GSTDMB 2012: DYNAMICAL MODELLING FOR BIOLOGY AND MEDICINE

Lecture 3 Multi-variable differential equation models

Markus Owen

1

Recap...

- We have introduced simple ordinary differential equation (ODE) models for single state variables.
- Steady states and their stability are crucial determinant of system dynamics.
- Changes in number or stability of steady states are called bifurcations.
- For 1st order **autonomous** ODEs, the **phase-line diagram** can tell us most of the qualitative information we'd like to know about the system dynamics:
 - if you can sketch the graph, you can sketch the dynamics...
 - steady states, stability AND qualitative solution behaviour (fast, slow, increasing, decreasing, etc), bifurcations.
 - solutions cannot oscillate
- For 1st order non-autonomous ODEs (e.g. circadian models with time dependent parameters) solutions can oscillate (driven by e.g. day-night cycle)
- We used CellDesigner to build and simulate single variable models
- Next, models with more than one state variable: more complex dynamics possible, analysis more difficult, often resort to computer simulation

2

Signalling networks

- Central dogma of molecular biology:
 - DNA transcribed to RNA (regulated by transcription factors),
 - RNA is translated into Protein.
- Proteins interact, can regulate translation, RNA stability, and transcription.
- RNA can also modulate transcription.
- Signalling networks: interactions between these elements, typically complex and extensive.
- Fundamental approach: decompose into modules that are sufficiently separate from other pathways to be considered on their own.
- Mathematical models: prediction of network behaviour with given topology and interactions.
- Ideas don't just apply to "gene networks", but to many kinds of network: Physiological models, metabolic networks, ecological networks, epidemiology...

The law of Mass Action (2)

- Rate of reaction proportional to the product of the concentrations of the reactants.
- The rate of change of a species depends on the rate of reaction and the net change in the number of molecules of that species.
- Another example, the "Brusselator":

$$A \xrightarrow{k_1} X$$
, $B + X \xrightarrow{k_2} Y + D$, $A \xrightarrow{k_3} X$, $A \xrightarrow{k_4} X \xrightarrow{k_4} E$

- Assume the concentrations of substrates A and B are constant. E is a product. We are interested in the dynamics of X and Y.
- x = [X], y = [Y], the concentrations of X and Y.
- 3 has rate $k_3 x^2 y$ which produces one molecule of X and consumes one of Y.

$$\frac{dx}{dt} = k_1 A - (k_2 B + k_4) x + k_3 x^2 y,
\frac{dy}{dt} = k_2 B x - k_3 x^2 y.$$

• This system is a famous example which can have oscillatory solutions (see later).

4

Transcriptional regulation

Į

Multiple TFs?

- What about multiple transcription factors? Some activating and some repressing?
- E.g. Lac-operon:

Catabolite activator protein (CAP), [C], activates (promotes binding of RNAp). Lac-repressor, [R], blocks the RNAp binding site. Transcription only without repressor bound.

- Catalogue all the relevant states and the contribution of each to transcription rate.
 Transcription only when RNA-polymerase (RNAp) binds to the promoter.
- Write down ODEs and simplify using Michaelis-Menten approach.

$$\frac{dP}{dt} = \frac{V_{max}(1+k_1[C])}{1+k_1[C]+k_2[R]+k_3[R][C]}$$

• or use the Shea-Ackers approach...

Shea-Ackers (1)

- Method originally developed for the lysis/lysogeny switch in Lambda phage
- Two time scales:
 - Slow:Transcription/Translation/Degradation
 - Fast: Binding/unbinding of TFs to gene thermal equilibrium
- Possible cases:TF, TF+RNAp, RNAp probability associated with each
- Enumerate all cases, compute probability of bound RNAp
- Transcription rate is proportional to promoter occupancy

Shea-Ackers (2)

- Example: two transcription factors, A and B
- Enumerate all possibilities binding/unbinding of A,B and RNAP
- The "partition function" Z contain $2^3 = 8$ terms

$$Z = \sum_{ijk} [A]^{i} [B]^{j} [RNAp]^{k} \delta_{ijk} = Z_{on} + Z_{off}$$

RNAp bound RNAp unbound

- $i,j,k = \theta$ (unbound) or 1 (bound)
- δ_{ijk} related to binding energy, $\delta_{000} = I$

Transcription rate proportional to: $\frac{Z_{on}}{Z_{on} + Z_{off}}$

Shea-Ackers: simple example

- The *trp* operon of E. coli is regulated by the TrpR repressor protein A.
- Tryptophan binds the TrpR repressor enabling TrpR to bind the trp operator.
- This prevents transcription: the trp operator overlaps the RNAp binding site. A and R cannot be simultaneously bound:

[A]	[RNA _P]	Rate
0	0	I
_	0	$\delta_{10}A$
0	_	$\delta_{01}RNAp$
ı	ı	_

$$Z = [A]^{0} [RNAp]^{0} \delta_{00} + [A]^{1} [RNAp]^{0} \delta_{10} + [A]^{0} [RNAp]^{1} \delta_{01}$$

• Only the last term corresponds

Only the last term corresponds to a transcriptionally active state, so
$$T \propto \frac{\delta_{01}[RNAp]}{1+\delta_{10}[A]+\delta_{01}[RNAp]}$$

ullet For constant RNAp this is like a decreasing Hill function of order 1.

Michaelis-Menten approach:
$$\frac{dP}{dt} = \frac{V_{max}(1+k_1[C])}{1+k_1[C]+k_2[R]+k_3[R][C]}$$

or use the Shea-Ackers approach... assuming [RNAp] is constant yields the same form as above.

[C]	[R]	[RNA _p]	Rate
0	0	0	Ι
I	0	0	$\delta_{100}[C]$
0	I	0	$\delta_{010}[R]$
0	0	- 1	$\delta_{001}[RNAp]$
I	I	0	$\delta_{II0}[C][R]$
I	0	I	$\delta_{101}[C][RNAp]$
0	I	I	-
I	I	I	=

10

11

Synthetic networks in E. coli

- **Key question:** How do we know that the simple mathematical representations we use are appropriate?
- One answer: Test their validity by constructing small networks in cells.
- Measurements on network state can then be compared directly to the behaviour predicted by simple mathematical models.
- Introduce a small number of genes controlled by promoters/repressors.
- Choose regulatory strengths based on a mathematical model of the network.
- A fluorescent reporter gives a read-out of a component of the network.
- The first examples of synthetic networks in *E. coli* were reported in 2000:
 - Toggle switch (Gardner, Cantor & Collins)
 - Oscillator, a.k.a. "Repressilator" (Elowitz & Leibler)

GSTDMB Dynamical Modelling for Biology and Medicine

Markus Owen - July 2012

Toggle switch: two-gene repressor network

Rate of change of
$$u$$

production repressed by *v* - degradation

Rate of change of v =

production repressed by *u* - degradation

$$\frac{du}{dt} = \frac{\alpha_1}{1 + u^{\beta}} - u,$$

$$\frac{du}{dt} = \frac{\alpha_1}{1 + v^{\beta}} - u, \qquad \frac{dv}{dt} = \frac{\alpha_2}{1 + u^{\gamma}} - v$$

- Can behave as a bistable switch, depending on parameters.
- Phase-plane analysis very useful
- Nullclines are curves on which one variable is not changing
 - *u*-nullcline: du/dt = 0, here $u = \frac{\alpha_1}{1 + v^{\beta}}$
 - *v*-nullcline: dv/dt = 0, here $v = \frac{\alpha_2}{1 + u^{\gamma}}$
 - Steady states where nullclines cross
 - Stability requires more maths linear algebra, eigenvalues, etc ...

GSTDMB Dynamical Modelling for Biology and Medicine

Markus Owen - July 2012

14

Two-gene repressor network: β , $\gamma > 1$ *u*-nullcline: du/dt = 0, arrows vertical (only v is changing) two stable steady states: bistability *v*-nullcline: dv/dt = 0, arrows horizontal (only u is changing) unstable steady state GSTDMB Dynamical Modelling for Biology and Medicine Markus Owen - July 2012

15

16

17

Transcriptional regulation revisited

- Protein synthesis requires transcription and translation.
- Phase plane analysis quite straightforward.

Transcriptional regulation revisited

$$\frac{dx}{dt} = P(y) - \delta x$$

• x-Nullcline is: $x = P(y)/\delta$ and y-nullcline is $x = \beta y/\alpha$

$$\frac{dy}{dt} = \alpha x - \beta y$$

• Easier to think of x as a function of y, otherwise we have $y = P^{-1}(\delta x)$ where P^{-1} is the inverse function...

19

Transcriptional regulation revisited

$$\frac{dx}{dt} = P(y) - \delta x$$

• x-Nullcline is: $x = P(y)/\delta$ and y-nullcline is $x = \beta y/\alpha$

$$\frac{dy}{dt} = \alpha x - \beta y$$

• Easier to think of y as a function of y, otherwise we have $y=P^{-1}(\delta x)$ where P^{-1} is the inverse function...

20

An engineered negative feedback oscillator

The repressilator:

• Transfect *E. coli* with a plasmid containing three repressors:

 Also transfect with a reporter plasmid (visualise TetR expression)

- Represent the system using six variables: three mRNAs and three proteins.
- · Linear degradation.
- "Hill function" transcriptional repression.
- · Basal transcription.
- · Linear translation.

 $\frac{dm_i}{dt} = \alpha_0 + \frac{\alpha}{1 + p_i^n} - m_i \quad i = lacI, tetR, c$

$$\frac{dp_i}{dt} = \beta(m_i - p_i)$$
 $j = cI, lacI, tetR$

Elowitz, M.B. & Leibler, S. Nature 403, 335 (2000)

GSTDMB Dynamical Modelling for Biology and Medicine

Markus Owen - July 2012

An engineered negative feedback oscillator

$$\frac{dm_i}{dt} = \alpha_0 + \frac{\alpha}{1 + p_i^n} - m_i, \quad \frac{dp_i}{dt} = \beta(m_i - p_i)$$

- Use the mathematical model to explore the dynamics as a function of the parameters.
- Engineer the promoters and molecular degradation rates appropriately for oscillations.
- Uses "LINEAR STABILITY ANALYSIS"

A: n = 2.1, $\alpha_0 = 0$. B: n = 2, $\alpha_0 = 0$. C: n = 2, $\alpha_0/\alpha = 0.001$.

Track bacteria with time lapse over several division cycles (marked with bars in c).

GSTDMB Dynamical Modelling for Biology and Medicine

Markus Owen - July 2012

22

Gene network modelling

- Variables: mRNAs and proteins.
- ODE models: mass action, sigmoidal transcriptional activation and repression, linear decay and translation.

$$\frac{dx}{dt}$$
 = synthesis – decay \pm transformation \pm transport

- Parameters:
 - Thresholds for the sigmoidal functions;
 - effective co-operativities, can be high for indirect pathways;
 - half-lives;
 - relative contributions of multiple transcriptional regulators;
 - transfer rates, e.g. cytosol to cell surface;
 - transformation rates, e.g. cleavage, phosphorylation, binding.
- intracellular species: single equation per cell
- cell-surface: multiple equations per cell (e.g. six if we assume hexagonal cells).

23

Epidemiology

Simplest model: SIR model.

- Closed population. Individuals do not enter, and leave only by death due to disease.
- Population in 3 compartments: Susceptible, Infective, or Removed (cured and now immune, or dead).
- No spatial effects (uniform mixing), and no heterogeneity in activity (important in, e.g., STDs such as AIDS).
- Negligible incubation time.
- Susceptibles move into Infective class at rate proportional to number of contacts between Susceptibles and Infectives (like law of mass action).
- Infectives removed at some rate into Removed class (which decouples).
- An EPIDEMIC if I(t)>I(0) for some t>0 (i.e. if the number of infectives goes up)

$$\frac{dS}{dt} = -\beta SI$$

• Constant total population

$$\frac{dI}{dt} = \beta SI - \gamma I$$

$$S + I + R = N$$
$$S + I \le N$$

$$\frac{dR}{dt} = \gamma$$

R ,

Epidemiology $\frac{dS}{dt} = -\beta SI, \quad \frac{dI}{dt} = \beta SI - \gamma I$

S-nullcline: dS/dt = 0.

$$S = 0$$
 and $I = 0$.

Arrows vertical (only I is changing)

I-nullcline: dI/dt = 0.

I=0 or $S=\gamma/eta$, but S<=N, so only relevant if $\gamma/\beta < N$.

Arrows horizontal (only S is changing)

Brusselator model

• This system is a famous example which can have oscillatory solutions.

$$\frac{dx}{dt} = k_1 A - (k_2 B + k_4) x + k_3 x^2 y,
\frac{dy}{dt} = k_2 B x - k_3 x^2 y.$$

Nullclines

$$\frac{dx}{dt} = 0: \quad y = \frac{(k_2B + k_4)x - k_1A}{k_3x^2}$$

$$\frac{dy}{dt} = 0: \quad y = \frac{k_2 B}{k_3 x} \quad \text{or} \quad x = 0$$

26

Summary

- Gene transcription, mRNA translation, protein interactions, decay, etc, can be described using differential equations.
 - There are different approaches to combining multiple transcription factors.
- Mathematical analysis of relatively simple models (with two state variables) can be done using phase-plane methods.
 - **phase-plane** represents state of a two-variable system by points on the plane.
 - each point has associated rates of change for each variable, which define a direction in the phase-plane (often represented by an arrow).
 - sketch the nullclines curves where one variable is not changing (so there are two nullclines if there are two variables)
 - steady states are where nullclines cross
- Mutual repression can lead to bistability but so can positive autoregulation.
- Other simple motifs can be analysed in considerable detail.
- No analogous approach to phase-planes for systems with more than two variables we rely on more advanced maths (not here!), or computer simulation.
- Network topology may be more important than parameter values.
- Similar modelling/analysis applies to other areas of biology and medicine.