
GSTDMB 2010: DYNAMICAL MODELLING 
FOR BIOLOGY AND MEDICINE

Markus Owen

Lecture 2.2
Parameter estimation 
and sensitivity analysis

Systems approach: basic questions

 Given experimental data, and a mathematical model, what 
can we infer about the nature of the underlying mechanisms?

 More specifically: can we use the data to determine plausible 
values for the model parameters? Inference.

 If we can infer a ʻreasonableʼ set of parameters, how do we 
know whether or not we can trust them? How sensitive is the 
behaviour of the model to changes in the parameter values? 
Parameter sensitivity.

how do we estimate parameters given some experimental data (values of 
some of the variables xi at times tj)?
Seek parameters that minimise the sum of the squared difference between 
available data and corresponding model variables (the cost function): 

For models with a small number of parameters, manual tuning can work 
well. Otherwise, parameter estimation is a major research area. 
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If we have an ODE model
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t( ) = fi x i (t){ },pi( ); xi 0( ) = xi0, i =1,2,...,n

Parameter estimation
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Problem: find global minimum of the cost function.
Need to:
• search space efficiently
• converge to a minimum
• avoid getting stuck in local minima

Searching parameter space

Simulated Annealing

1. Compute E = Eold using parameters θi .

2. Change one of the values in θi (make a “move”).

3. Compute E = Enew using the newly generated set of θi .

4. If Enew < Eold , keep the new values of θi (accept the move).

5. If Enew > Eold , keep the new values of θi with Boltzmann 
probability exp(-ΔE/T); otherwise restore the old values in 
θi (reject the move). 

6. Repeat 1-5, making moves by changing each element of θi 
in turn, allowing T to decrease from its initial value to zero. 
High T allows large movements in parameter space. 

Metropolis et al. (1953). J Chem Phys 21: 1087.
Kirkpatrick et al. (1983). Science 220: 671.

In general, need to combine:
1. Global search — avoid local minima; slow convergence
2. Local search — refine minima; fast convergence.

Simulated annealing does this by changing T. Gives good 
solutions, but is very slow.
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Evolutionary Algorithm Optimisation

An alternative optimisation strategy is to use an 
evolutionary algorithm: 

• Treat a parameter set as the “genome” of an individual.
• Each individual has a “fitness” determined by a 

combination of the cost function and a penalty (to 
account for the ʻfeasibilityʼ of the parameters.

• At each generation, rank individuals on fitness and select 
the fittest to seed the next generation (selection).

• ʻMutationʼ and ʻrecombinationʼ (parameter changes) allow 
parameter space to be searched.

Fomekong-Nanfack et al. (2007). Bioinformatics 23, 3356–3363.

Local Optimisation

1. Optimise locally to speed up convergence.
2. One option is to move using steepest descent of the cost 

function, but requires evaluation of the derivative. No 
analytical expression and costly to approximate.

3. Use downhill simplex (Nelder-Mead). Evaluate the cost 
function at n+1 points (for an n-dimensional parameter 
space). Treat each point as a vertex of a simplex. Move 
the worst point to search for local minima (with 
progressively smaller moves).

4. Improves goodness of fit and speed of convergence.

Logistic growth?

• Consider experimental data on the growth of yeast. 

• Dynamics look a bit like logistic growth ...

d x
d t

= r x
(
1− x

K

)

• But logistic growth is too slow at first, and too fast later. 
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Generalised Logistic growth?

• Generalised logistic model gives a better fit, but the 
parameters are poorly constrained...

d x
d t

= r x
(
1−

[ x
K

]v )
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• error is small across a wide range of parameter space...

Generalised Logistic growth?
d x
d t

= r x
(
1−
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]v )
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Squared error for yeast data, fixed x0 and K
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A harder problem

• mRNA expression levels following growth factor treatment of cultured cells

• five replicates (A–E) at 13 time points

10

11

12



A harder problem

• mRNA expression levels following growth factor treatment of cultured cells

• five replicates (A–E) at 13 time points
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A harder problem

• Challenge: Infer values of a and b for which the following model (a Bliss-Painter-
Marr negative feedback model) best accounts for the data

• x1 represents the mRNA in question, x2 and x3 are proteins (unmeasured in the 
experiment)

• Know from other data that k = 1 and 100 ≤ a ≤ 300 and 0.05 ≤ b ≤ 0.3 

• Method: Solve the equations for different values of a and b and evaluate the 
squared error cost function specified earlier

• Use a search algorithm to search the allowed parameter values to identify the 
optimal values (lowest cost function value)

Fitness Landscape for BPM Model
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Fitness Landscape for BPM Model

squared error for BPM model fit to data

Best fit solution from Nelder-Mead search

cost = 0.2898
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a = 240, b = 0.15

 

 

If we have a solution of the ODE model

for a given set of parameters.

Question: How sensitive is this solution to changes in the parameters?
Often most appropriate to think in terms of solution “features” 
(corresponding to biological function).  

Given a feature φ, the sensitivity gain is defined as:

(relative change in feature)/(relative change in parameter value)

€ 

dxi
dt

t( ) = fi x i (t){ },pi( ); xi 0( ) = xi0, i =1,2,...,n

Parameter sensitivity

€ 

Sp
φ =

δφ φ
δp p
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IκBα

IκBβ

IκBε

IκBNF-κB

Signal (e.g. TNF)

cytoplasm

The NF-κB – IκB oscillatory feedback loop

IKK

nucleus

IκB degradation

• Central mediator of inflammatory 
response.

• NF-κB is a transcription factor.

• Normally held in the cytoplasm in 
a complex with IκB proteins.

• Inflammatory signals activate 
IKK, which induces the 
degradation of the IκB proteins 
— releasing NF-κB, which enters 
the nucleus and regulates 
transcription.

• Negative feedback via IκBα 
results in oscillations. 

The NF-κB – IκB oscillatory feedback loop

Hoffmann et al., Science 298, 1241–1245 (2002).
Nelson et al., Science 306, 704–708 (2004).

Experimental data (nuclear NF-κB) Summary features:

• Peak timings Ti (oscillatory period Pi)

• Peak amplitudes (Ai)

NF-κB Model Network Diagram
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Parameter Sensitivity (T3)

• Construct ODE model representing the interaction network (26 variables, 
64 parameters)

• Find parameters that reproduce observed oscillations
• Assess parameter sensitivity of features: 

€ 

Sp
φ =

δφ φ
δp p

10% change 100% change

Parameter Sensitivity (A3)

• Construct ODE model representing the interaction network (26 variables, 
64 parameters)

• Find parameters that reproduce observed oscillations
• Assess parameter sensitivity of features: 

€ 

Sp
φ =

δφ φ
δp p

10% change 100% change

Parameter Sensitivity

• Only 9 out of 64 parameters have a significant impact when altered by 
10% ( |S| > 0.2). The same parameters were significant for other features.

• The most significant parameters are different for larger parameter 
changes (100%), due to model nonlinearity.

•  All 9 parameters refer to reactions involving only free IKK and IκBα  — 
suggesting that model reduction might be possible.

10% change 100% change
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Segmental gene expression in the 
Drosophila embryo: pair-rule stripes

The segment polarity network

• A spatially distributed network, involving signalling between neighbouring 
cells. 

• Ovals = mRNAs, rectangles = proteins, hexagons = protein complexes.

Segment polarity gene expression

• Characteristic expression pattern has a 4-cell periodicity (a).
• ʻCrispʼ (b) and ʻDegradedʼ (c) initial conditions.

– dashed interactions + dashed interactions
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• The model has 12 variables per cell and 48 parameters.  
Parameter values are unknown and no quantitative data are 
available for inference. 

• Perform random searches of parameter space: Given the 
(experimentally-established) network topology and initial 
conditions, for which parameter sets does a suitable stable 
pattern emerge?

• 1,192 ʻsolutionsʼ out of 240,000 sets (1/200).
• On average, a random choice of parameter has a 90% 

chance of being compatible with the desired behaviour 
(0.948 ~ 1/200).

ODE Model: parameter search

“sharp” initial data “degraded” initial data

Maps of appropriate parameters

• Red = highest score; blue = barely meet expression criteria.
• Each ʻspokeʼ is the log-scale axis for that parameter.

Local parameter sensitivity
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InsensitiveSensitiveTypical
These can 
vary at most 
twofold
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• The desired steady state expression pattern is observed 
very frequently in the random parameter search.

• Most parameters can range over several orders of 
magnitude.

• Local sensitivity analysis: most parameters can vary at least 
10-fold from base values.

• The desired behaviour is observed frequently using 
ʻdegradedʼ initial stimuli.

• The behaviour is stable if additional complexity is added: 
the core topology is robust.

Robustness of the network

• The network adopts the required steady state expression 
pattern robustly given a range of transient stimuli.

• This behaviour is resistant to variation in the kinetic 
parameters.

• The network is a minimal module: the desired behaviour 
cannot be recovered in a sub-network.

• The network exhibits other behaviours robustly.

Modularity of the network

• Parameter estimation is a challenging research area.
• There may not be a unique best fit.
• The more data the better (as long as it is good quality). 

(Modellers will ALWAYS ask for more data!!!) 
• Parameter sensitivity characterises how solution features 

vary with parameters. 
• Sensitivity is intimately linked to estimation - if a feature is 

sensitive to parameter variation, it is more likely to be 
constrained by available data. 

• Next practical: using MATLAB for parameter estimation. 

Discussion
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