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Aims: 
• To introduce modelling and quantitative approaches to biology
• To explain where equations come from and what they mean, placing 

the mathematics into a context that is relevant for the life scientist.
• To enable life scientists to gain a better understanding of what a 

model is, and how to go about building one.

Objectives - By the end of the session, participants will:
• understand key concepts in how to build models of biological systems
• know how to investigate the behaviour of those models
• be able to interpret the results of those models.

Course Outline
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The kinds of behaviour that dynamic models can exhibit (e.g. exponential 
growth or decay, steady states, oscillations), and their stability.

Single variable models: 
• How to work out their dynamics by sketching one simple graph. 
• Applications, including to population growth and gene regulation.

Multi-variable models: 
• Interacting populations, signalling networks and biochemical 

reactions. 
• How to turn reactions into a model with the law of mass action. 
• More about transcriptional and translational regulation. 
• How to work out a lot about their dynamics by sketching two (or 

more) graphs.

How to create, simulate and analyse models using appropriate software 

Key Themes
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Day 1 (Wednesday 11 July 2012)Day 1 (Wednesday 11 July 2012)

09:30-10:30 Lecture 1: Mathematical modelling and Systems Biology (Pope A1)

10:30-11:00 Break

11:00-12:30 Lecture 2: Introduction to modelling with differential equations (Pope A1)

12:30-13:30 Lunch

13:30-16:00 Practical 1: Analysis and simulation of single-variable models (Pope A26)

15:00-15:30 Break

Day 2 (Thursday 12 July 2012)Day 2 (Thursday 12 July 2012)

09:30-10:30 Lecture 3: Multi-variable models (Coates C28)

10:30-11:00 Break

11:00-12:30 Practical 2: Building and simulating multi-variable models (Pope A26)

12:30-13:30 Lunch

13:30-15:00 Lecture 4: Parameter estimation and sensitivity analysis (Pope A1)

15:00-15:30 Break

15:30-17:00 Practical 3: Parameter estimation and sensitivity analysis (Pope A26)

Course Schedule

Lecture 1
Mathematical modelling and Systems Biology 

Markus Owen / School of Mathematical Sciences
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What is Systems Biology?

Biological systems: large numbers of components interacting at various scales. 
In the past, life scientists could only study a handful of components at a time. 
This led to an approach assuming a simple chain of cause and effect.
Most genes, proteins, cells, organisms and other components work within a complex 
network of interactions, with interlocking positive and negative feedback loops. 
Systems Biology provides a new conceptual framework for understanding biological 
problems. It combines the mathematical, computational, physical and engineering 
sciences with biological experiments. 

the Biotechnology and Biosciences Research 
Council says:  

“Systems biology is an approach by which biological questions are addressed through 
integrating experiments with computational modelling and theory, in re-enforcing cycles.” 
BBSRC funds 6 UK Centres for Integrative Systems Biology: Edinburgh, Imperial, 
Manchester, Newcastle, Nottingham, Oxford. 
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What is Systems Biology?
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Models help to encode our understanding and assumptions about a system
Can be used to test hypotheses, make predictions, carry out in silico 
experiments (“What happens if ...?”)
Models are simplifications that can be extended when necessary (ideally in a 
loop in association with experimental work).

Mathematical modelling approaches

Compartmental models, e.g. ordinary differential equations

Rate of change of 
cancer volume = cell division cell 

death
killing via 
therapy- -

Spatial models (e.g. partial differential equations, PDEs)

Rate of change 
of cancer cell 

density
= cell division cell

death
killing via 
therapy- - + movement

Individual-based models, e.g. cellular automaton
Hybrid multiscale models - combining all of the above.
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Biological processes understood as emergent properties of 
complex networks of interacting components.
Question: what are the mechanisms regulating emergence?

Masamizu et al., PNAS. 2006

Hes1 (and other Notch pathway genes) 
oscillate in the presomitic mesoderm of 
developing vertebrate embryos.

Back to the beginning...
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How to make a switch?
Important for Cell differentiation, quorum sensing, lac operon 
inducible system, lysis-lysogeny decision by phage Lambda, ...
Delta-Notch signalling is a simple example. Feedback + coupling 
selects a subpopulation of cells for a neuronal fate. 

How to make an oscillator?
Cell cycle, circadian rhythms, cardiac action-potential

How to make an organism?
Fate determination + cell movements, proliferation, etc, etc, ...

Population growth and interactions
From bacteria to humans; cancer (mutant cells invading a normal 
host); epidemiology; ecology; ...

What kinds of processes?
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Variables, models and parameters
• The system state is a set of measurable properties of the system. 

Examples: mRNA & protein concentration, membrane potential, number of cells, …

• We would like to understand the past and present and predict the future. Given a set of 
measurements today, what will be the result of making those measurements tomorrow?

• A model is a representation of the system that we can use to answer such questions. 
If the state is changing with time (usually denoted t), then the model is dynamical. 
The time-varying components of the state are variables (e.g. denoted x1(t), x2(t), ..., xN(t)). 

• The state of the model at time t is just the set of all the variables at time t:

S(t) = {x1(t), x2(t), ..., xN(t)}.

• The form of model we shall study is:

S(t2) = f (S(t1); p1, p2, ..., pM),     t2 >  t1

where f is a function encoding our understanding of how the system components affect one 
another, and p1, p2, ..., pM are model parameters.

This simply states that the future state of the system is some function of its past state 
(i.e. that the future is predictable). 

• Parameters are numerical values that encode information about the system that is not 
included in the dynamic state. E.g. the concentration of an mRNA species is a variable; the 
linear degradation rate of the mRNA is a parameter.
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Inferring Networks

Components (xi(t)) and interactions (encoded in f ) can be inferred from a 
wide range of data sources:
• Genetic screens
• RNAi screens
• mRNA profiling (e.g. microarrays)
• Metabolic profiling
• Protein-protein interaction screens (e.g. yeast-two-hybrid, TAP mass spec.)
• ChIP-on-chip analysis of transcription factor binding
• Biochemistry
• Population data (e.g. on predator-prey or epidemiological interactions)

Each has strengths and limitations
Integration of multiple data sources is important for reliable inference.
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Cermakian & Sassone-Corsi, Nature Rev. Cell Molec. Biol. 1, 59–67 (2000).

The Circadian Oscillator Network
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• In reality, the state of each network component should be represented 
by a discrete quantity — an integer (e.g. the number of molecules of a 
particular mRNA in a cell, the number of individuals in a population). 

• Also, changes in state over time are discrete events (production or 
degradation of a network component, births/deaths in a population).

• In practice, if the amount of each component is sufficiently large, then 
its state can be approximated by a continuous variable that changes 
smoothly and continuously in time (e.g. concentration, population 
density).

• In doing this, we are essentially representing a continuous process 
rather than a set of events.

Continuous Process Models
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Ordinary differential equations (ODEs)

• If we represent the network state S(t) as 
continuous, then it has a well-defined rate of change:

• An ordinary differential equation (ODE) model gives the rates of 
change of the variables xi(t) as functions of the state at that time: 

where <i> is the set of variables that affect xi(t). 
• The functions fi encode the form of the interactions between components. 
These functions are hard to determine. There are no high-throughput 
methodologies for getting them.

• In practice, models are often based on a small set of standard 
representative forms for the fi  (see later for examples). 
For chemical reactions, an important concept is the law of mass action...

  

€ 

dxi
dt

t( ) = fi x i (t){ };p1, p2,…, pM( ), i =1,2,...,n
€ 

dS
dt

t( )
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The law of Mass Action (1)

• The law of mass action states that the rate of a chemical reaction is proportional to 
the product of the concentrations of the reactants. 

• Used to develop ODE models for networks of biochemical reactions.  

• Assumptions: i) a well stirred solution and ii) low molecular concentrations, where 
the probability of diffusing molecules to get close enough, for a reaction to occur, is 
proportional to the concentrations. 

• A rate parameter is used to define the ‘probability’ of a reaction to occur if two 
molecules approach each other. 

• The mass action formalism has been validated in many experimental settings. 

• Given: 

• The reaction rate is

• The rate of change of a species depends on the rate of reaction and the net change 
in the number of molecules of that species.

• In reality, all reactions should be broken down into bimolecular steps.  

n1S1 +n2S2 +·· ·
k f⇥� m1P1 +m2P2 +·· ·

k f
�
Sn1

1 ·Sn2
2 · · ·

⇥
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Michaelis-Menten enzyme kinetics

• Reactants S and E, rate k1[S][E]. 
Consumes one molecule of S and E, 
and produces one molecule of SE.

• Single reactant SE, rate k2[SE]. 
Consumes one molecule of SE, 
and produces one molecule of S and E.

• Single reactant SE, rate k3[SE]. 
Consumes one molecule of SE, 
and produces one molecule of P and E.

12 CHAPTER 1. MODELING IN SYSTEMS BIOLOGY

1.4.3 Enzyme kinetics

Many reactions have a far too high activation energy to ever occur spontanously. A
common type of reaction is an enzyme reaction, where a helper molecule (the enzyme)
fascilitate a reaction to occur. The enzyme is not used up in the reaction itself.

Example: a simple enzymatic reaction

Consider the simple reaction of species A forming compound B with the help of enzyme
E.

A + E
k⇥ B + E.

k is the rate of the reaction of unit [time]�1[conc]�1. Using a di�erential equation for-
malism the equations are defined by

d[A]

dt
= �d[B]

dt
= �k[A][E], (1.7)

d[E]

dt
= 0. (1.8)

The problem with this formulation is that there is no upper limit on how much a single
enzyme molecule can facilitate the reaction. Often there is an upper limit on the rate
due to the fact that the enzyme is occupied during the reaction, and a model accounting
for this is described in the next section. �

1.4.4 Enzyme kinetics, Michaelis-Menten

A more proper description of an enzyme reaction is to let the enzyme E bind to the
substrate S and letting the substrate turn into a product P while the enzyme is released

S + E
k1⇥
k2

SE
k3⇥ P + E. (1.9)

1

2 3

1

1
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2

2
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• S, substrate; E, enzyme; P, product:

d [S]
d t

=�k1[S][E ]+k2[SE ]

d [E ]
d t

=�k1[S][E ]+k2[SE ]+k3[SE ]

d [SE ]
d t

= k1[S][E ]�k2[SE ]�k3[SE ]

d [P ]
d t

= k3[SE ]

d [P ]
d t

= Vmax [S]
Km + [S]

Vmax = k3E0

Km = (k2 +k3)/k1

• Constant total enzyme
• Substrate assumed in excess 
• [SE] at quasi-steady state
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due to the fact that the enzyme is occupied during the reaction, and a model accounting
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1.4.4 Enzyme kinetics, Michaelis-Menten

A more proper description of an enzyme reaction is to let the enzyme E bind to the
substrate S and letting the substrate turn into a product P while the enzyme is released

S + E
k1⇥
k2

SE
k3⇥ P + E. (1.9)

• A bit more algebra, using the definition: 

• Constant total enzyme: [E] + [SE] = E0
• Substrate assumed in excess, d[S]/dt = 0 
•  [SE] assumed to be at quasi-steady state

1.4. BIOCHEMICAL RATE EQUATIONS 13

The rate equations for this system can be written as

d[S]

dt
= �k1[S][E] + k2[SE]

d[E]

dt
= �k1[S][E] + k2[SE] + k3[SE]

d[SE]

dt
= k1[S][E]� k2[SE]� k3[SE]

d[P ]

dt
= k3[SE] (1.10)

The first reaction is assumed to be fast (and in equilibrium) and we assume that
d[SE]/dt ⇥ 0. Solving the fixed point equation gives K = k1/(k2 + k3) = [SE]/[S][E].
If we also assume a constant amount of total enzyme, [E] + [SE] = E0, the complex
concentration can be written as a function of the substrate concentration,

[SE] = K[S][E] = K[S](E0 � [SE])

[SE] (1 + K[S]) = KE0[S]

[SE] =
KE0[S]

1 + K[S]
=

E0[S]

(1/K + [S])
. (1.11)

The production of P as a function of the substrate concentration is then

d[P ]

dt
=

Vmax[S]

Km + [S]
(1.12)

where the constants Vmax = k3E0 and Km = 1/K. The choice of parameters is due to
the fact that Vmax is the saturated maximal rate of production and Km is the amount
of substrate that corresponds to half the maximal rate (Fig. 1.1). A problem with the
Michaelis-Menten equation is the “slow” response to substrate concentration compared
with what is often seen in experiments. To get the rate 0.1Vmax a substrate concentration
of S0.1 = Km/9 is needed and to get a rate of 0.9Vmax, the substrate concentration needs
to be S0.9 = 9Km. Hence an 81-fold change in concentration is needed between ’on’ and
’o�’ states. This is often handled by using a Hill-type kinetics as will be discussed in
more detail later.

It should also be noted here that the dependence on the enzyme concentration is
built into the Vmax parameter and assumed to be constant. The amount of enzyme is
often also a dynamic variable and the reaction can then be described by

d[P ]

dt
=

V �
max[S][E]

Km + [S]
(1.13)

where it is assumed that the concentration of the enzyme changes slowly compared to
the change in P.
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0

Finally: 
d [P ]

d t
= Vmax [S]

Km + [S]
Vmax = k3E0

Km = (k2 +k3)/k1
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Transcriptional/translational activation

This and similar forms are used in “gene network” models

• TF binds to DNA, this complex activates production of protein P.

transcription
off

DNA

transcription
on

TF DNA
k1

k2

TF

• Assuming TF binding is fast enables use of Michaelis-Menten approach.

• DNA acts as enzyme, [DNA] + [TF-DNA] = 1

k3

[TF]

Vmax

Vmax/2

K

T F +DN A
k1�
k2

T F -DN A
k3⇥�P +T F -DN A

d [P ]
d t

=Vmax
[T F ]

K + [T F ]
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Transcriptional/translational repression

• TF binds to DNA, blocking production of protein P.

transcription
on

DNA

transcription
off

TF DNA
k1

k2

TF

• This time, synthesis is a decreasing function 
of TF concentration:

k3

[TF]

Vmax

Vmax/2

K

T F +DN A
k1�
k2

T F -DN A, DN A
k3⇥�P +DN A

d [P ]
d t

=Vmax
K

K + [T F ]

Hill functions: co-operative activation

• With the previous expression, the response to changes in substrate (TF) 
concentration is weak. 

• Cooperativity can lead to sharper responses. 

• Suppose n molecules of substrate bind to the DNA:

• After some mass action and some algebra...

[TF]

Vmax

Vmax/2

K
• Larger n ➔ steeper switch

• Same idea for repression

nT F +DN A
k1�
k2

T Fn-DN A
k3⇥�P +T Fn-DN A

d [P ]
d t

=Vmax
[T F ]n

K n + [T F ]n
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Hill functions: co-operative repression

• Suppose n molecules of substrate must bind to the DNA to block transcription:

• After some mass action and some algebra...

[TF]

Vmax

Vmax/2

K

• Larger n ➔ steeper ‘off ’ switch

nT F +DN A
k1�
k2

T Fn-DN A, DN A
k3⇥�P +DN A

d [P ]
d t

=Vmax
K n

K n + [T F ]n
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AuxRE
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Figure 1: An Aux/IAA negative feedback loop. Free ARF monomers can bind either (a) ARFs

(to form homodimers) or (b) Aux/IAAs (to form heterodimers). Both (c) ARF homodimers

and (d) monomers can bind Aux/IAA response elements (AuxRE), activating the Aux/IAA

genes. Aux/IAA proteins may mediate the repression of the Aux/IAA gene either by binding

ARFs (see (b)), thereby reducing the number of free ARFs, or (see (e)) by binding the AuxRE

and repressing Aux/IAA genes transcriptionally. (f) Aux/IAA is transcribed. (g) Aux/IAA

mRNA is translated into Aux/IAA protein, completing the negative feedback loop. Auxin can

disrupt this negative feedback loop by mediating the ubiquitination of the Aux/IAA monomers

as follows. (h) Auxin binds to the TIR1 complex. (i) The auxin-TIR1 complex in turn binds

free Aux/IAA. (j) This complex then facilitates the ubiquitination of Aux/IAA proteins. This

reduces (as represented by dashed arrows in (b),(e)) levels of the Aux/IAA-ARF complex and

releases ARF monomers, which may then form homodimers (a). Thus, sufficiently high levels

of auxin will cause the Aux/IAA genes to be de-repressed, (c),(d).

4

• Auxin is a plant hormone, which stimulates degradation of Aux/IAAs. 
• Aux/IAAs repress their own transcription.  
• Hence Auxin stimulates Aux/IAA transcription. 

ODE Example - Auxin signalling
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                    Mass action:

AuxRE

(c)

(a)
(b)

(e)
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(g)
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Aux/IAA
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Aux/
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Figure 1: An Aux/IAA negative feedback loop. Free ARF monomers can bind either (a) ARFs

(to form homodimers) or (b) Aux/IAAs (to form heterodimers). Both (c) ARF homodimers

and (d) monomers can bind Aux/IAA response elements (AuxRE), activating the Aux/IAA

genes. Aux/IAA proteins may mediate the repression of the Aux/IAA gene either by binding

ARFs (see (b)), thereby reducing the number of free ARFs, or (see (e)) by binding the AuxRE

and repressing Aux/IAA genes transcriptionally. (f) Aux/IAA is transcribed. (g) Aux/IAA

mRNA is translated into Aux/IAA protein, completing the negative feedback loop. Auxin can

disrupt this negative feedback loop by mediating the ubiquitination of the Aux/IAA monomers

as follows. (h) Auxin binds to the TIR1 complex. (i) The auxin-TIR1 complex in turn binds

free Aux/IAA. (j) This complex then facilitates the ubiquitination of Aux/IAA proteins. This

reduces (as represented by dashed arrows in (b),(e)) levels of the Aux/IAA-ARF complex and

releases ARF monomers, which may then form homodimers (a). Thus, sufficiently high levels

of auxin will cause the Aux/IAA genes to be de-repressed, (c),(d).

4

d [IAAp]

d t
= �[IAAm]� la[IAAp][auxin–TIR1]+ ld[auxin–TIR1–IAA]�pa[IAAp][ARF]+pd [ARF-IAA],

d [auxin–TIR1–IAA]
d t

= la[IAAp][auxin–TIR1]� (ld + lm)[auxin–TIR1–IAA],

d [IAA⇥]
d t

= lm[auxin–TIR1–IAA]�µIAA⇥ [IAA⇥],

d [ARF]
d t

= �2qa[ARF]2 +2qd[ARF2]�pa[ARF][IAAp]+pd[ARF-IAA],

d [ARF-IAA]
d t

= pa[ARF][IAAp]�pd[ARF-IAA],

d [ARF2]
d t

= qa[ARF]2 �qd[ARF2],

d [IAAm]
d t

= F ([ARF], [IAAp], [ARF-IAA], [ARF2])�µIAAm [IAAm],

d [auxin]
d t

= �+kd[auxin–TIR1]�ka[auxin][TIR1]�µauxin[auxin],

d [TIR1]
d t

= �ka[auxin][TIR1]+kd[auxin–TIR1],

d [auxin–TIR1]
d t

= ka[auxin][TIR1]�kd[auxin–TIR1]

+ (ld + lm)[auxin–TIR1–IAA]� la[auxin–TIR1][IAAp]
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                                 Transcriptional regulation:

Equivalent to Shea-Ackers formulation (details for later)

AuxRE
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Figure 1: An Aux/IAA negative feedback loop. Free ARF monomers can bind either (a) ARFs

(to form homodimers) or (b) Aux/IAAs (to form heterodimers). Both (c) ARF homodimers

and (d) monomers can bind Aux/IAA response elements (AuxRE), activating the Aux/IAA

genes. Aux/IAA proteins may mediate the repression of the Aux/IAA gene either by binding

ARFs (see (b)), thereby reducing the number of free ARFs, or (see (e)) by binding the AuxRE

and repressing Aux/IAA genes transcriptionally. (f) Aux/IAA is transcribed. (g) Aux/IAA

mRNA is translated into Aux/IAA protein, completing the negative feedback loop. Auxin can

disrupt this negative feedback loop by mediating the ubiquitination of the Aux/IAA monomers

as follows. (h) Auxin binds to the TIR1 complex. (i) The auxin-TIR1 complex in turn binds

free Aux/IAA. (j) This complex then facilitates the ubiquitination of Aux/IAA proteins. This

reduces (as represented by dashed arrows in (b),(e)) levels of the Aux/IAA-ARF complex and

releases ARF monomers, which may then form homodimers (a). Thus, sufficiently high levels

of auxin will cause the Aux/IAA genes to be de-repressed, (c),(d).

4

d [IAAm]
d t

=F ([ARF], [IAAp], [ARF-IAA], [ARF2])�µIAAm [IAAm],

F ([ARF], [IAAp], [ARF-IAA], [ARF2]) =
⇥1

[ARF]
�ARF

+⇥2

�
[ARF2]
�ARF2

+ [ARF]2

⇤ARF

⇥

1+ [ARF]
�ARF

+ [ARF2]
�ARF2

+ [ARF-IAA]
�ARF-IAA

+
[ARF][IAAp]

⇤ARF-IAA
+ [ARF]2

⇤ARF

Markus Owen - July 2012GSTDMB Dynamical Modelling for Biology and Medicine

Assumption Relaxation

The numbers of each molecular species are large 
enough to represent as continuous variables Discrete models

Production and degradation processes are 
continuous Discrete models

Outputs of processes begin to change as soon as 
the inputs change

Delay differential 
equations

Processes are deterministic Stochastic differential 
equations

Spatial distribution in a cellular compartment is 
not important

Partial differential 
equations

ODE Models: Basic assumptions
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Summary

The properties of a system can be represented by a set of variables that 
collectively constitute the state of a model

In dynamic models, the state is a dynamical variable (i.e. changes in time)

State evolution models encode mathematically the way that the state 
changes over time

ODEs are based on the assumption that the state changes continuously, 
at a rate that depends only on the current state 

Summary
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Animal coat patterns

The first model of pattern formation in animal coats goes back to 
Alan Turing, better known as the father of modern computer science 
and Bletchley Park code breaker. 

Turing was interested in how an initially unpatterned system, such as 
a uniform ball of cells making up an animal embryo, can generate a 
spatial pattern, such as the stripes of a zebra.
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Animal coat patterns

Turing patterns
� Early contribution made by [Turing, 1952].

� Chemicals (morphogens) can react and di�use to give rise to spatial patterns.

� Patterns are interpreted as specifying cell fate.

A reaction di�usion system in dimensionless form is given by

ut = f(u, v) + uxx, vt = g(u, v) + dvxx, (1)

� f and g: “reaction” between two morphogens u and v.

� d is the relative di�usion coe⇤cient.

� Homogeneous steady solution (u0, v0), stable to homogeneous perturbations.

� If f and g meet certain criteria, spatial patterns via di�usion driven instability.

� Derived by linear stability analysis.

� Modifications used to predict patterning in various other models.

Markus Owen - Modelling in Developmental Biology - G14TBM 2009/2010 6

Turing showed that the simple combination of two reacting and diffusing 
chemicals (he called them “Morphogens”), could generate spatial patterns 
(but diffusion is ‘supposed’ to spread things out):

rate of change 
of morphogen 

‘u’

reactions 
between ‘u’ 

and ‘v’

diffusion 
of  ‘u’

rate of change 
of morphogen 

‘v’

reactions 
between ‘u’ 

and ‘v’

diffusion 
of  ‘v’

Local activation and long range inhibition combine to generate pattern. 

Activator pattern Low pigment 
threshold, large spots

High pigment 
threshold, small spots
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Animal coat patterns
Mathematical analysis suggests that the pattern depends on the domain size. 
If the Inhibitor diffuses relatively quickly then few spots will be able to form. 
It’s like modes of vibration on a guitar string: only certain wavelengths can fit.
Correspondingly, if the domain is too thin, only stripes can form.
This could explain transition from spots to stripes on the tail of many animals. 

spots

stripes

PRE-PATTERN FOR ANIMAL COAT MARKINGS 183 

u 
(d)y= 1250 

tbjy=0-5 

(e)y=3000 

(cjy=250 

* 

(fly=5000 

FIG. 8. Effect of body surface scale on pattern formed by the reaction-diffusion mechanism 

(2) with (3) for cy = 1.5, K = 0.125, p = 13, s0 =_ 103, a0 = 77 (steady state s’= 23, 6 = 24) and 
p = 7. Domain dimension is proportional to Jy. Dark regions have s 2 S: 

Consider now the zebra. Bard (1977) suggested that a regular stripe 

pattern laid down about 0.5 mm apart at a specific time would produce the 

observed number of stripes found on adult animals. We have seen above that 

the reaction-diffusion mechanism can produce a sequence of parallel 

stripes. Some of these become the distinctive caudal stripes due to differen- 

tial foetal growth. The production of the traditional spinal stripe with the 

main stripes coming off at right angles to it is less obvious. Figure 10 however 

shows how this could be achieved from the pattern formation in Fig. 10(a) by 

simple embryonic growth to Fig. 10(b). Figure 10(c) is a typical back pattern 
in the tiger which exhibits similar striping. There is further supportive 

evidence for this in Fig. 7(a) where the zebra tail pattern is similar to that in 

Fig. 10(a) but which has undergone little radial growth as compared with 

that of the body. The spinal stripe in Fig. 7(a) clearly continues onto the tail 

and is a simple earlier pattern of the back. 

smallest

largest
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This kind of system can generate extremely rich dynamics

Some time ago, we idly speculated 
whether such models could predict 
patterns on dinosaurs. 

New evidence suggests that some 
dinosaurs did have patterned and 
coloured skin!
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Modelling cancer growth and therapy

V: vessel (plenty of food nearby)

Brown: hungry cancer cells

N: necrosis (cell death)

Lots of medical research into cancer, but mathematics is also playing its part.

Hypoxic (nutrient starved) cancer cells are resistant to many therapies. 

Macrophages ‘home-in’ on hypoxic regions.

Can we use macrophages to target hypoxic cancer cells?

As early as 1960, Freeman10 proposed that such MNPs
could be transported through the vascular system and
concentrated in a specific part of the body using an
externally-applied magnetic field. Since then, MNPs
have been conjugated to various therapeutic agents like
the anti-cancer drug, doxorubicin and a magnetic field
applied to the target tissue in an attempt to enhance drug
delivery to that site.11,12 The problem with this approach
has been that, although the drug is concentrated within
the target tissue by the magnet, relatively little penetrates
beyond the peri-vascular regions, so the deeper regions
of the tissue remained untreated.13,14 The degree of
infiltration of a diseased tissue by inflammatory cells
in vivo has also been achieved using magnetic resonance
imaging of MNP-loaded cells.15,16 Here, we have used
two new in vitro models of monocyte extravasation and
an in vivo human tumour model to show, for the first
time, that MNPs can also be used to enhance the uptake
of genetically modified monocytes by tumours.

In this novel approach, monocytes are loaded with
MNPs and a magnetic field is generated above or near
the tumour to attract these ‘magnetic’ monocytes to the
area (Figure 1). We propose that this new magnetic
targeting approach could be used to target ‘therapeuti-
cally armed’ monocytes (and potentially other forms of
cellular gene delivery vehicles) to tumours, and thus
overcome the hurdle of poor targeting in current cell-
based gene therapy protocols.

Results

Uptake of magnetic nanoparticles by human
monocytes in vitro
Monocytes are ‘professional’ phagocytes that are capable
of ingesting large quantities of particulate matter by
phagocytosis including super-paramagnetic particles.17

We co-cultured human monocytes in the presence of
(25 nM) gFe2O3 MNPs and found these to be readily
internalized in a dose-dependent manner within 1 h of
incubation as determined by acridine orange and

Prussian blue staining (data not shown). Indeed, when
MNPs were conjugated to Nile red and taken up by
human monocytes, fluorescent microscopy (Figure 2a)
and flow cytometry (Figure 2b) showed that 70–90% of
monocytes contained MNPs. We then tested whether
these MNP-loaded monocytes would be attracted to a
magnetic field in vitro by dropping them slowly into
a culture vessel that had a magnet placed to one side.
Within 10 min, significant attraction of the cells towards
the magnet could be seen (Figure 2c and inset) and was
persistent for up to 72 h (data not shown). We then
investigated whether the uptake of MNPs would have a
cytotoxic effect of on monocytes by exposing them to
different concentrations (1–1000 mg ml!1) of MNP for
24 h and then washing and staining them with a
propidium iodide a marker for cell death (cell uptake
being visualized by flow cytometry). At concentrations
below 250 mg ml!1, cell viability was similar to that in
untreated monocytes (Figure 2d). Other studies have also
demonstrated that uptake of MNPs by monocytes is not
cytototoxic.16

The intracellular iron content in monocytes increased
with increasing concentrations of MNPs applied to cells
(data not shown) as determined by Inductively Coupled
Plasma Atomic Emission Spectroscopy using Varian
Vista-M PX. The iron content of cells exposed to
100 mg ml!1 MNPs (1.18 mg ml!1±0.3) was not cytotoxic
to cells (Figure 2d) and did not alter monocyte
morphology in culture or expression of monocyte marker
CD14 (as expressed by flow cytometry, data not shown).
We, therefore, used 100 mg ml!1 of MNPs in all sub-
sequent experiments in this study.

Taken together, these data indicate that the uptake of
MNPs by monocytes is rapid, effective and had no
detectable deleterious effects on monocyte function.

Enhanced migration of MNP-loaded monocytes into
tumours in the presence of a magnetic field
We then tested the ability of MNP-loaded monocytes
to migrate across a layer of human endothelial cells (EC)

Figure 1 Schematic representation of the possible role of nanomagnetic particles (MNPs) in enhancing monocyte-based gene delivery to
tumours. MNP-loaded monocytes injected into the bloodstream of the patient circulate and then are drawn out of the blood vessels in the
tumour under the influence of a local magnetic field.

Magnetic cell-based gene therapy
M Muthana et al

2

Gene Therapy

Macrophages circulate and 
infiltrate hypoxic tumour 
regions where they 
activate a drug. 

Manipulate a patient's own 
macrophages.

Inject modified macrophages 
back into patient.

Normal (healthy cell)

Cancer Cell

Quiescent cancer cell

Macrophage (from blood,  
activates prodrug)

Blood vessel sprout

Grid: multiple cells at each site, cells jump 
between sites at random with bias. 
Ordinary Differential Equations for 
cell cycle, death, signalling:
Oxygen dependent dynamics
Normal and cancer cells may differ 
(e.g. cancer: resist death, proliferate faster)

Partial Differential Equations for diffusion, 
production and uptake of oxygen, drugs, etc

ρu: vascular density at x (if vessel present)
ψu: vessel permeability to U. 
Su(x): production/consumption by cells.
Ublood: concentration in the blood.

Drug is shown in grey-scale

where the neighbourhood ⇥
x

is simply the cell’s lattice site x if that site contains more than one cell,
and otherwise ⇥i includes lattice sites in the Moore neighbourhood of x.

At steady state, equation (A2) gives [p53] = k
7

(Cp53

+ C)/(k0
7

C). Solving this for C, when
[p53] = p53THR, gives the approximate (bearing in mind that [p53] is a dynamic variable) critical
oxygen value for apoptosis as Capo = k

7

Cp53

/(p53THRk
0
7

� k
7

). This relationship is used in Table S2
to link the parameter values for p53high/low

THR to equivalent oxygen thresholds for apoptosis.
Cancer cell apoptosis occurs if a cancer cell is quiescent for too long (when Tquiescent > Tdeath).
When a cell dies, it is removed from the computational domain.

A.2 Di↵usible layer

In [45], di↵usive transport of oxygen and VEGF within the tissue provides indirect coupling between
the vascular and cellular layers. For both species, reaction-di↵usion equations, at quasi-steady state,
are used to model their spatio-temporal behaviour. We extend this approach to include quasi-steady
equations for the concentrations of prodrug, P , and drug, Q. Hence the distributions of oxygen,
VEGF, prodrug and drug are governed by equations of the form:

0 = Dur2U + ⇢v u(Ublood � U) + Su � �uU, (A7)

where Du is the di↵usion coe�cient of the species of interest in the extracellular space, ⇢v(x, t) is
the vascular surface density at x in cm2/cm3,  u is the vessel permeability to U , Ublood(x, t) is the
concentration of U in the blood, Su(x, t) is the cell- and environment-dependent production/removal
rate and �u is the decay rate (see also equation (3) in the “Quick guide to equations and assumptions”).
In all cases considered here, and for all di↵usibles, we use zero flux boundary conditions.

We use a finite di↵erence approximation, on the same lattice as the cells reside, to solve the
quasi-steady elliptic equation (A7), with the vascular density at site x defined to be ⇢v(x, t) =
2⇡R(x, t)L(x, t)/�x3 if a flowing vessel is present there, and zero otherwise. Here R(x, t) and L(x, t)
are the vessel radius and length, so that ⇢v(x, t) is the surface area of a cylindrical vessel, divided by
the lattice site volume (assuming the tissue thickness is �x).

We note that for the production and uptake terms, Su(x, t), cells and vessels may be sources or
sinks of oxygen, VEGF, prodrug and drug. If there are two cancer cells at a site, each makes a
contribution to oxygen consumption. Consequently, higher cell densities will lead to lower oxygen and
hence reduced proliferation and increased rates of apoptosis/entry to quiescence.

A.2.1 Oxygen, C

Each branch of the vascular network acts as a distributed source of oxygen whereas the oxygen-
consuming cells act as spatially-distributed sinks. Hence the oxygen concentration is described by
equation (A7), with Cblood(x, t) = CrefH(x, t)/Hin,

Sc(x, t) = �
X

cell at x

kcell
c C, (A8)

and �c = 0. Here, Cref is a reference oxygen concentration, H(x, t) is the haematocrit value in the
vessel at position x, and Hin the reference inflow haematocrit, so that for flowing vessels (and with
symmetric haematocrit splitting at bifurcations) we have Cblood(x, t) = Cref .

8

Blood flow in each segment

Specified inflow and outflow pressures

Balance flows at each node (like 
Kirchhoff’s laws for an electric circuit).

Oxygen delivery depends on flow 

31

32

33
Tuesday, 10 July 12



Markus Owen - July 2012GSTDMB Dynamical Modelling for Biology and Medicine

Combined Macrophage & Conventional therapy

Synergistic effect - tumour is eliminated. 
Cutting-edge applied and computational mathematical techniques can be 

used to develop virtual models of cancer growth and therapy.  

Prodrug injected every 7 
days starting on day 21. 
Pbolus≈120 < EC50

Macrophages 
injected on day 21

Drug produced from 
prodrug by hypoxic 
macrophages, and by 
metabolism in the liver. 
Qbolus≈11 < EC50

What happens when both therapies have small individual efficacy?
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Opportunities in Systems Biology

Maths: Model development, model analysis, simulation, statistical analysis of data, ...

Biology: High throughput techniques, genetics, proteomics, epigenetic regulation, ...

Computer Science: Image analysis, algorithm and software development, data mining, 
optimisation, model sharing and markup languages, ...

Engineering, Physics, Chemistry: Bioengineering, tissue engineering, 
nanotechnology, MRI, new microscopy and measurement techniques, ...

Heart (electrical activity, muscle 
mechanics, blood flow)

Lungs (air flow, asthma, ...)

Brain (single neurons, whole brain, 
Parkinson’s disease, ...)

Developmental biology 
(how organisms grow)

Cancer

Immunology (how we fight infections, how 
it can go wrong - e.g. Rheumatoid 
Arthritis, HIV)

Bacterial infections (managing infections in 
hospitals) 

Ecology (control of invasive weeds, 
management of fisheries, ...)

Plants (how to improve food crops)

... 
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