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An elliptic curve E over a field K is

a projective curve of genus 1 with a specified base-point
O ∈ E(K).
an non-singular equation of the form

E : y2 = x3 + A x + B

for some A and B in K

if char(K) > 3.

a projective curve with an algebraic group structure.

Our main question

How can we determine the set of solutions E(K) with
coordinates in K ?
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Question
Are there infinitely many rational solutions to E over Q ?

Example

:

E2 : y2 = x3 + x + 2

has only three solutions (−1, 0), (1,−2), and (1, 2).
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Question
Are there infinitely many rational solutions to E over Q ?

Example

:

E1 : y2 = x3 + x + 1

has infinitely many solutions. (0,±1), (1
4 ,±

9
4), (72,±611), . . .

The following x-coordinates are

− 287
1296 ,

43992
82369 ,

26862913
1493284 ,

139455877527
1824793048 , −3596697936

8760772801 ,
7549090222465
8662944250944 ,

51865013741670864
6504992707996225 , −173161424238594532415

310515636774481238884 , . . .
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Addition on elliptic curves

E : y2 = x3 + A x + B

Any two points P and Q on E

are linked by a line

intersecting the curve in a third
point R = (x, y).

Set P + Q = (x,−y).
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Elliptic curves over finite fields

Hasse-Weil bound
An elliptic curve E over Fp satisfies

Np = #E(Fp) = p + 1− ap

with |ap| < 2
√

p.

Curve sepc160k1

E : y2 = x3 + 7 with
p = 1461501637330902918203684832716283019651637554291

Np = 1461501637330902918203686915170869725397159163571
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Elliptic curves over number fields

Mordell-Weil theorem
An elliptic curve E over a number field K then E(K) is a finitely
generated abelian group.

The finite torsion group is easy to determine.
The rank r of E(K) is difficult, but often small.
E2 has rank 0 and E2(Q) = Z/4Z (1, 2), while
E1 has rank 1 and E1(Q) = Z (0, 1).
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Let E be an elliptic curve over Q with A,B ∈ Z.

Let Np be the number of solutions of E modulo p.
Consider the function

f (X) = log

 ∏
primes p6X

Np

p


Conjecture

f (X) stays bounded if and only if there are only finitely many
solutions in Q.
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Conjecture

f (X) grows like r · log(log(X)), where r is the rank of E(Q).
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Conjecture

f (X) grows like r · log(log(X)), where r is the rank of E(Q).

E1 : y2 = x3 + x + 1.
E2 : y2 = x3 + x + 2.
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The L-series

Define

L(E, s) =
∏

p good

1
1− ap · p−s + p · p−2s =

∞∑
n=1

an

ns

for Re(s) > 3
2 .

Note

“ L(E, 1) =
∏

p

p
Np

= exp
(
− f (∞)

)
”.

Weak Birch and Swinnerton-Dyer conjecture 1000000$

The function L(E, s) has a zero of order r, the rank of E(Q), at
s = 1.
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Results

Taylor-Wiles et al.

If E/Q, then L(E, s) has an analytic continuation to C.
In fact, L(E, s) = L(f , s) for a modular form f .

Coates-Wiles, Gross-Zagier-Kolyvagin

If ran = ords=1 L(E, s) 6 1, then ran = r.

If ran = 1, a Heegner point can be constructed from f .
If ran > 1, ???

Christian Wuthrich



Elliptic curves Weak BSD Full BSD Generalisations

Results

Taylor-Wiles et al.

If E/Q, then L(E, s) has an analytic continuation to C.
In fact, L(E, s) = L(f , s) for a modular form f .

Coates-Wiles, Gross-Zagier-Kolyvagin

If ran = ords=1 L(E, s) 6 1, then ran = r.

If ran = 1, a Heegner point can be constructed from f .
If ran > 1, ???

Christian Wuthrich



Elliptic curves Weak BSD Full BSD Generalisations

Results

Taylor-Wiles et al.

If E/Q, then L(E, s) has an analytic continuation to C.
In fact, L(E, s) = L(f , s) for a modular form f .

Coates-Wiles, Gross-Zagier-Kolyvagin

If ran = ords=1 L(E, s) 6 1, then ran = r.

If ran = 1, a Heegner point can be constructed from f .

If ran > 1, ???

Christian Wuthrich



Elliptic curves Weak BSD Full BSD Generalisations

Results

Taylor-Wiles et al.

If E/Q, then L(E, s) has an analytic continuation to C.
In fact, L(E, s) = L(f , s) for a modular form f .

Coates-Wiles, Gross-Zagier-Kolyvagin

If ran = ords=1 L(E, s) 6 1, then ran = r.

If ran = 1, a Heegner point can be constructed from f .
If ran > 1, ???

Christian Wuthrich



Elliptic curves Weak BSD Full BSD Generalisations

Let E be an elliptic curve over a number field K. Define

L(E/K, s) =
∏

v

1
1− avqs

v + q1−2s
v

,

L(E/K, s) =
∏

v

det
(

1− Frobv q−s
v

∣∣∣V`EIv
)−1

,

which converges for Re(s) > 3
2 .

Weak Birch and Swinnerton-Dyer conjecture

ords=1 L(E/K, s) = rank E(K).

Tate
If K is the function field of a curve over a finite field, e.g.
K = Fp(T), then ords=1 L(E/K, s) > rank E(K).

Nekovář, T&V Dokchitser
If . . . , then ords=1 L(E/K, s) ≡ rank E(K) (mod 2)
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The conjecture also predicts the leading term

L(E, s) = L∗(E) · (s− 1)r + · · ·

in analogy to the class number formula.

Birch and Swinnerton-Dyer conjecture

L∗(E) =

∏
p cp · Ω · Reg(E/Q) ·#X(E/Q)(

#E(Q)tors
)2

Christian Wuthrich
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Birch and Swinnerton-Dyer conjecture

L∗(E)

Ω · Reg(E/Q)
=

∏
p cp ·#X(E/Q)(

#E(Q)tors
)2

Ω ∈ R is a period.
Reg(E/Q) ∈ R is the regulator.
cp ∈ Z is a Tamagawa number.
X(E/Q) is the mysterious Tate-Shafarevich group.
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The Tate-Shafarevich group

X(E/K) = ker
(

H1(K,E)→
∏

v

H1(Kv,E)

)

X(E/K) is an abelian torsion group.

It is believed to be finite.
If it is then the parity ran ≡ r (mod 2) holds.
If it is for a function field K then BSD is true for K.
It is known to be finite for Q if and only if ran 6 1.
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Birch and Swinnerton-Dyer conjecture

L∗(E)

Ω · Reg(E/Q)
=

∏
p cp ·#X(E/Q)(

#E(Q)tors
)2

If L(E, 1) 6= 0, then L(E, 1)/Ω ∈ Q. (Winding number)
It is invariant under morphisms E → E′ over Q.
If ran 6 1, the group X(E/Q) is finite and the conjecture
can be proven sage: E.prove bsd().
Lots of numerical evidence for ran > 2.
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Christian Wuthrich
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L∗(E)

Ω · Reg(E/Q)
=

∏
p cp ·#X(E/Q)(

#E(Q)tors
)2

E2 : y2 = x3 + x + 2, ran = r = 0

L(E, 1) ∼= 0.874549

Ω ∼= 3.49819

Reg(E/Q) = 1

L(E, 1)/Ω ∼= 0.250000.
In fact L(E, 1)/Ω = 1

4 .

c2 = 4 and cp = 1 ∀p6=2.
#E(Q) = 4

X(E/Q) is trivial.

Christian Wuthrich
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L∗(E)

Ω · Reg(E/Q)
=

∏
p cp ·#X(E/Q)(

#E(Q)tors
)2

E2 : y2 = x3 + x + 2, ran = r = 1

L′(E, 1) ∼= 1.78581

Ω ∼= 3.74994

Reg(E/Q) ∼= 0.476223

LHS ∼= 1.00000.
In fact it is 1.

cp = 1.
E(Q) = Z
X(E/Q) is trivial.
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L∗(E)

Ω · Reg(E/Q)
=

∏
p cp ·#X(E/Q)(

#E(Q)tors
)2

E9 : y2 = x3 + x + 9, ran = r = 2

L∗(E) ∼= 7.16561

Ω ∼= 2.84721

Reg(E/Q) ∼= 2.51672

LHS ∼= 1.00000.

cp = 1.
E(Q) = Z2

X(E/Q) should be
trivial.

Christian Wuthrich
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L∗(E)

Ω · Reg(E/Q)
=

∏
p cp ·#X(E/Q)(

#E(Q)tors
)2

E−47 : y2 = x3 + x − 47, ran = r = 0

L(E, 1) ∼= 5.15400

Ω ∼= 1.28850

Reg(E/Q) = 1

L(E, 1)/Ω = 4.

cp = 1

E(Q) = 0

X(E/Q) = Z/2Z ⊕ Z/2Z.

Christian Wuthrich
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for general motives (Bloch-Kato conjectures)
p-adic versions
equivariant version
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p-adic version

Let E/Q be an elliptic curve and p a good prime such that p - ap.

There is a p-adic L-series Lp(E, s) ∈ Zp for s ∈ Zp such that
Lp(E, 1) = L(E, 1)/Ω ∈ Q.

p-adic Birch and Swinnerton-Dyer conjecture

ords=1 Lp(E, s) = rank(E) and there is a formula for the leading
term.

Kato’s Euler system

We have ords=1 Lp(E, s) > rank(E).

Recent work of Skinner-Urban: If X(E/Q) is finite and
Regp(E/Q) 6= 0, then the p-adic BSD holds.

Christian Wuthrich
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Equivariant version

Let K/Q be a finite Galois extension of group G.

Artin formalisms gives

L(E/K, s) =
∏

ρ∈Irr(G)

L(E, ρ, s)dim(ρ).

Similar E(K)⊗ C =
⊕
ρrρ .

Equivariant Birch and Swinnerton-Dyer conjecture

ords=1 L(E, ρ, s) = rρ.

Often there is a formula for the leading term involving the
Z[G]-structure of X(E/K).

Christian Wuthrich
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