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Course Outline

Aims:
* To introduce modelling and quantitative approaches to biology
* To explain where equations come from and what they mean, placing
the mathematics into a context that is relevant for the life scientist.

* To enable life scientists to gain a better understanding of what a
model is, and how to go about building one.

Objectives - By the end of the session, participants will:
e understand key concepts in how to build models of biological systems
* know how to investigate the behaviour of those models
e be able to interpret the results of those models.
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Key Themes

The kinds of behaviour that dynamic models can exhibit (e.g. exponential
growth or decay, steady states, oscillations), and their stability.

Single variable models:
* How to work out their dynamics by sketching one simple graph.
¢ Applications, including to population growth and gene regulation.

Multi-variable models:
e Interacting populations, signalling networks and biochemical
reactions.

* How to turn reactions into a model with the law of mass action.
* More about transcriptional and translational regulation.

¢ How to work out a lot about their dynamics by sketching two (or
more) graphs.

How to create, simulate and analyse models using appropriate software
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Course Schedule

Day | (Wednesday || July 2012)

09:30-10:30 |Lecture |: Mathematical modelling and Systems Biology (Pope Al)
10:30-11:00 |Break

11:00-12:30 |Lecture 2: Introduction to modelling with differential equations (Pope Al)
12:30-13:30 |Lunch

13:30-16:00 |Practical |:Analysis and simulation of single-variable models (Pope A26)
15:00-15:30 |Break

Day 2 (Thursday 12 July 2012)

09:30-10:30 [Lecture 3: Multi-variable models (Coates C28)

10:30-11:00 [Break

11:00-12:30 |Practical 2: Building and simulating multi-variable models (Pope A26)
12:30-13:30 [Lunch

13:30-15:00 |Lecture 4: Parameter estimation and sensitivity analysis (Pope Al)
15:00-15:30 [Break

15:30-17:00 |Practical 3: Parameter estimation and sensitivity analysis (Pope A26)
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Lecture |
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What is Systems Biology?

BBS RC the Biotechnology and Biosciences Research

blosaence for the future  Council says:

“Systems biology is an approach by which biological questions are addressed through
integrating experiments with computational modelling and theory, in re-enforcing cycles.”

BBSRC funds 6 UK Centres for Integrative Systems Biology: Edinburgh, Imperial,
Manchester, Newcastle, Nottingham, Oxford.

@ Biological systems: large numbers of components interacting at various scales.

@ In the past, life scientists could only study a handful of components at a time.

@ This led to an approach assuming a simple chain of cause and effect.

@ Most genes, proteins, cells, organisms and other components work within a complex
network of interactions, with interlocking positive and negative feedback loops.

@ Systems Biology provides a new conceptual framework for understanding biological
problems. It combines the mathematical, computational, physical and engineering
sciences with biological experiments.
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What is Systems Biology?

Dataon
organisational
levels:

Systems
Populations —|
Whole organisms
Celis/Tissues —|
Molecules

4 | Define
Conduct hypothesis
experiment from the

model

Use data
from previous
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Mathematical modelling approaches

Models help to encode our understanding and assumptions about a system

Can be used to test hypotheses, make predictions, carry out in silico
experiments (“What happens if ...?"")

Models are simplifications that can be extended when necessary (ideally in a
loop in association with experimental work).

B Compartmental models, e.g. ordinary differential equations
Rate of change of | _ o cell killing via
cancer volume - B death B therapy

B Spatial models (e.g. partial differential equations, PDEs)

Rate of change

— —— cell killing via
of cancer cell | = |cell division| - - + |movement
death therapy

density

B |ndividual-based models, e.g. cellular automaton

B Hybrid multiscale models - combining all of the above.
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Back to the beginning...

Biological processes understood as emergent properties of
complex networks of interacting components.

Question: what are the mechanisms regulating emergence?

Hes| (and other Notch pathway genes)
oscillate in the presomitic mesoderm of
developing vertebrate embryos.

8y Py, 1)
sap [~

Masamizu et al., PNAS. 2006
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What kinds of processes?

How to make a switch?
Important for Cell differentiation, quorum sensing, lac operon
inducible system, lysis-lysogeny decision by phage Lambda, ...
Delta-Notch signalling is a simple example. Feedback + coupling
selects a subpopulation of cells for a neuronal fate.

How to make an oscillator?
Cell cycle, circadian rhythms, cardiac action-potential

How to make an organism?
Fate determination + cell movements, proliferation, etc, etc, ...

Population growth and interactions
From bacteria to humans; cancer (mutant cells invading a normal
host); epidemiology; ecology; ...
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Variables, models and parameters

* The system state is a set of measurable properties of the system.
Examples: mMRNA & protein concentration, membrane potential, number of cells, ...

* We would like to understand the past and present and predict the future. Given a set of
measurements today, what will be the result of making those measurements tomorrow?

* A model is a representation of the system that we can use to answer such questions.
If the state is changing with time (usually denoted ), then the model is dynamical.
The time-varying components of the state are variables (e.g. denoted x,(7), x,(¢), ..., Xy(?)).

* The state of the model at time 7 is just the set of all the variables at time #:
S() = {x,(1), x,(), ..., xp(D)}.
® The form of model we shall study is:
S(ty) =f(S(1); p1> P2y s i)y 02> 1y

where fis a function encoding our understanding of how the system components affect one
another,and py, p,, ..., py; are model parameters.

This simply states that the future state of the system is some function of its past state

(i.e. that the future is predictable).

* Parameters are numerical values that encode information about the system that is not
included in the dynamic state. E.g. the concentration of an mRNA species is a variable; the
linear degradation rate of the mRNA is a parameter.
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Inferring Networks

Components (x(1) and interactions (encoded in f) can be inferred from a
wide range of data sources:

* Genetic screens

* RNAi screens

* mRNA profiling (e.g. microarrays)

* Metabolic profiling

* Protein-protein interaction screens (e.g. yeast-two-hybrid, TAP mass spec.)

* ChlP-on-chip analysis of transcription factor binding

¢ Biochemistry

* Population data (e.g. on predator-prey or epidemiological interactions)

Each has strengths and limitations
Integration of multiple data sources is important for reliable inference.
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The Circadian Oscillator Network
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Cermakian & Sassone-Corsi, Nature Rev. Cell Molec. Biol. |, 59-67 (2000).
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Continuous Process Models

¢ In reality, the state of each network component should be represented
by a discrete quantity — an integer (e.g. the number of molecules of a
particular mRNA in a cell, the number of individuals in a population).

¢ Also, changes in state over time are discrete events (production or
degradation of a network component, births/deaths in a population).

* In practice, if the amount of each component is sufficiently large, then
its state can be approximated by a continuous variable that changes
smoothly and continuously in time (e.g. concentration, population
density).

* In doing this, we are essentially representing a continuous process
rather than a set of events.
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Ordinary differential equations (ODEs)

« If we represent the network state S(7) as ds

continuous, then it has a well-defined rate of change: E(t)

+ An ordinary differential equation (ODE) model gives the rates of
change of the variables x,(¢) as functions of the state at that time:

%(t) = ﬁ({x<i>(t)};p1’pzv-'-’pM )’ i=12,...n

where <i> is the set of variables that affect x,(¢).

* The functions f; encode the form of the interactions between components.
These functions are hard to determine. There are no high-throughput
methodologies for getting them.

* In practice, models are often based on a small set of standard
representative forms for the f; (see later for examples).
For chemical reactions, an important concept is the law of mass action...
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The law of Mass Action (1)

® The law of mass action states that the rate of a chemical reaction is proportional to
the product of the concentrations of the reactants.

® Used to develop ODE models for networks of biochemical reactions.

® Assumptions: i) a well stirred solution and ii) low molecular concentrations, where
the probability of diffusing molecules to get close enough, for a reaction to occur, is
proportional to the concentrations.

® A rate parameter is used to define the ‘probability’ of a reaction to occur if two
molecules approach each other.

® The mass action formalism has been validated in many experimental settings.

ky
Given: n181+n282+“'—>m1P1+m2P2+“‘

The reaction rate is kf (S?l . S;lz . )

The rate of change of a species depends on the rate of reaction and the net change
in the number of molecules of that species.

In reality, all reactions should be broken down into bimolecular steps.

GSTDMB Dynamical Modelling for Biology and Medicine Markus Owen - July 2012

Michaelis-Menten enzyme kinetics

k‘1 ks
e S, substrate; E, enzyme; P, product: S —+ F=SF =P -+ E
kQ

Reactants S and E, rate k1/S]/E]. d[S]
Consumes one molecule of S and E, dt = -k [SI[E] + k2 [SE]
and produces one molecule of SE.
P aiE]
Single reactant SE, rate k2/SE]. dt = —ki1[SI[E] + k2 [SE] + k3[SE]
Consumes one molecule of SE,
dISE
and produces one molecule of S and E. [dt ] = ky[SILE] = ky[SE] - ks[SE]
Single reactant SE, rate k3/SE]. 3
Consumes one molecule of SE, d[P] _ k []
and produces one molecule of P and E. dt ¢
N
¢ Constant total enzyme d[P] Vinax!S] Ve = k3 Ey
® Substrate assumed in excess =
* [SE] at quasi-steady state dt K, +[S] K= (ko + k?:)/kl/
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Michaelis-Menten kinetics: 5 +E = SE = P+E

* Constant total enzyme: [E] + [SE] = Ey
* Substrate assumed in excess, d/S]/dt = 0
[SE] assumed to be at quasi-steady state

0 %ﬁ% — KISIIE] - ka[SE] — ks[SE]

¢ A bit more algebra, using the definition: K = k71/(k2 + kd)

[SE] = K[S|[E] = K[S|(E, - [SE])

[SE}(1+ K[S]) = KEo[S]

_ KE[S] Ey[S]
ISE] = 1+K[S]  (1/K+19)])
Finally: d[P] _ Vimax[S] Vimax = k3Ep
dt K, +[S] Ky = (ko + k3)/ ky
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Transcriptionalltranslational activation

® TF binds to DNA, this complex activates production of protein P.

] Ny Il iks en

| i

k
TF+DNA= TF—DNA&P +TF-DNA

ko
® Assuming TF binding is fast enables use of Michaelis-Menten approach.
® DNA acts as enzyme, [DNA] + [TF-DNA] = 1 Vinax
Pl (TFL |
dt K+ [TF]
This and similar forms are used in “gene network” models K [TF]
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Transcriptionalltranslational repression

® TF binds to DNA, blocking production of protein P.

k k
RS
k
TF+DNAk$1TF—DNA, DNA&P+DNA
2
Vmax

® This time, synthesis is a decreasing function
of TF concentration:

d[P] K
dt " K+[TF <

Vinax/2

[TF]
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Hill functions: co-operative activation
® With the previous expression, the response to changes in substrate (TF)
concentration is weak.
® Cooperativity can lead to sharper responses.
® Suppose 71 molecules of substrate bind to the DNA:
k1 ks
nTF+ DNA=TF,-DNA— P+ TF,-DNA
ko
® After some mass action and some algebra... Vinax
d|[P] [TF1"
— = Viax Vinas/2
dat K"+ [TF]"
® Larger 1 - steeper switch J
® Same idea for repression K [TF]
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Hill functions: co-operative repression
® Suppose 71 molecules of substrate must bind to the DNA to block transcription:
k1
nTF+DNAk¢ TF,-DNA, DNA . P+DNA
2
® After some mass action and some algebra...
lelX
d|[P] K"
= Vmax
dt K"+ [TF]" \p.n2
® Larger 11 > steeper ‘off’ switch
K [TF]

ODE Example - Auxin signalling

Au‘(m Au‘(m

"

Protein)

Tl aslation

Auz, /

W (mRNA)

(0]

Transcription

- Aur/IAA

AuxRE

()

* Auxin is a plant hormone, which stimulates degradation of Aux/IAAs.
* Aux/IAAs repress their own transcription.
* Hence Auxin stimulates Aux/IAA transcription.
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[0 1 (U]

\ﬁ Mass action:

+|kd[aux1n ~TIR1] —

d [auxm]

ar kalauxin] [TIRI]- Mauxin [auxin],

Translation

4 [Awmaa

/R dITIR1] _
Tdr
dt

: dlIAA
v [ - o) _ 5 1AA] — llIAA [auxin-TIR1] + Ig [auxin—TIRl—IAA]E PallAAL][ARF] + pg [ARF-IAAD
W = [, [IAA] [auxin-TIR1] (I + ) [auxin-TIR1-IAA],
dllAA] , .
ar = Iy [auxin-TIR1-TAA] — pyaa+ [IAA™],
dIARF] _ ,
= ~2qu[ARF) + 24 ARF) [ PalARFI[IAA,] + pa[ARE- IAAD
A[ARF-IAA
# = @ [ARF][IAA,] - pq [ARF-IAA]D
dIARF:
% = GaARFI? - Ga[ARFz],
13
dllAAY]
77 = FUARF), AAy], [ARF-IAA), [ARF2) — pian, [1AA),

GSTDMB Dynamical Modelling for Biology and Medicine

+ (ld + I;m) [auxin-TIR1-TAA] - [; [auxin-TIR1][1AA]
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Auxin )

Auxin ®) @ . i . ] .
= ) / ; ﬁ Transcriptional regulation:
@. O

Auz,
1448

4
© )

[

5
Tr

- [Aw/iaa

AuxRE

dlIAAy]
ar =F([ARF], [IAAp], [ARF-IAA], [ARF2]) — piaa,, TAAm],

[ARF] [ARF;] [ARFJ?
+ +

A 2
OARF OARF,  WARF

F(IARF], [IAAp], [ARF-IAA], [ARF,])

+ [ARF] [ARF2] [ARF-IAA] . [ARF][IAAp] . [ARF]?

Oare OARE, OARE-1AA WARF-IAA WARF

Equivalent to Shea-Ackers formulation (details for later)

GSTDMB Dynamical Modelling for Biology and Medicine Markus Owen - July 2012

ODE Models: Basic assumptions

Assumption Relaxation

The numbers of each molecular species are large

. . Discrete models
enough to represent as continuous variables

Production and degradation processes are

. Discrete models
continuous

Outputs of processes begin to change as soon as Delay differential
the inputs change equations

. Stochastic differential
Processes are deterministic

equations
Spatial distribution in a cellular compartment is Partial differential
not important equations
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Summary

The properties of a system can be represented by a set of variables that
collectively constitute the state of a model

In dynamic models, the state is a dynamical variable (i.e. changes in time)

State evolution models encode mathematically the way that the state
changes over time

ODEs are based on the assumption that the state changes continuously,
at a rate that depends only on the current state
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Animal coat patterns

The first model of pattern formation in animal coats goes back to
Alan Turing, better known as the father of modern computer science
and Bletchley Park code breaker.

Turing was interested in how an initially unpatterned system, such as

a uniform ball of cells making up an animal embryo, can generate a
spatial pattern, such as the stripes of a zebra.
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Animal coat patterns

Turing showed that the simple combination of two reacting and diffusing
chemicals (he called them “Morphogens”), could generate spatial patterns
(but diffusion is ‘supposed’ to spread things out):

Ut = .f(u’ 'U) + Ugpyy, V= g(ua ’U) + dvgy

rate of change reactions diffusion rate of change reactions diffusion
of morphogen between ‘v’ of ‘v of morphogen  between ‘v’ of ‘v
‘v and ‘v’ v and ‘v’

Local activation and long range inhibition combine to generate pattern.

4 i
g ".;\:\:0&,0}.".'
s w
b
P
NN
Rt
Rl

o

\

Activator pattern Low pigment High pigment
threshold, large spots threshold, small spots
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Animal coat patterns

@ Mathematical analysis suggests that the pattern depends on the domain size.

@ If the Inhibitor diffuses relatively quickly then few spots will be able to form.

@ It’s like modes of vibration on a guitar string: only certain wavelengths can fit.
@ Correspondingly, if the domain is too thin, only stripes can form.

I+

(61,205 (e)y=250 SPOtS
ﬁ i stripes
e largest
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This kind of system can generate extremely rich dynamics

Some time ago, we idly speculated
whether such models could predict
patterns on dinosaurs.

New evidence suggests that some
dinosaurs did have patterned and
coloured skin!
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Modelling cancer growth and therapy

Lots of medical research into cancer, but mathematics is also playing its part.
Hypoxic (nutrient starved) cancer cells are resistant to many therapies.
Macrophages ‘home-in’ on hypoxic regions.

Can we use macrophages to target hypoxic cancer cells?

® Manipulate a patient's own
macrophages.

B |nject modified macrophages
back into patient.

® Macrophages circulate and ‘ ol
infiltrate hypoxic tumour @7\

e S SR PN .~ .
© V:vessel (plenty of food nearby) regions where they A ‘
activate a drug.

© Brown: hungry cancer cells L TUMOLR

©® N: necrosis (cell death)
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[ . A -
© Grid: multiple cells at each site, cells jump === ® Partial Differential Equations for diffusion, i

between sites at random with bias. production and uptake of oxygen, drugs, etc

|. Ordinary Differential Equations for .. 0 = DuV2U + pothu(Upiood — U) + Sy — 8,U
cell cycle, death, signalling:
@ Oxygen dependent dynamics
® Normal and cancer cells may differ
(e.g. cancer: resist death, proliferate faster) i
-

e,

® p,:vascular density at x (if vessel present) |
® P, vessel permeability to U.

® S,(x): production/consumption by cells. I
® Ubiood: concentration in the blood.

Drug is shown in grey-scale
‘ i
Kok Tty

™ Blood flow in each segment

Normal (healthy cell)
Cancer Cell
Quiescent cancer cell

! Macrophage (from blood,==43
activates prodrug) :

Blood vessel sprout
—

® Specified inflow and outflow pressures !

® Balance flows at each node (like
Kirchhoff’s laws for an electric circuit).

® Oxygen delivery depends on flow
-
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Combined Macrophage & Conventional therapy

B What hannens when hath theranies have small individual efficacv?

t =0.00 days
# Macrophages
|
50 0 18 2m
Mean Prodrug every 7
day 21.
)
50 00 18 2m
rom
Mean drug <ic
1 by
T
50 0 18 20
nor.rﬂalgule%cenltj '\9
cancer sprout
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Opportunities in Systems Biology
%k Heart (electrical activity, muscle % Immunology (how we fight infections, how

mechanics, blood flow) it can go wrong - e.g. Rheumatoid

% Lungs (air flow, asthma, ...) Arthritis, HIV)

% Bacterial infections (managing infections in

% Brain (single neurons, whole brain, hospitals)

Parkinson’s disease, ...)
3% Ecology (control of invasive weeds,

% Devel | biol
evelopmental biology management of fisheries, ...)

(how organisms grow)
% Cancer % Plants (how to improve food crops)

* ..

sk Maths: Model development, model analysis, simulation, statistical analysis of data, ...
3k Biology: High throughput techniques, genetics, proteomics, epigenetic regulation, ...

%k Computer Science: Image analysis, algorithm and software development, data mining,
optimisation, model sharing and markup languages, ...

%k Engineering, Physics, Chemistry: Bioengineering, tissue engineering,
nanotechnology, MRI, new microscopy and measurement techniques, ...
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Success stories in Mathematical Biology

A.L.Hodgkin, A.F. Huxley.A quantitative description of membrane current and its application to
conduction and excitation in nerve. J. Physiol., | | 7:500-544 (1952).

R.M.Anderson, G.F. Medley, R.M. May, A.M. Johnson:A preliminary study of the transmission dynamics of
the human immunodeficiency virus (HIV ), the causative agent of AIDS.
Math. Med. Biol. 3:229-263 (1986).

J.J. Tyson, B. Novak. Regulation of the eukaryotic cell cycle: Molecular antagonism, hysteresis, and
irreversible transitions. J. Theor. Biol. 210:249-263 (2001).

G. Dupont, A. Goldbeter. One-pool model for Ca2+ oscillations involving Ca2+ and inositol 1,4,5-
trisphosphate as co-agonists for Ca2+ release. Cell Calcium 14:311-322 (1993).

P. Hahnfeldt, D. Panigrahy, . Folkman, L. Hlatky. Tumor development under angiogenic signaling:A
dynamical theory of tumor growth, treatment response, and postvascular dormancy.
Cancer Research 59:4770-4775 (1999).

A.M.Turing: The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B, 237:37-72 (1952).

M. Mackey, L. Glass. Oscillation and chaos in physiological control systems. Science 197:287-289 (1977).
N. Barkai, S. Leibler. Robustness in simple biochemical networks. Nature 387:913-917 (1997).

A.D. Lander, Q. Nie, FEW.M.Wan. Do morphogen gradients arise by diffusion? Dev. Cell. 2:785-796 (2002).
..AND MANY MORE ...
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