
 1

GSTDMB 2010:
MATHEMATICAL MEDICINE AND BIOLOGY
Practical 2.1: Multi-variable models in MATLAB

Nick Monk / Markus Owen

This set of practical exercises builds on those in Practical 1.1 by using MATLAB to simulate
multi-variable ODE models. The MATLAB codes listed here can be found at:
http://www.maths.nottingham.ac.uk/mathsforlife/gstdmb2010

1. A multi-component negative feedback loop

Many transcription factors negatively regulate their own production (by transcriptional
repression of their own gene). A simple way of representing the state of this system
considers two variables: mRNA concentration and protein concentration:

A simple model for this system represents four processes:

i) production of mRNA by transcription

ii) degradation of mRNA

iii) production of protein by translation

iv) degradation of protein.

Representing the concentration of mRNA and protein by m and p respectively, an ODE
model for this system is:

€

dm
dt

=
k1

1+ p p0()n
− d1m

dp
dt

= k2m − d2p,

where k1, k2, d1, d2 are the maximal transcription rate, translation rate, mRNA degradation
rate and protein degradation rate, respectively.

protein mRNA

 2

i) To find the steady states of this model, set the rates of change of mRNA and protein to
zero, giving:

€

0 =
k1

1+ p p0()n
− d1m

0 = k2m − d2p.

The second equation just says that, at steady state, m = (d2/k2)p. Substituting this in the
first equation gives a single equation for the steady state level of p:

€

0 =
k1

1+ p p0()n
−
d1d2
k2

p.

The MATLAB function in “ssplotter.m” (you should have downloaded this as part
of the archive “prac-multi-odes.zip”) uses fplot to plot the function on the
right hand side of this equation. Steady state protein expression levels correspond to
points where this function crosses the horizontal axis.

With the parameter values: k1 = 50, k2 = 1, d1 = 0.1, d2 = 0.1, n = 10, p0 = 10, show that the
system has only one steady state, and use the plot to find an estimate for the steady state
protein level.

Try varying the model parameters to see if the number of steady states changes. Do you
think it can change? Can you see why based on the equation above?

ii) To find solutions of the equation f(x) = 0, you can use

>> fzero(@f,xstart)

where xstart is the starting point for zero finding. The MATLAB function in
“ssfinder.m” uses fzero to find a better estimate of the steady state protein
concentration (i.e. of where the above function crosses zero).

For the parameters above, use “ssfinder.m” to find the steady state protein level. By
using the steady state relation m = (d2/k2)p find the corresponding steady state value of the
mRNA.

iii) In order to explore the effect of the parameter p0 on the steady state level of protein
concentration, repeat part (i) by increasing p0 from 5 to 30 in steps of 5. For each value,
keep a record of the steady state value (e.g. by growing an array containing the values—
see lecture notes). Use plot to plot the steady state concentration for p against p0.

iv) A function (negode.m) for simulating this model is provided in the archive prac-
multi-odes.zip. It uses the parameters above, initial conditions m=1, p=5, and
simulates the model from t=0 to t=100. Run this function to simulate the model. What do
you notice about the system behaviour for these parameters?

 3

v) The plot generated by the function plots both the time-course of mRNA and protein
expression on the same axes. Note that the concentration of mRNA is significantly lower
than that of protein (as you would expect, since at steady state m = (d2/k2)p=0.1p for our
parameter set). This can make it difficult to see the mRNA dynamics clearly. To
overcome this, we can use subplot to open multiple axes in a single plot window.

Replace the plot command in negode.m with the following:
subplot(2,1,1) %1st axes
plot(t,x(:,1),'linewidth',2) %mRNA
xlabel('time')
ylabel('mRNA')
subplot(2,1,2) %2nd axes
plot(t,x(:,2),'linewidth',2) %protein
xlabel('time')
ylabel('protein')

Re-run the function to see how subplot works.

vi) Use the function to explore the effects of varying the other parameters in the model. E.g.
change d1 and d2 to 0.75 and note the more prominent overshoot of the steady state:

2. Incorporating protein dimerisation

Many transcription factors have to dimerise in order to bind DNA (e.g. basic helix-loop-
helix proteins). We can include this in the model by adding another variable to the model
to represent protein dimers:

€

dm
dt

=
k1

1+ p2 p0()n
− d1m

dp1
dt

= k2m − d2p1 − 2kD p1
2

dp2
dt

= kD p1
2 − d3p2,

where m, p1 and p2 represent mRNA, monomeric protein, and dimeric protein,
respectively. d3 is the degradation rate of protein dimers. In this model, mass action
kinetics are used to represent the dimerisation reaction, and dimerisation is assumed to be
irreversible with rate kD:

 P1 + P1 P2

i) Using negode.m as a basis, write a MATLAB function dimerode.m to simulate
this dimerisation model for a time-span 0 ≤ t ≤ 100. Set kD=1, d3 = 0.5d2 = 0.05. Keep
the other parameters the same as listed in part 1. You can assume that the initial
concentration of p2 is 5. You will need to add an extra entry to the column vector
specifying the ODEs, and another subplot command (note that subplot(3,1,2)
opens a 3×1 array of axes and prepares to plot in the 2nd of these. The last entry (2)

kD

 4

can range from 1 to 3 to select which axes to plot in. See help subplot for more
information).
What do you find with this relatively rapid dimerisation rate? Compare your results
to the model without dimerisation.

ii) Decrease the dimerisation rate to kD=0.1, 0.01, 0.001. What happens to the magnitude
of the overshoot of the steady state? For kD=0.001 try increasing the time-span of
simulation by setting
tspan = [0 1000];
What do you notice? What happens as you decrease the dimerisation rate further?
What happens to the frequency of any oscillations? Is this what you expected?

iii) With kD=0.001, reduce the cooperativity n of the Hill function from 10 to 2 in steps
of 1. Describe what happens to the time course of mRNA and protein. Is this what
you expected? Can you make biological sense of this?

iv) The form of transcription rate used assumes that the transcription factor can reduce
the rate of transcription to zero (for high concentrations). In reality, some residual
transcription is still possible even when the concentration of repressor is high. This
can be incorporated in the model by adding a basal transcription rate k0:

€

dm
dt

= k0 +
k1

1+ p2 p0()n
− d1m

dp1
dt

= k2m − d2p1 − 2kD p1
2

dp2
dt

= kD p1
2 − d3p2,

With kD=0.001 and n = 10 as before, find out what happens to the oscillations as you
increase k0 from zero.

 5

GSTDMB 2010:
MATHEMATICAL MEDICINE AND BIOLOGY
Practical 2.1: Multi-variable models in MATLAB

SOLUTIONS

Nick Monk / Markus Owen

1. A multi-component negative feedback loop

i) With the given parameter values, the plot generate by ssplotter.m is:

0 5 10 15 20 25 30 35 40 45 50
−10

0

10

20

30

40

50

 14 15 16 17 18 19

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

By zooming in we can estimate the steady state protein level as pss=17.5.

ii) The steady states given for these parameters by ssfinder.m are:
pss=17.5882, mss=1.7588

iii) The plot is shown below, generated by paramdep.m:

5 10 15 20 25 30
5

10

15

20

25

30

35

40

45

50

p0

p
st

ea
dy

 s
ta

te

As the threshold for transcriptional inhibition is increased, the steady state protein level
increases, which should fit with your intuition about this system.

 6

iv) Using negode.m generates this output:

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

Notice how the solutions overshoot the steady state.

v) Using subplot we get the following output (see negodesubplot.m):

vi) Changing d1 and d2 to 0.75 we see a more prominent overshoot of the steady state (note

the shorter time span to highlight the interesting dynamics – the steady state is reached
much more rapidly for these parameters):

 7

2. Incorporating protein dimerisation

i) A MATLAB script can be found in dimerodesol.m
The model with these parameters produces similar results to the model without
dimerisation, with almost identical steady state levels of mRNA level and
protein/dimer. Using dimerodecompare.m with negodecompare.m we
superimpose the two simulations:

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

time

m
RN

A

0 10 20 30 40 50 60 70 80 90 100
0

50

100

time

di
m
er
/p
ro
te
in

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

time

m
on
om

er

ii) As kD decreases, the overshoot gets larger. When to kD=0.001 we see sustained

oscillations:

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

time

m
RN

A

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

time

m
on
om

er

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

time

di
m
er

The system turns into an oscillator because the slow dimerisation step introduces
further lag into the system. This causes the system to overshoot the steady state
significantly. This example illustrates the importance of checking that any
simplifying assumptions you have put in a model (like lumping monomeric and
dimeric forms of a transcription factor into a single variable) don’t radically affect
the dynamical behaviour of the model for relevant parameters.

 8

As you decrease the dimerisation rate further, the oscillations increase in amplitude
and their frequency reduces (although not perhaps as much as you might expect). The
figure below shows a simulation for kD=0.00001:

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

time

m
RN

A

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

time

m
on
om

er

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

time

di
m
er

In summary, smaller dimerisation rates give more pronounced oscillations because
there is now even more lag in the system. For larger dimerisation rates, the
oscillations die out because there is insufficient lag in the system to sustain them.
You might not expect at first glance that increasing the dimerisation rate (promoting
formation of the active form of the transcription factor) would reduce oscillations.

iii) As n is reduced, the oscillations die out. n gives a measure of the sensitivity of
transcription rate to changes in the (dimeric) transcription factor concentration. For
large values, just a small change in transcription factor gives a large change in
transcription rate. This enhances overshoot of the steady state (and hence
oscillations).

iv) A MATLAB script can be found in dimerodebasalsol.m.
As you increase k0, you should again see the oscillations die out. Adding a basal
transcription rate again reduces the sensitivity of the system around the steady state
(this can be shown mathematically, as can all the other results).

