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Lecture 3
Multi-variable differential equation models

Markus Owen

Recap...

® We have introduced simple ordinary differential equation (ODE) models for single
state variables.

e Steady states and their stability are crucial determinant of system dynamics.
® Changes in number or stability of steady states are called bifurcations.

® For |t order autonomous ODEs, the phase-line diagram can tell us most
of the qualitative information wed like to know about the system dynamics:

® if you can sketch the graph, you can sketch the dynamics...

® steady states, stability AND qualitative solution behaviour (fast, slow,
increasing, decreasing, etc), bifurcations.

® solutions cannot oscillate

® For |t order non-autonomous ODEs (e.g. circadian models with time
dependent parameters) solutions can oscillate (driven by e.g. day-night cycle)

® We used CellDesigner to build and simulate single variable models

¢ Next, models with more than one state variable: more complex
dynamics possible, analysis more difficult, often resort to computer simulation

Signalling networks

® Central dogma of molecular biology:

® DNA transcribed to RNA (regulated by transcription factors),

® RNA is translated into Protein.
® Proteins interact, can regulate translation, RNA stability, and transcription.
® RNA can also modulate transcription.

® Signalling networks: interactions between these elements, typically
complex and extensive.

® Fundamental approach: decompose into modules that are sufficiently
separate from other pathways to be considered on their own.

® Mathematical models: prediction of network behaviour with given
topology and interactions.

® |deas don’t just apply to “gene networks”, but to many kinds of network:
Physiological models, metabolic networks, ecological networks,
epidemiology...

Wednesday, 11 July 12




The law of Mass Action (2)

® Rate of reaction proportional to the product of the concentrations of the reactants.

® The rate of change of a species depends on the rate of reaction and the net
change in the number of molecules of that species.

® Another example, the “Brusselator”:
a5 X B+ Xx By +DBl2x+v B3x Ex

® Assume the concentrations of substrates 4 and B are constant.
E is a product. We are interested in the dynamics of X and Y.

o x =[X], y = [Y], the concentrations of X and Y.

i has rate k3 Xy which produces one molecule of X and consumes one of Y.
N,
E = k)lA — (k?gB -+ k?4>ZU -+ ]{7356'2y,

d
d_gz = kyBx — ksx’y.

® This system is a famous example which can have oscillatory solutions (see later).

Transcriptional regulation
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Multiple TFs?

® What about multiple transcription factors? Some activating and some repressing?

e Eg Lac-operon:
Catabolite activator protein (CAP), /C/, activates (promotes binding of RNAp).
Lac-repressor, [R], blocks the RNAp binding site.

Transcription only without repressor bound. .

Operator Promoter Gene

® Catalogue all the relevant states and the contribution of each to transcription rate.
Transcription only when RNA-polymerase (RNAp) binds to the promoter.

® Write down ODEs and simplify using Michaelis-Menten approach.
@ B Vinax(1 + k1 [C])
dt 1+ ki [Cl+ k2[Rl + k3[R][C]

® or use the Shea-Ackers approach...
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Shea-Ackers (1)

® Method originally developed for the lysis/lysogeny switch in Lambda phage
® Two time scales:
® Slow:Transcription/Translation/Degradation
® Fast: Binding/unbinding of TFs to gene — thermal equilibrium
® Possible cases:TF, TF+RNAp, RNAp - probability associated with each
® Enumerate all cases, compute probability of bound RNAp

® Transcription rate is proportional to promoter occupancy

?e &

Operators Promoter  Gene

Shea-Ackers (2)

® Example: two transcription factors, A and B
® Enumerate all possibilities - binding/unbinding of A,B and RNAP

® The “partition function” Z contain 23 = 8 terms

—lil-t_—t—;
Operators Promoter  Gene
Z =Y [A'[BY[RNAPI*6; ik = Zon+ Zofs

ijk ’ \

RNAp bound RNAp unbound

® iyj,k =0 (unbound) or I (bound) Transcription rate i
® Jii related to binding energy, oo =1 proportional to: Zon+ Zof]“

Shea-Ackers: simple example

® The trp operon of E. coli is regulated by the TrpR repressor protein 4.
® Tryptophan binds the TrpR repressor enabling TrpR to bind the trp operator.

® This prevents transcription: the trp operator overlaps the RNAp binding site.
A and R cannot be simultaneously bound:

[A] |[RNAp]| Rate

! B
1 | 0 I 001RNAp

Operator Promoter Gene [ |

Z=[AI° [RNApI°8q0 + [AI'[RNAp]°510 + [AI° [RN Ap]* 8¢,

® Only the last term corresponds T 601 [RNAP]
to a transcriptionally active state, so X 1+ 610[A] + 6()1 [RNAP]

® For constant RNAp this is like a decreasing Hill function of order 1.
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Lac-operon revisited

E.g. Lac-operon: [C] activates and [R] represses:

Operator Promoter Gene

dpr _ Vinax(1+ k1 [C])
dt 1+ k1 [C]+ k2[R] + k3[RI1[C]

Michaelis-Menten approach:

or use the Shea-Ackers approach... [C] [R] | [RNAp] Rate
assuming [RNAp] is constant yields 0 0 0 |
the same form as above. 0 0 0 S100/C]
0 | 0 doio[R]
0 0 I J001/RNAp]
| | 0 0110/ C][R]
| 0 | 0101/C][RNAp]
0 | | -
| | | -

“ Auxin model revisited:
5

d[IAAn]
ar =F([ARF], [IAAp], [ARF-IAA], [ARF2]) — tiaa,, IAAm],
2
A [ARF] A [ARF>] + [ARF]
OARE OARE, WARF

F([ARF], [IAAp], [ARF-IAA], [ARF2])

[ARF] [ARF,] [ARF-IAA] [ARF][IAAp] [ARF]?
+ + + +

1
OaRr OARr,  OARFAA WARF-IAA WARF

Equivalent to Shea-Ackers formulation
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Synthetic networks in E. coli

* Key question: How do we know that the simple mathematical
representations we use are appropriate?

* One answer: Test their validity by constructing small networks in cells.

* Measurements on network state can then be compared directly to the
behaviour predicted by simple mathematical models.

« Introduce a small number of genes controlled by promoters/repressors.

« Choose regulatory strengths based on a mathematical model of the network.

« A fluorescent reporter gives a read-out of a component of the network.

* The first examples of synthetic networks in E. coli were reported in 2000:
« Toggle switch (Gardner, Cantor & Collins)
* Oscillator, a.k.a. “Repressilator” (Elowitz & Leibler)
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Toggle switch: two-gene repressor network

degradation ‘

’ Rate of change of u ‘ ’ production repressed by v

degradation ‘

‘ Rate of change of v ‘ = ‘ production repressed by u

du a dv -
—=— -1, — =V
dt 1+ 0P dt  1+u
® Can behave as a bistable switch, depending on parameters.

® Phase-plane analysis very useful

® Nullclines are curves on which one variable is not changing

® y-nullcline: du/dt = 0, here u = 2l
1+ v

az
1+uY
® Steady states where nullclines cross

o y-nullcline: dv/dt = 0,here v =

® Stability requires more maths - linear algebra, eigenvalues, etc ...
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Two-gene repressor network: f=y=1

u-nullcline: du/dt = 0,
arrows vertical
(only v is changing)

stable steady state

v-nullcline: dv/dt = 0,
arrows horizontal
(only u is changing)

a2
V=
1+u?
u
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Two-gene repressor network: f, y > 1

u-nullcline: du/dt = 0,

a .
u=-——=5 |arrows vertical
1+v . .
(only v is changing)
A%

‘i ‘two stable steady states: bistability
v-nullcline: dv/dt = 0,
arrows horizontal

unstable (only u is changing)
steady ) as
state =
1+ uY
u
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Two-gene repressor network: f, y > 1

® increase o7 (moves blue curve to right) and
* decrease a2 (moves red curve down):
lose bistability
* similar effect by decreasing a7 and increasing a2
¢ these are examples of bifurcations
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Toggle switch: implementation

Inducer 2

Promoter 1 _|_
Repressor 2

Repressor 1

'I' Promoter 2

Inducer 1

Transitions as predicted by model

Normalized GFP expression

Inducer | Inducer 2 (IPTG
V' ( )
P1 Ptrc-2
Reporter RBS1 rbs E
lac], R1
T1To rbs B
GFPmut3
T{T2
Close to bifurcation, bimodal distribution of cells
2 3a/3b 4

104

103

3,

GFP fluorescence
3
R

Side Cell Side Cell Side Cell
scattering counts scattering counts scattering counts

Gardner, T.S., Cantor, C.R. & Collins, J.J. (2000). Nature 403, 339-342.
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Transcriptional regulation revisited

ax
—=P(y)-90
ar - Pw-ox

® Protein synthesis requires transcription and translation.

® Phase plane analysis quite straightforward.
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Transcriptional regulation revisited

@ - P(y)-6x ¢ Xx-Nullcline is: x = P(y)/0 and y-nulicline is x = Sy/a
dt ® Easier to think of X as a function of ), otherwise we have
dy ﬁ y= P-1(0x) where P! is the inverse function...
dr Y
high 8 x= py/o
X, mRNA :

PQ)=Ay/(h+y)

® Increasing /3 or 0 leads to
loss of the nonzero steady 7 U
state, (0,0) becomes stable i /B e

Transcriptional regulation revisited

ﬂ =P(y)-6x ® x-Nullcline is: x = P(y)/0 and y-nullcline is x = Sy/a
dt ® Easier to think of ¥ as a function of ), otherwise we have
ﬂ _ax— By y = P-1(0x) where P! is the inverse function...
dat

x= fy/a

high 8
x, mRNA :

Py)=Ay*/(h*+y?)

® Bistability again ...

® Increasing § or 0 leads to
loss of the nonzero steady
states.

An engineered negative feedback oscillator

Repressilator Reporter
The repressilator: Placot
« Transfect E. coli with a plasmid containing three
repressors:
lacl | tetR | cl | lacl
pSC101
+ Also transfect with a reporter plasmid origin

(visualise TetR expression)

* Represent the system using six variables:
three mRNAs and three proteins.

* Linear degradation.
* “Hill function” transcriptional repression. dp; j = cI, lacl, tetR
« Basal transcription. —— =pB(m; - py)

* Linear translation.

dmi +
20 % o
dt 1+ pJ’F ' i =lacl, tetR, cI

dat

Elowitz, M.B. & Leibler, S. Nature 403, 335 (2000).
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An engineered negative feedback oscillator
dm; a dp; N

_ 1 _ @ steady state A -
— =g+ -m;, —— =p(m;-p; g o7
T T plmi=pi) f P

* Use the mathematical model to explore the % B

dynamics as a function of the parameters. 2 o]
* Engineer the promoters and molecular %

degradation rates appropriately for oscillations. g s

: Tz

*» Uses “LINEAR STABILITY ANALYSIS” unstable

Lo _ Lo _ Lo _ W0 10 10’ W 10"
A: n_z'l’a()_o' B:n= 21“4)_0' C n—2,a0/a =0.001. Maximum proteins per cell, « (x K,
Time (min)
6,000
D )
c, 000 Track bacteria
o with time lapse
% over several
c NMARANANAAAAA division cycles g% A [
= 2,000 W\ WY ) e£ %0y |
Q It f'\v VIV ‘J\ I (marked with 5 F
° M I barsinc). SE o . L
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0 500 1,000 Y A S
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Time (min) Time (min)
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Gene network modelling

M Variables: mRNAs and proteins.

M ODE models: mass action, sigmoidal
transcriptional activation and repression,
linear decay and translation.

dx
T synthesis — decay + transformation + transport

B Parameters:

Thresholds for the sigmoidal functions;

effective co-operativities, can be high for indirect pathways;
half-lives;

relative contributions of multiple transcriptional regulators;
transfer rates, e.g. cytosol to cell surface;

transformation rates, e.g. cleavage, phosphorylation, binding.
M intracellular species: single equation per cell

B cell-surface: multiple equations per cell (e.g. six if we assume hexagonal cells).

Epidemiology
Simplest model: SIR model.

* Closed population. Individuals do not enter, and leave only by death due to disease.

* Population in 3 compartments: Susceptible, Infective, or Removed (cured and now
immune, or dead).

* No spatial effects (uniform mixing), and no heterogeneity in activity (important in,
e.g.,, STDs such as AIDS).

* Negligible incubation time.

* Susceptibles move into Infective class at rate proportional to number of contacts
between Susceptibles and Infectives (like law of mass action).

¢ Infectives removed at some rate into Removed class (which decouples).

* An EPIDEMIC if I(1)>1(0) for some t>0) (i.e. if the number of infectives goes up)

ﬁ =-pSI )
dt * Constant total population
ﬂ:ﬁSI—yI S+I+R=N

dt S+I<N

dR

ar
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Epidemiology g = —BSI, % = BSI—yI

S-nullcline: dS/dt = 0. I-nullcline: dI/dt = 0.

S§=0and=0. I=0orS=7y/BbutS<=N,so only
Arrows vertical (only I is changing) | |relevant if y/8 <N.

Arrows horizontal (only S is changing)

S=y/p<N

I S=yp>N

EPIDEMICS

<"S

Brusselator model

® This system is a famous example

Nuliclines
which can have oscillatory solutions.
dx (koB + ky)x — k1 A
dx 9 d— =0: y= ?
i k1A — (koB + kg)z + ksx®y, t 3
dy ay _o. ,_ kB _
E = sziE*k‘gl’Qy. dt—o- y—a or x=0

y

® Trajectory spirals in to
a stable steady state

® Trajectory converges to
a sustained oscillation

I
Y

Summary

® Gene transcription, mMRNA translation, protein interactions, decay, etc, can be
described using differential equations.
There are different approaches to combining multiple transcription factors.

® Mathematical analysis of relatively simple models (with two state variables) can be
done using phase-plane methods.
» phase-plane represents state of a two-variable system by points on the plane.

» each point has associated rates of change for each variable, which define a
direction in the phase-plane (often represented by an arrow).

» sketch the nullclines - curves where one variable is not changing (so there are
two nullclines if there are two variables)

» steady states are where nuliclines cross
® Mutual repression can lead to bistability - but so can positive autoregulation.
® Other simple motifs can be analysed in considerable detail.

® No analogous approach to phase-planes for systems with more than two variables -
we rely on more advanced maths (not here!), or computer simulation.

® Network topology may be more important than parameter values.

® Similar modelling/analysis applies to other areas of biology and medicine.
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