IAAp], [ARF-IAA], [ARF2])

+ λ2F2([ARF], [IAAp], [ARF-IAA], [ARF2]) − µIAAm
[IAAm], (9a)

d[IAAp]

dt
= δ[IAAm] − la[IAAp][auxin–TIR1] + ld[auxin–TIR1–IAA]− (9b)

pa[IAAp][ARF] + pd[ARF-IAA],

d[TIR1]

dt
= −ka[auxin][TIR1] + kd[auxin–TIR1], (9c)

d[auxin–TIR1]

dt
= ka[auxin][TIR1]− kd[auxin–TIR1] (9d)

+ (ld + lm)[auxin–TIR1–IAA] − la[auxin–TIR1][IAAp] (9e)

d[auxin–TIR1–IAA]

dt
= la[IAAp][auxin–TIR1]− (ld + lm)[auxin–TIR1–IAA], (9f)

d[IAA∗]

dt
= lm[auxin–TIR1–IAA]− µIAA∗ [IAA∗], (9g)

d[ARF]

dt
= −2qa[ARF]2 + 2qd[ARF2] − pa[ARF][IAAp] + pd[ARF-IAA], (9h)

d[ARF-IAA]

dt
= pa[ARF][IAAp] − pd[ARF-IAA], (9i)

d[ARF2]

dt
= qa[ARF]2 − qd[ARF2], (9j)

d[auxin]

dt
= ω + kd[auxin–TIR1]− ka[auxin][TIR1] − µAuxin[auxin]. (9k)

It follows from (9c), (9e), (9f) that

[TIR1] + [auxin–TIR1] + [auxin–TIR1–IAA] = [TIR1]T, (10)

where the constant [TIR1]T is the total concentration of TIR1. Similarly, it follows from (9h),

(9i) and (9j) that

[ARF] + [ARF-IAA] + 2[ARF2] = [ARF]T, (11)

where the constant [ARF]T is the total concentration of ARF present. The relevant protein and

mRNA species are summarised in Table 1.
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Figure 1: An Aux/IAA negative feedback loop. Free ARF monomers can bind either (a) ARFs

(to form homodimers) or (b) Aux/IAAs (to form heterodimers). Both (c) ARF homodimers

and (d) monomers can bind Aux/IAA response elements (AuxRE), activating the Aux/IAA

genes. Aux/IAA proteins may mediate the repression of the Aux/IAA gene either by binding

ARFs (see (b)), thereby reducing the number of free ARFs, or (see (e)) by binding the AuxRE

and repressing Aux/IAA genes transcriptionally. (f) Aux/IAA is transcribed. (g) Aux/IAA

mRNA is translated into Aux/IAA protein, completing the negative feedback loop. Auxin can

disrupt this negative feedback loop by mediating the ubiquitination of the Aux/IAA monomers

as follows. (h) Auxin binds to the TIR1 complex. (i) The auxin-TIR1 complex in turn binds

free Aux/IAA. (j) This complex then facilitates the ubiquitination of Aux/IAA proteins. This

reduces (as represented by dashed arrows in (b),(e)) levels of the Aux/IAA-ARF complex and

releases ARF monomers, which may then form homodimers (a). Thus, sufficiently high levels

of auxin will cause the Aux/IAA genes to be de-repressed, (c),(d).

4

We assume that the Aux/IAA gene can be transcribed only when either an ARF monomer or

homodimer is bound to the promoter (transcription not occurring if nothing is bound to the

AuxRE or if an Aux/IAA–ARF heterodimer is bound there). Furthermore, Aux/IAAs cannot

bind the AuxRE in the absence of ARF [22]. The rate of Aux/IAA mRNA transcription is taken

to be proportional to the probability that the gene is upregulated. Whilst estimates for the rate

at which ARF-complexes bind to and unbind from their DNA targets are not available at present,

measurements from other biological systems indicate that protein-DNA binding events occur on

the timescale of seconds [9]. Thus, on the timescales of interest (which is of the order of hours)

we assume that protein-DNA binding is extremely rapid. We therefore take the probability F1

that an ARF monomer is bound to the AuxRE to be

F1([ARF], [IAAp], [ARF-IAA], [ARF2]) =

[ARF]

θARF

1 +
[ARF]

θARF
+

[ARF2]

θARF2

+
[ARF-IAA]

θARF-IAA
+

[ARF][IAAp]

ψARF-IAA
+

[ARF]2

ψARF

, (5)

where θARF, θARF2
, θARF-IAA, ψARF, ψARF-IAA are the binding thresholds of each of the relevant

proteins on complexes. The probability F2 that an ARF homodimer is bound to the AuxRE

(either by two ARFs binding in turn or by a ARF2 binding) is

F2([ARF], [IAAp], [ARF-IAA], [ARF2]) =

[ARF2]

θARF2

+
[ARF]2

ψARF

1 +
[ARF]

θARF
+

[ARF2]

θARF2

+
[ARF-IAA]

θARF-IAA
+

[ARF][IAAp]

ψARF-IAA
+

[ARF]2

ψARF

. (6)

The [ARF]2 term in (5) and (6) corresponds the binding of an ARF monomer an

ARF-DNA complex, whereas the [ARF2] term corresponds to the binding of an

ARF2 complex to the Aux/IAA promotor. We note these two terms will provide

a similar contribution when ARF-ARF binding (see (4)) occurs on a fast timescale

when compared to Aux/IAA mRNA degradation. We will find in Section 4 that

when this is not the case, the system can evolve to a limit cycle. Similar arguments

apply for the [ARF][IAAp] and [ARF − IAAp] terms in (5) and (6). It follows from (5)-(6) that

λ1F1 + λ2F2 is the rate of production of Aux/IAA mRNA, where λ1 and λ2 are respectively

6

We assume that the Aux/IAA gene can be transcribed only when either an ARF monomer or

homodimer is bound to the promoter (transcription not occurring if nothing is bound to the

AuxRE or if an Aux/IAA–ARF heterodimer is bound there). Furthermore, Aux/IAAs cannot

bind the AuxRE in the absence of ARF [22]. The rate of Aux/IAA mRNA transcription is taken

to be proportional to the probability that the gene is upregulated. Whilst estimates for the rate

at which ARF-complexes bind to and unbind from their DNA targets are not available at present,

measurements from other biological systems indicate that protein-DNA binding events occur on

the timescale of seconds [9]. Thus, on the timescales of interest (which is of the order of hours)

we assume that protein-DNA binding is extremely rapid. We therefore take the probability F1

that an ARF monomer is bound to the AuxRE to be

F1([ARF], [IAAp], [ARF-IAA], [ARF2]) =

[ARF]

θARF

1 +
[ARF]

θARF
+

[ARF2]

θARF2

+
[ARF-IAA]

θARF-IAA
+

[ARF][IAAp]

ψARF-IAA
+

[ARF]2

ψARF

, (5)

where θARF, θARF2
, θARF-IAA, ψARF, ψARF-IAA are the binding thresholds of each of the relevant

proteins on complexes. The probability F2 that an ARF homodimer is bound to the AuxRE

(either by two ARFs binding in turn or by a ARF2 binding) is

F2([ARF], [IAAp], [ARF-IAA], [ARF2]) =

[ARF2]

θARF2

+
[ARF]2

ψARF

1 +
[ARF]

θARF
+

[ARF2]

θARF2

+
[ARF-IAA]

θARF-IAA
+

[ARF][IAAp]

ψARF-IAA
+

[ARF]2

ψARF

. (6)

The [ARF]2 term in (5) and (6) corresponds the binding of an ARF monomer an

ARF-DNA complex, whereas the [ARF2] term corresponds to the binding of an

ARF2 complex to the Aux/IAA promotor. We note these two terms will provide

a similar contribution when ARF-ARF binding (see (4)) occurs on a fast timescale

when compared to Aux/IAA mRNA degradation. We will find in Section 4 that

when this is not the case, the system can evolve to a limit cycle. Similar arguments

apply for the [ARF][IAAp] and [ARF − IAAp] terms in (5) and (6). It follows from (5)-(6) that

λ1F1 + λ2F2 is the rate of production of Aux/IAA mRNA, where λ1 and λ2 are respectively
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the maxiumum transcription rates if an ARF monomer or dimer is bound to the AuxRE; we

note that both (5) and (6) imply that sufficiently high levels of Aux/IAA protein will lead to

low levels of Aux/IAA transcription. We take the rate of mRNA translation to be proportional

(with proportionality constant δ) to the concentration of Aux/IAA mRNA present. The rate of

Aux/IAA mRNA turnover is µIAAm
, i.e.

∅
λ1F1+λ2F2−−−−−−−→ IAAm

µIAAm−−−−→ ∅, (7)

IAAm
δ
−→ IAAp (8)

Thus, the auxin-mediated regulation of Aux/IAA is taken to be governed by

d[IAAm]

dt
= λ1F1([ARF], [IAAp], [ARF-IAA], [ARF2])

+ λ2F2([ARF], [IAAp], [ARF-IAA], [ARF2]) − µIAAm
[IAAm], (9a)

d[IAAp]

dt
= δ[IAAm] − la[IAAp][auxin–TIR1] + ld[auxin–TIR1–IAA]− (9b)

pa[IAAp][ARF] + pd[ARF-IAA],

d[TIR1]

dt
= −ka[auxin][TIR1] + kd[auxin–TIR1], (9c)

d[auxin–TIR1]

dt
= ka[auxin][TIR1] − kd[auxin–TIR1]

+ (ld + lm)[auxin–TIR1–IAA] − la[auxin–TIR1][IAAp] (9d)

d[auxin–TIR1–IAA]

dt
= la[IAAp][auxin–TIR1]− (ld + lm)[auxin–TIR1–IAA], (9e)

d[IAA∗]

dt
= lm[auxin–TIR1–IAA]− µIAA∗ [IAA∗], (9f)

d[ARF]

dt
= −2qa[ARF]2 + 2qd[ARF2] − pa[ARF][IAAp] + pd[ARF-IAA], (9g)

d[ARF-IAA]

dt
= pa[ARF][IAAp] − pd[ARF-IAA], (9h)

d[ARF2]

dt
= qa[ARF]2 − qd[ARF2], (9i)

d[auxin]

dt
= ω + kd[auxin–TIR1] − ka[auxin][TIR1]− µauxin[auxin]. (9j)

It follows from (9c), (9d), (9e) that

[TIR1] + [auxin–TIR1] + [auxin–TIR1–IAA] = [TIR1]T, (10)

where the constant [TIR1]T is the total concentration of TIR1. Similarly, it follows from (9g),
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Transcriptional regulation:

34


