GSTDMB 2012: DYNAMICAL MODELLING
FOR BIOLOGY AND MEDICINE

Lecture 2
Introduction to modelling with
differential equations

Markus Owen

Key ideas about dynamic models

‘J Dynamic models describe the change in the state of a system with time.
© Solution/trajectory: the set of future states given a particular initial state.
© steady state: a solution which is steady/constant/not changing in time.

&) . . . . . " . .
¥ Periodic solution/limit cycle: an oscillatory solution, i.e. one that repeats
exactly the same values at an interval known as the period.

© The stability of a steady state describes what happens to the system if it
starts close to that steady state:

Q@ stable: if we start close to the steady state, the system converges to that
steady state

9@ unstable: if we start close to the steady state, the system diverges from
that steady state

& Bifurcation: the number or stability of steady states (or periodic solutions)
changes as a parameter varies.

& Qualitative analysis: determines information about qualitative properties of
solutions and bifurcations. Steady states and stability are important here.

*) . . . . . .
¥ Quantitative analysis: determines numerical values for solutions,
bifurcations, etc, usually via computer simulation (except for special cases).

Stability: examples

® Consider a ball rolling on a smooth landscape.

® The ball can be placed at the top of a hill and will stay
there for all time - this is a steady state.
In practice, any small disturbance will lead to the ball
rolling down one side or the other.
This is an example of an unstable steady state.

® Another steady state is at the bottom of a valley.
After any small disturbance the ball will roll back to ./
the bottom.
This is an example of a stable steady state.

unstable
¥ @\

® Another example is a rigid pendulum:

\N @~/
stable
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It order Ordinary Differential Equations

® Dynamic models for the dependence of single state variable, x on the
independent variable . The solution is x(?)

dx
® Describe the rate of change of x, written ar
® In general, this may depend on x itself and on time, #: ﬂ )

(e.g. time dependent parameters in circadian models) dr

® We will consider the autonomous case, when the rate of change ﬂ = f(x)
of x does not depend on ¢, but only on the state variable x itself. dt

® |n this case qualitative analysis is reasonably straightforward

® Steady states are where f{x)=0.

The phase-line diagram shows us where x is increasing, where it is
decreasing, and where any steady states lie.

® Relies on being able to sketch or plot the graph of f{x)

Phase-line diagrams (1)
® Enable qualitative analysis of |5t order autonomous ODEs.
® Given dx/dt=f{x), sketch f(x)

® Remember that f{x) is the rate of change of x

dx/dt =f{x) > 0, x increasing
Jx)

dx/dt =f{x) < 0, x decreasing

Phase-line diagrams (2)
® Steady states where f{x) crosses the horizontal axis (dx/dt=f{x)=0)
e Stable if f{x) crosses from positive to negative

e Unstable if f{x) crosses from negative to positive

J)

stable

stable unstable

X
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Phase-line diagrams (3)
® Also tells you how fast x is increasing or decreasing
® Easiest to indicate graphically with arrows
® Arrows to right (left) for x increasing (decreasing)

® This reinforces our understanding of (in)stability

J)

stable unstable X

unstable

Sketching the graph of a function f(x)

® f(0) - where the graph crosses the vertical axis
® f°(0) - slope at x=0 (f”is shorthand for df7dx, the gradient of f(x))
® anywhere else obvious where f{x)=0?
® is f(x) polynomial (ax" + bx"! + ¢x"? +... +dx +e)?

® quadratic (highest power is 2), ax? + bx + ¢ - always one max or min

® cubic (highest power is 3) - one inflection, or one max and one min

® |n general, at most n-I turning points

® what about f{x) as x get very large positive (negative)?
Does it go up, down, or become flat
(i.e. approach a horizontal asymptote)?

® Any vertical asymptotes?

Sketching the graph of a function f(x)
e Example: f{x) = rx(I-x/K) = rx - x¥/K
. f(0)=0
2. f’(x)=r-2rx/K, so f’(0)=r, f(x) is increasing through the origin
3. clearly f(K)=rK(1-1)=rK(0)=0 so crosses at x=K

4. f(x) is quadratic, so one turning point.

f(x) = rx(1-x/K)
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Sketching the graph of a function f(x)
e Example: f(x)=rx(I-x/K)(x-a)
I. f(0)=0, f’(x) is harder to work out
2. clearly f(K)=rK(1-1)(K-a)=1(0)(K-a)=0 so crosses at x=K
3. clearly f(a)=ra(1-a/K)(a-a)=ra(1-a/K)(0)=0 so crosses at x=a

4. As x gets very large, f(x) gets very large negative...
r.(large).(-large/K).(large) = -r(large)’/K
could also see this by expanding brackets...

5. f(x) is cubic, so one max and one min (or one inflection).

Jx) = rx(1-x/K)(x-a)

[< ]

2
e R

Sketching the graph of a function f(x)
e Example: f(x) =x/(1+x?)
l. f(0)=0

2. f(x)=2x/(1+x"2)?, so f’(0)=0, and as x gets large, f’(x) goes to zero
(horizontal asymptote).
Another way to see f’(0)=0, for small x, f{x) looks like x?).

3. clearly f(0) > 0

4. As x gets large, f(x) approaches one (the 1 on the bottom is insignificant).

If you're not convinced, consider x=10, 100, ...

10%/(1+102) = 100/101 = 0.99
100%/(1+1002) = 10000/10001 = 0.9999

]

Exponential population growth % =rx

® Examples from Population growth illustrate many key points

® x is the number of individuals Jtx) = rx

® ris a parameter, the rate of growth per capita.
It has dimensions of //(time)

® Steady state: any steady solution has dx/dt =0
® Hence rx =0. Assuming r >0, this must mean x =0
® Can see this, and more, from phase-line diagram:
unstable

® for small values of x, x grows slowly
® as x increases, its rate of growth increases

® this gives characteristic exponential growth:
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dx
j i ? —=rx
Exponential population growth? —
® Solution is x(2) = x(0)e"" (quiz Q16). Take logs of both sides: In(x(t)) = rt +x(0)
® Log of population data should be straight line...

® Here we show global human population data
http://www.census.gov/ipc/www/idb/worldpop.html
http://www.census.gov/ipc/www/worldhis.html
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® Growth rate is slowing (after a period of acceleration)

Logistic growth 2% = rx (1 u )
gistic g dt K
® ; measures the maximum rate of growth. It has dimensions of //(time).

® K measures the carrying capacity for the population.
It has dimensions of number of individuals.

® Effectively, we have replaced a constant per capita growth rate r, with a rate
that decreases as the population size increases. This models the depletion of
resources as a population grows.

® Steady states are where dx/dt =0, which is where x =0 or x =K

fx) = rx(1-x/K) X

unstable representative solutions

.. dx X
Logistic growth? — = rx(1- E)

® Consider experimental data on the growth of yeast.

® Dynamics look a bit like logistic growth ...

Yeast growth (Saccharomyces cerevisiae CEN.PK113)
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® But logistic growth is too slow at first, and too fast later.

Tuesday, 10 July 12

13

14

15




dx X
Allee effect —— = rx(l - E) (x—a)

® Many species exhibit lower or even negative growth rates at low numbers.
) ) X
® Here, the per capita growth rate is: 1 (1 - ?) (x—a)

® This is negative if x <a, i.e.if the population is too small (NB: 0<a<K)

fx) = rx(1-x/K)(x-a) X

representative solutions t
stable unstable stable
e Bistability: two stable steady states. Final state depends on initial value, x(0).
Production & degradation models
® In each of the preceding cases, the form of f{x) (straight line, quadratic, cubic)
makes it easy to sketch the phase-line diagram (and there is no
qualitative dependence on parameter values)
® Next we will consider models for simple feedback loops, such as may arise
with transcriptional autoregulation
Rate of .
( change of x ) =( production )—( decay )
|
Px) ox dx
— =P(x)-6x
— TFe — Q. « "
—
® P(x) represents the effect of a Transcription Factor x on its own synthesis
® We will consider various common forms for P(x)
® What are we interested in?
® Steady states: production and turnover of x are balanced
® How fast are steady states reached? Any bifurcations (ideal for exp’tal validation)?
. dx
Constant production =~ = A-6x
dat
® P(x) =A, a constant. This could model constitutive transcription
® As usual, steady states satisfy dx/dt =0, hence 4 = ox
® So the steady state TF level is x = A/0
® Does this fit with our biological understanding and intuition?
dx/dt = A-ox X
N4 No bifurcations
A/o
= t
A/S x representative solutions
stable Larger 0 - faster decay to steady state
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Saturating positive feedback P(x)=

h+x
® Transcription rate increases with TF, x,
but saturates to a maximum rate 4 y
® e.g TF binds to its own promoter
® This is an example of a Hill function: Ax/(h+x)
n A2
Plx) = Ax quiz QI |
h™ + x"
h x
® Half maximal response atx = &
® Model equation becomes: @ = Ax —
dt h+x

® How to sketch the phase-line diagram and find steady states?

Ax
Saturating positive feedback P(x)=
h+x
dr_ _Ax
dt  h+x

® |t turns out there are two qualitatively different phase-line diagrams

® Algebra: steady states satisfy Ax/(h+x) = ox

One obvious solution is x=0 the other has A/(h+x) = J, hence
A = 6h + 6x, hence

ox = A - 6h,hence

x = (4-0h)/5

® If 4 < Jh then this steady state is negative and not biologically relevant
® Interpretation: if TF turnover rate too large, TF level decays to zero

® There is a bifurcation at 4 = Jh,
(i.e. change in number or stability of steady states)

o Graphically, dx/dt is the difference between the curve P(x) and the line Jx

: . _ Ax
Saturating positive feedback P(x)= s

e Graphically, dx/dt is the difference between the
dx _ Ax curve P(x) and the line dx

- = X
dat h+x ® |t is easy to see the effect of increasing  which is the
slope of the line

Sx ox
Increasing 0
 —
Ax/(h+x) Ax/(h+x)
x x
(A-6h)/6 stable

unstable

stable
The difference is always negative: x is

always decreasing to zero
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: . _ Ax
Saturating positive feedback P(x)= s

e Graphically, dx/dt is the difference between the curve P(x) and the line dx

® |t is easy to see the effect of increasing J which is the slope of the line

Increasing 0
e

Ax/(h+x) - ox

Ax/(h+x) - ox

unstable stable

Increasing o effectively pulls the curve
of dx/dt down through the axis

22

Ax
h+x

® We see that as ¢ increases, the steady state TF level decreases, until it reaches
zero. Beyond this point TF production cannot be sustained.

Saturating positive feedback P(x)=

We can summarise this information in a Bifurcation diagram, which shows
steady states and their stability as a parameter varies

® Solid lines indicate stable steady states, dashed lines unstable steady states

steady state bifurcation point
TF level,
‘= A-6h
6
0

A/h TF turnover rate, 0

® Could test this structure against experiment...

® ... but bifurcation will be at TF levels below detection threshold.

Sigmoidal positive feedback P(x)= h"L

+ x"

® Transcription rate increases with TE x, A
but saturates to a maximum rate 4

® A Hill function with order > | is an A2
example of a sigmoid curve

® Half maximal response atx =/ quiz Q12

dx_ Ax"
dt  h"+x"

® Model equation becomes:

-0x

® How to sketch the phase-line diagram and find steady states?

Tuesday, 10 July 12

23

24




n

. . . . Ax
Sigmoidal positive feedback P(x)= e

dx Ax"

E: h”+x"_6x

® Again there are two qualitatively different phase-line diagrams

® Algebra: steady states satisfy Ax"/(h"+x") = ox

One obvious solution is x=0 the other has Ax"//(h"+x") = ...
... hard to solve in general.

® We resort to graphical analysis.

Ax"
Sigmoidal positive feedback P(x)= ——
n e Graphically, dx/dt is the difference between
ﬂ _ Ax _ 5.76' the curve P(x) and the line ox
dat h" + xh ® Itis easy to see the effect of increasing J
which is the slope of the line
Increasing ¢ Sx

ox

Ax"/(h"+x")

X
stable
stable unstable stable
The difference is always negative: x is
Three steady states - BISTABILITY always decreasing to zero

n

. . . . Ax
Sigmoidal positive feedback P(x)= e

® We see that the zero steady state is always stable.

® As J increases, the nonzero stable steady state TF level decreases, until it
disappears in a bifurcation. Beyond this point TF production cannot be sustained.

® We can summarise this information in a Bifurcation diagram, which shows
steady states and their stability as a parameter varies.

Solid lines indicate stable steady states, dashed lines unstable steady states.

steady state bifurcation point

TF level

TF turnover rate, 0

® Could test this structure against experiment...

® ... at bifurcation TF levels could be above detection threshold.
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Negative feedback P(x) =

h+x
® Transcription rate decreases
with TF, x. A
® Maximum rate 4, minimum zero Ah/(h+x)
® A decreasing Hill function: A2
P Ah"
X)=————
hn + xn h X

Half maximal response at x = £

dx _ Ah
dt  h+x

® Model equation becomes:

® How to sketch the phase-line diagram and find steady states?

. _ Ah
Negative feedback P(x)= T

* Algebra: steady states satisfy Ah/(h+x) = ox
No obvious solutions - need to cross multiply and solve a quadratic ...

¢ Graphically, dx/dt is the difference between the curve P(x) and the line dx

ox

dx/dt = Ax/(h+x) - ox

Ah/(h+x)

stable

stable

* The pictures are qualitatively the same whatever the parameters
¢ Always just one stable steady state TF level

* As Jincreases the TF level falls

Discussion

® We have introduced simple ordinary differential equation (ODE) models for single
state variables.

Steady states and their stability are crucial determinant of system dynamics.
® Changes in number or stability of steady states are called bifurcations.

® For It order autonomous ODEs, the phase-line diagram can tell us most
of the qualitative information wed like to know about the system dynamics:

® if you can sketch the graph, you can sketch the dynamics...

® steady states, stability AND qualitative solution behaviour (fast, slow,
increasing, decreasing, etc), bifurcations.

® solutions cannot oscillate

For It order non-autonomous ODEs (e.g. circadian models with time
dependent parameters) solutions can oscillate (driven by e.g. day-night cycle)

® Next:
® Using CellDesigner to build and simulate single variable models

® models with >| state variable - more complex dynamics possible, analysis
more difficult, often resort to computer simulation
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