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Lecture 4
Parameter estimation 
and sensitivity analysis

Systems approach: basic questions

Ø Given experimental data, and a mathematical model, what 
can we infer about the nature of the underlying mechanisms?

Ø More specifically: can we use the data to determine plausible 
values for the model parameters? Inference.

Ø If we can infer a ‘reasonable’ set of parameters, how do we 
know whether or not we can trust them? How sensitive is the 
behaviour of the model to changes in the parameter values? 
Parameter sensitivity.

how do we estimate parameters given some experimental data (values of 
some of the variables xi at times tj)?
Seek parameters that minimise the sum of the squared difference between 
available data and corresponding model variables (the cost function): 

For models with a small number of parameters, manual tuning can work 
well. Otherwise, parameter estimation is a major research area. 
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If we have an ODE model
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Parameter estimation
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Problem: find global minimum of the cost function.
Need to:
• search space efficiently
• converge to a minimum
• avoid getting stuck in local minima

Searching parameter space

Simulated Annealing

1. Compute E = Eold using parameters θi .

2. Change one of the values in θi (make a “move”).

3. Compute E = Enew using the newly generated set of θi .

4. If Enew < Eold , keep the new values of θi (accept the move).

5. If Enew > Eold , keep the new values of θi with Boltzmann 
probability exp(-ΔE/T); otherwise restore the old values in 
θi (reject the move). 

6. Repeat 1-5, making moves by changing each element of θi 
in turn, allowing T to decrease from its initial value to zero. 
High T allows large movements in parameter space. 

Metropolis et al. (1953). J Chem Phys 21: 1087.
Kirkpatrick et al. (1983). Science 220: 671.

In general, need to combine:
1. Global search — avoid local minima; slow convergence
2. Local search — refine minima; fast convergence.

Simulated annealing does this by changing T. Gives good 
solutions, but is very slow.
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Evolutionary Algorithm Optimisation

An alternative optimisation strategy is to use an 
evolutionary algorithm: 

• Treat a parameter set as the “genome” of an individual.
• Each individual has a “fitness” determined by a 

combination of the cost function and a penalty (to 
account for the ‘feasibility’ of the parameters.

• At each generation, rank individuals on fitness and select 
the fittest to seed the next generation (selection).

• ‘Mutation’ and ‘recombination’ (parameter changes) allow 
parameter space to be searched.

Fomekong-Nanfack et al. (2007). Bioinformatics 23, 3356–3363.

Local Optimisation

1. Optimise locally to speed up convergence.
2. One option is to move using steepest descent of the cost 

function, but requires evaluation of the derivative. No 
analytical expression and costly to approximate.

3. Use downhill simplex (Nelder-Mead). Evaluate the cost 
function at n+1 points (for an n-dimensional parameter 
space). Treat each point as a vertex of a simplex. Move 
the worst point to search for local minima (with 
progressively smaller moves).

4. Improves goodness of fit and speed of convergence.

Logistic growth?

• Consider experimental data on the growth of yeast. 

• Dynamics look a bit like logistic growth ...
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d t

= r x
�
1� x

K

⇥

• But logistic growth is too slow at first, and too fast later. 
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Logistic eyeball

Logistic model (function)

Logistic model (ODE)
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Generalised Logistic growth?

• Generalised logistic model gives a better fit, but the 
parameters are poorly constrained...
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Generalised Logistic model (function)

Generalised Logistic model (ODE)

• error is small across a wide range of parameter space...

Generalised Logistic growth?
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Squared error for yeast data, fixed x0 and K
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A harder problem

• mRNA expression levels 
following growth factor 
treatment of cultured cells

• five replicates (A–E) at 13 
time points
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A harder problem

• Challenge: Infer values of a and b for which the following model (a Bliss-Painter-
Marr negative feedback model) best accounts for the data

• x1 represents the mRNA in question, x2 and x3 are proteins (unmeasured in the 
experiment)

• Know from other data that k = 1 and 100 ≤ a ≤ 300 and 0.05 ≤ b ≤ 0.3 

• Method: Solve the equations for different values of a and b and evaluate the 
squared error cost function specified earlier

• Use a search algorithm to search the allowed parameter values to identify the 
optimal values (lowest cost function value)

Fitness Landscape for BPM Model

a

b
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cost = 0.2898
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If we have a solution of the ODE model

for a given set of parameters.

Question: How sensitive is this solution to changes in the parameters?
Often most appropriate to think in terms of solution “features” 
(corresponding to biological function).  

Given a feature φ, the sensitivity gain is defined as:

(relative change in feature)/(relative change in parameter value)

€ 

dxi
dt

t( ) = fi x i (t){ },pi( ); xi 0( ) = xi0, i =1,2,...,n

Parameter sensitivity
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Sp
φ =

δφ φ
δp p

IκBα

IκBβ

IκBε

IκBNF-κB

Signal (e.g. TNF)

cytoplasm

The NF-κB – IκB oscillatory feedback loop

IKK

nucleus

IκB degradation

• Central mediator of inflammatory 
response.

• NF-κB is a transcription factor.

• Normally held in the cytoplasm in 
a complex with IκB proteins.

• Inflammatory signals activate 
IKK, which induces the 
degradation of the IκB proteins 
— releasing NF-κB, which enters 
the nucleus and regulates 
transcription.

• Negative feedback via IκBα 
results in oscillations. 

The NF-κB – IκB oscillatory feedback loop

Hoffmann et al., Science 298, 1241–1245 (2002).
Nelson et al., Science 306, 704–708 (2004).

Experimental data (nuclear NF-κB) Summary features:

• Peak timings Ti (oscillatory period Pi)

• Peak amplitudes (Ai)
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NF-κB Model Network Diagram

Parameter Sensitivity (T3)
• Construct ODE model representing the interaction network (26 variables, 

64 parameters)

• Find parameters that reproduce observed oscillations

• Assess parameter sensitivity of features: 

€ 

Sp
φ =

δφ φ
δp p

10% change 100% change

Parameter Sensitivity (A3)
• Construct ODE model representing the interaction network (26 variables, 

64 parameters)

• Find parameters that reproduce observed oscillations

• Assess parameter sensitivity of features: 

€ 

Sp
φ =

δφ φ
δp p

10% change 100% change
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Parameter Sensitivity

• Only 9 out of 64 parameters have a significant impact when altered by 
10% ( |S| > 0.2). The same parameters were significant for other features.

• The most significant parameters are different for larger parameter 
changes (100%), due to model nonlinearity.

•  All 9 parameters refer to reactions involving only free IKK and IκBα  — 
suggesting that model reduction might be possible.

10% change 100% change

Segmental gene expression in the 
Drosophila embryo: pair-rule stripes

The segment polarity network
• A spatially distributed network, involving signalling between neighbouring 

cells. 

• Ovals = mRNAs, rectangles = proteins, hexagons = protein complexes.
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Segment polarity gene expression
• Characteristic expression pattern has a 4-cell periodicity (a).

• ‘Crisp’ (b) and ‘Degraded’ (c) initial conditions.

– dashed interactions + dashed interactions

• The model has 12 variables per cell and 48 parameters.  
Parameter values are unknown and no quantitative data are 
available for inference. 

• Perform random searches of parameter space: Given the 
(experimentally-established) network topology and initial 
conditions, for which parameter sets does a suitable stable 
pattern emerge?

• 1,192 ‘solutions’ out of 240,000 sets (1/200).
• On average, a random choice of parameter has a 90% 

chance of being compatible with the desired behaviour 
(0.948 ~ 1/200).

ODE Model: parameter search

“sharp” initial data “degraded” initial data

Maps of appropriate parameters
• Red = highest score; blue = barely meet expression criteria.

• Each ‘spoke’ is the log-scale axis for that parameter.
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Local parameter sensitivity

Ba
d

Sensitivity around 5 parameter sets

Two working 
ranges
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vary at most 
twofold

Dashed line: 
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letters to nature
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350) and en and wg expressed in overlapping three-cell-wide bands
(!1 in 300). Although this is nowhere near a complete catalogue of
the model’s pattern-formation repertoire, these alternate regimes
are among the ‘near neighbours’ of Fig. 1e in the sense that tuning
parameters across the abrupt edges of canyons in Fig. 3 often yields
these patterns.

We evaluated the model’s sensitivity to initial conditions and
discovered that the same stable pattern arises for a variety of input
stimuli. The model has no ‘wavelength’; that is, parameter values for
which the model holds a four-cell-period repeat (Fig. 1e) enable it
also to hold an equivalent three-, five- or arbitrary-period repeat
pattern when triggered with a pre-pattern with corresponding
spacing. We find that many solutions require only some initial
bias towards expressing wg in one column, and en immediately
posterior. Even for a very vaguely specified pre-pattern (Fig. 1c) we
find solutions frequently (1 in 5,000)—still extremely high com-
pared to the benchmark of 1 in 1048 cited above. Solutions for this
case remain distributed throughout the parameter space (Fig. 2b).
The model can achieve the target pattern with high frequency from
initial conditions that do not include an initial pulse of wg or en
(Table 1). Clearly, the model places few absolute demands on initial
conditions, and it seems likely that the evolutionary process could
replace inputs relatively easily.

With our model, we reconstituted in silico an aspect of biological
behaviour from a subset of the known facts, much as a biochemist
might reconstitute translation in vitro. Our reconstitution is far
from complete. There are many additional segment polarity genes
and many inputs to them. We simulated neither cell proliferation
nor rearrangement, both of which affect the real network; additional

components would help to integrate patterning with morphogen-
esis. Many segment polarity genes function as intermediate steps
between components of our model or provide outputs to down-
stream targets. Despite its simplicity, our model illustrates a
potentially valuable benefit of the general approach. Biologists’
maps of gene networks are rapidly outgrowing our ability to
comprehend genetic mechanisms using human intuition alone, as
shown by our initial failure. Our results reveal holes in the current
understanding of segmentation: what represses en anterior to the
wg-expressing stripe, and what makes Hh signalling asymmetric?
We incorporated the two simplest hypotheses here, but there are
hints in the literature of other candidate mechanisms. In Drosophila
the hole-filling utility of models is limited because developmental
geneticists will probably fill in the holes fast enough without help
from models. For other organisms (like humans) models may
complement more limited experimental opportunities.

More importantly, computer simulations allow biologists to
explore emergent systems-level properties of gene networks. Boo-
lean networks and random directed graphs have been used to
capture the ‘statistical mechanics’ of genetic systems18. Such idea-
lizations allowed the exploration of enormously complex systems
and the discovery of generic properties of ensembles of randomly
wired networks. Many have used similar methods to capture specific
biologically realistic behaviours, including developmental pattern
formation in Drosophila19. Meanwhile, the use of continuous non-
linear dynamical systems has been advocated to express cell fate
determination mechanisms and the maintenance of cell states20.
Until recently this approach, which we take here, faced two obsta-
cles: a paucity of facts about specific molecular mechanisms and
limited computational power for solving nonlinear models. As these
constraints evaporate, realistic dynamical models, based either on
mass action or stochastic kinetics, will increase in usefulness. Slack
foresaw that such tools would be most useful to the extent that
complex genetic circuits decompose into quasi-autonomous sub-
systems, that is, modules20. Our work represents such a case. In
another notable example, two models have been used to express the
adaptive response of the bacterial chemotactic receptor, both
concurring that the mechanism is highly robust21,22.

The most striking systems-level property we report is the robust-
ness to parameter variation. This is not an artefact of the wiring of
our model. In work to be described elsewhere, we have analysed
models that include additional links and components. Our conclu-
sions hold for all biologically grounded variants as long as they
retain the core topology shown in Box 1. Why should the segment
polarity mechanism be so robust? Varying parameter values is proxy
for mutations of small effect, and variation in initial conditions
mimics one aspect of developmental ‘noise’. We are exploring how
much developmental noise embryos experience, which may explain
why gene networks need buffering. Alternatively, in the evolution of
segmentation there may have been pressure to neutralize mutations
of small effect. We originally expected the core topology to be frail
and easily perturbed, and expected to achieve robustness only by
adding additional complexity; we expected the reconstitution
approach to tell us which architectural features confer robustness.
Confounding that expectation, the simplest model that works at all
emerged complete with unexpected robustness to variation in
parameters and initial conditions. !

Methods
Our model is a system of nonlinear ordinary differential equations, each characterizing the
time-dependent change in concentration of one of the components of Box 1a in an
indexed cell or cell face (see Supplementary Information for further details). All equations
consist of either standard kinetic formulas or pseudo-steady-state approximations. Each
generically includes three classes of additive term: a synthesis term, a first-order decay
term, and zero or more terms representing transformation processes (heterodimerization
or cleavage, for example) or flux between compartments (exocytosis or cell-to-cell traffic).
We discretized diffusion according to cell faces: membrane-bound and extracellular
molecules equilibrate at parameterized rates between adjacent faces of a cell, and

Figure 3 Sensitivity of individual solutions to varying individual parameters. Each column
represents one solution, and rows are transects in which the named parameter varies
while others are held fixed. The vertical axis is the goodness-of-fit score; lower scores are
better matches. The dashed line indicates the boundary below which we accept the
match. The horizontal axis is the parameter’s log-scale range, three orders of magnitude
for all. Columns one and two are typical. The third is an unusually brittle solution: !CNen

and !ENcid can vary at most twofold. Column four shows the opposite extreme, and column
five is a case with two working ranges for !CIDptc and !CNptc.

© 2000 Macmillan Magazines Ltd
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• The desired steady state expression pattern is observed very 
frequently in the random parameter search.

• Most parameters can range over several orders of magnitude.
• Local sensitivity analysis: most parameters can vary at least 10-

fold from base values.
• The desired behaviour is observed frequently using ‘degraded’ 

initial stimuli.
• The behaviour is stable if additional complexity is added: the core 

topology is robust. 
• This behaviour is resistant to variation in the kinetic parameters.
• The network is a minimal module: the desired behaviour cannot 

be recovered in a sub-network.
• The network exhibits other behaviours robustly.

Robustness and modularity of the network

• Parameter estimation is a challenging research area.
• There may not be a unique best fit.
• The more data the better (as long as it is good quality). 

(Modellers will ALWAYS ask for more data!!!) 
• Parameter sensitivity characterises how solution features 

vary with parameters. 
• Sensitivity is intimately linked to estimation - if a feature is 

sensitive to parameter variation, it is more likely to be 
constrained by available data. 

• Next practical: COPASI  for parameter estimation & 
sensitivity analysis (but you can do this in COPASI...)

Discussion
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