The Birch and Swinnerton-Dyer conjecture

Christian Wuthrich

17 Jan 2012

Christian Wuthrich

Elliptic curves	Weak BSD	Full BSD	Generalisations

 a projective curve of genus 1 with a specified base-point O ∈ E(K).

- a projective curve of genus 1 with a specified base-point O ∈ E(K).
- an non-singular equation of the form

$$E: \qquad y^2 = x^3 + Ax + B$$

for some A and B in K.

- a projective curve of genus 1 with a specified base-point O ∈ E(K).
- an non-singular equation of the form

$$E: \qquad y^2 = x^3 + Ax + B$$

for some A and B in K if char(K) > 3.

- a projective curve of genus 1 with a specified base-point O ∈ E(K).
- an non-singular equation of the form

$$E: \qquad y^2 = x^3 + Ax + B$$

for some A and B in K if char(K) > 3.

• a projective curve with an algebraic group structure.

- a projective curve of genus 1 with a specified base-point O ∈ E(K).
- an non-singular equation of the form

$$E: \qquad y^2 = x^3 + Ax + B$$

for some A and B in K if char(K) > 3.

• a projective curve with an algebraic group structure.

Our main question

How can we determine the set of solutions E(K) with coordinates in K ?

Elliptic curves	Weak BSD	Full BSD	Generalisations
Question			
Are there infi	nitely many rationa	I solutions to E over	r ℚ ?

< 🗗 >

< 🗗 ►

Generalisations

Weak BSD

Elliptic curves

$$E: \quad y^2 = x^3 + Ax + B$$

$$E: \quad y^2 = x^3 + Ax + B$$

 $E: \quad y^2 = x^3 + Ax + B$

Any two points P and Q on E

 $E: \quad y^2 = x^3 + Ax + B$

Any two points P and Q on E

are linked by a line

 $E: \quad y^2 = x^3 + Ax + B$

Any two points P and Q on E

are linked by a line

intersecting the curve in a third point R = (x, y).

 $E: \quad y^2 = x^3 + Ax + B$

Any two points P and Q on E

are linked by a line

intersecting the curve in a third point R = (x, y).

Set
$$P + Q = (x, -y)$$
.

Addition on elliptic curves

 $E: \quad y^2 = x^3 + Ax + B$

Any two points P and Q on E

are linked by a line

intersecting the curve in a third point R = (x, y).

Set
$$P + Q = (x, -y)$$
.

Christian Wuthrich

Elliptic curves over finite fields

Hasse-Weil bound

An elliptic curve *E* over \mathbb{F}_p satisfies

$$N_p = \#E(\mathbb{F}_p) = p + 1 - a_p$$

with $|a_p| < 2\sqrt{p}$.

Elliptic curves over finite fields

Hasse-Weil bound

An elliptic curve *E* over \mathbb{F}_p satisfies

$$N_p = \#E(\mathbb{F}_p) = p + 1 - a_p$$

with $|a_p| < 2\sqrt{p}$.

Curve sepc160k1

 $E: y^2 = x^3 + 7$ with

p = 1461501637330902918203684832716283019651637554291

 $N_p = 1461501637330902918203686915170869725397159163571$

Elliptic curves over number fields

Mordell-Weil theorem

Elliptic curves over number fields

Mordell-Weil theorem

An elliptic curve *E* over a number field *K* then E(K) is a finitely generated abelian group.

• The finite torsion group is easy to determine.

Elliptic curves over number fields

Mordell-Weil theorem

- The finite torsion group is easy to determine.
- The rank r of E(K) is difficult, but often small.

Elliptic curves over number fields

Mordell-Weil theorem

- The finite torsion group is easy to determine.
- The rank r of E(K) is difficult, but often small.
- E_2 has rank 0 and $E_2(\mathbb{Q}) = \mathbb{Z}_{4\mathbb{Z}}(1,2)$, while

Elliptic curves over number fields

Mordell-Weil theorem

- The finite torsion group is easy to determine.
- The rank r of E(K) is difficult, but often small.
- E_2 has rank 0 and $E_2(\mathbb{Q}) = \mathbb{Z}_{4\mathbb{Z}}(1,2)$, while
- E_1 has rank 1 and $E_1(\mathbb{Q}) = \mathbb{Z}(0,1)$.

Bryan Birch and Sir Peter Swinnerton-Dyer

< 🗗 >

Elliptic curves weak	BSD Full BS	D Generalisations

Let *E* be an elliptic curve over \mathbb{Q} with $A, B \in \mathbb{Z}$.

Elliptic curves	Weak BSD	Full BSD	Generalisations
Let E be an elli	ptic curve over (\mathbb{Q} with $A, B \in \mathbb{Z}$.	
Let N_p be the r	umber of solutio	ons of E modulo p .	

Meel DOD

Let *E* be an elliptic curve over \mathbb{Q} with $A, B \in \mathbb{Z}$. Let N_p be the number of solutions of *E* modulo *p*. Consider the function

$$f(X) = \log\left(\prod_{\text{primes } p \leqslant X} \frac{N_p}{p}\right)$$

Let *E* be an elliptic curve over \mathbb{Q} with $A, B \in \mathbb{Z}$. Let N_p be the number of solutions of *E* modulo *p*. Consider the function

$$f(X) = \log\left(\prod_{\text{primes } p \leqslant X} \frac{N_p}{p}\right)$$

Conjecture

f(X) stays bounded if and only if there are only finitely many solutions in \mathbb{Q} .

Elliptic curves	Weak BSD	Full BSD	Generalisations
Conjecture			
f(X) grows li	ke $r \cdot \log(\log(X))$, v	where <i>r</i> is the rank o	f $E(\mathbb{Q})$.

< 🗗 >

The *L*-series

Define

$$L(E,s) = \prod_{p \text{ good}} \frac{1}{1 - a_p \cdot p^{-s} + p \cdot p^{-2s}} = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

for $\text{Re}(s) > \frac{3}{2}$.
The *L*-series

Define

$$L(E,s) = \prod_{p \text{ good}} \frac{1}{1 - a_p \cdot p^{-s} + p \cdot p^{-2s}} = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

for
$$\operatorname{Re}(s) > \frac{3}{2}$$
. Note

"
$$L(E, 1) = \prod_{p} \frac{p}{N_{p}} = \exp(-f(\infty))$$
 ".

The *L*-series

Define

$$L(E, s) = \prod_{p \text{ good}} \frac{1}{1 - a_p \cdot p^{-s} + p \cdot p^{-2s}} = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

for
$$\operatorname{Re}(s) > \frac{3}{2}$$
. Note
" $L(E, 1) = \prod_p \frac{p}{N_p} = \exp(-f(\infty))$ ".

Weak Birch and Swinnerton-Dyer conjecture 1000000\$ The function L(E, s) has a zero of order r, the rank of $E(\mathbb{Q})$, at s = 1.

Christian Wuthrich

Christian Wuthrich

Elliptic curves	Weak BSD	Full BSD	Generalisations
Results			

Taylor-Wiles et al.

If E/\mathbb{Q} , then L(E, s) has an analytic continuation to \mathbb{C} . In fact, L(E, s) = L(f, s) for a modular form f.

Elliptic curves	Weak BSD	Full BSD	Generalisations

< 67 >

Taylor-Wiles et al.

If E/\mathbb{Q} , then L(E, s) has an analytic continuation to \mathbb{C} . In fact, L(E, s) = L(f, s) for a modular form f.

Coates-Wiles, Gross-Zagier-Kolyvagin

If $r_{an} = \operatorname{ord}_{s=1} L(E, s) \leq 1$, then $r_{an} = r$.

Results

Elliptic curves	Weak BSD	Full BSD	Generalisations

Taylor-Wiles et al.

If E/\mathbb{Q} , then L(E, s) has an analytic continuation to \mathbb{C} . In fact, L(E, s) = L(f, s) for a modular form f.

Coates-Wiles, Gross-Zagier-Kolyvagin

If $r_{an} = \operatorname{ord}_{s=1} L(E, s) \leq 1$, then $r_{an} = r$.

If $r_{an} = 1$, a Heegner point can be constructed from *f*.

< 67 >

Results

Elliptic curves	Weak BSD	Full BSD	Generalisations

Taylor-Wiles et al.

If E/\mathbb{Q} , then L(E, s) has an analytic continuation to \mathbb{C} . In fact, L(E, s) = L(f, s) for a modular form f.

Coates-Wiles, Gross-Zagier-Kolyvagin

If $r_{an} = \operatorname{ord}_{s=1} L(E, s) \leq 1$, then $r_{an} = r$.

If $r_{an} = 1$, a Heegner point can be constructed from *f*. If $r_{an} > 1$, ???

Results

Elliptic curves	Weak BSD	Full BSD	Generalisations

$$L(E/K,s) = \prod_{v} \frac{1}{1 - a_{v}q_{v}^{s} + q_{v}^{1-2s}},$$

which converges for $\operatorname{Re}(s) > \frac{3}{2}$.

Elliptic curves	Weak BSD	Full BSD	Generalisations

$$L(E/K,s) = \prod_{\nu} \det\left(1 - \operatorname{Frob}_{\nu} q_{\nu}^{-s} \middle| V_{\ell} E^{I_{\nu}}\right)^{-1},$$

which converges for $\operatorname{Re}(s) > \frac{3}{2}$.

Elliptic curves	Weak BSD	Full BSD	Generalisations

$$L(E/K,s) = \prod_{\nu} \det\left(1 - \operatorname{Frob}_{\nu} q_{\nu}^{-s} \middle| V_{\ell} E^{I_{\nu}}\right)^{-1},$$

which converges for $\operatorname{Re}(s) > \frac{3}{2}$.

Weak Birch and Swinnerton-Dyer conjecture

 $\operatorname{ord}_{s=1} L(E/K, s) = \operatorname{rank} E(K).$

Elliptic curves	Weak BSD	Full BSD	Generalisations

$$L(E/K,s) = \prod_{\nu} \det\left(1 - \operatorname{Frob}_{\nu} q_{\nu}^{-s} \middle| V_{\ell} E^{I_{\nu}}\right)^{-1},$$

which converges for $\operatorname{Re}(s) > \frac{3}{2}$.

Weak Birch and Swinnerton-Dyer conjecture

 $\operatorname{ord}_{s=1} L(E/K, s) = \operatorname{rank} E(K).$

Tate

If *K* is the function field of a curve over a finite field, e.g. $K = \mathbb{F}_p(T)$, then $\operatorname{ord}_{s=1} L(E/K, s) \ge \operatorname{rank} E(K)$.

Elliptic curves	Weak BSD	Full BSD	Generalisations

$$L(E/K,s) = \prod_{\nu} \det\left(1 - \operatorname{Frob}_{\nu} q_{\nu}^{-s} \middle| V_{\ell} E^{I_{\nu}}\right)^{-1},$$

which converges for $\operatorname{Re}(s) > \frac{3}{2}$.

Weak Birch and Swinnerton-Dyer conjecture

 $\operatorname{ord}_{s=1} L(E/K, s) = \operatorname{rank} E(K).$

Tate

If *K* is the function field of a curve over a finite field, e.g. $K = \mathbb{F}_p(T)$, then $\operatorname{ord}_{s=1} L(E/K, s) \ge \operatorname{rank} E(K)$.

Nekovář, T&V Dokchitser

If ..., then $\operatorname{ord}_{s=1} L(E/K, s) \equiv \operatorname{rank} E(K) \pmod{2}$

Elliptic curves	Weak BSD	Full BSD	Generalisations

The conjecture also predicts the leading term

$$L(E,s) = L^*(E) \cdot (s-1)^r + \cdots$$

in analogy to the class number formula.

Elliptic curves	Weak BSD	Full BSD	Generalisations

The conjecture also predicts the leading term

$$L(E,s) = L^*(E) \cdot (s-1)^r + \cdots$$

in analogy to the class number formula.

Birch and Swinnerton-Dyer conjecture

$$L^{*}(E) = \frac{\prod_{p} c_{p} \cdot \Omega \cdot \operatorname{Reg}(E/\mathbb{Q}) \cdot \#\operatorname{III}(E/\mathbb{Q})}{\left(\#E(\mathbb{Q})_{\operatorname{tors}}\right)^{2}}$$

< 67 >

Elliptic curves	Weak BSD	Full BSD	Generalisations

$$\frac{L^*(E)}{\Omega \cdot \operatorname{Reg}(E/\mathbb{Q})} = \frac{\prod_p c_p \cdot \#\operatorname{III}(E/\mathbb{Q})}{\left(\#E(\mathbb{Q})_{\operatorname{tors}}\right)^2}$$

Elliptic curves	Weak BSD	Full BSD	Generalisations

$$\frac{L^*(E)}{\Omega \cdot \operatorname{Reg}(E/\mathbb{Q})} = \frac{\prod_p c_p \cdot \#\operatorname{III}(E/\mathbb{Q})}{\left(\#E(\mathbb{Q})_{\operatorname{tors}}\right)^2}$$

• $\Omega \in \mathbb{R}$ is a period.

Elliptic curves	Weak BSD	Full BSD	Generalisations

$$\frac{L^*(E)}{\Omega \cdot \operatorname{Reg}(E/\mathbb{Q})} = \frac{\prod_p c_p \cdot \# \operatorname{III}(E/\mathbb{Q})}{\left(\# E(\mathbb{Q})_{\operatorname{tors}}\right)^2}$$

- $\Omega \in \mathbb{R}$ is a period.
- $\operatorname{Reg}(E/\mathbb{Q}) \in \mathbb{R}$ is the regulator.

Elliptic curves	Weak BSD	Full BSD	Generalisations

$$\frac{L^*(E)}{\Omega \cdot \operatorname{Reg}(E/\mathbb{Q})} = \frac{\prod_p c_p \cdot \# \operatorname{III}(E/\mathbb{Q})}{\left(\# E(\mathbb{Q})_{\operatorname{tors}}\right)^2}$$

- $\Omega \in \mathbb{R}$ is a period.
- $\operatorname{Reg}(E/\mathbb{Q}) \in \mathbb{R}$ is the regulator.
- $c_p \in \mathbb{Z}$ is a Tamagawa number.

Elliptic curves	Weak BSD	Full BSD	Generalisations

$$\frac{L^*(E)}{\Omega \cdot \operatorname{Reg}(E/\mathbb{Q})} = \frac{\prod_p c_p \cdot \# \operatorname{III}(E/\mathbb{Q})}{\left(\# E(\mathbb{Q})_{\operatorname{tors}}\right)^2}$$

- $\Omega \in \mathbb{R}$ is a period.
- $\operatorname{Reg}(E/\mathbb{Q}) \in \mathbb{R}$ is the regulator.
- $c_p \in \mathbb{Z}$ is a Tamagawa number.
- $III(E/\mathbb{Q})$ is the mysterious Tate-Shafarevich group.

$$\mathrm{III}(E/K) = \ker\left(H^1(K,E) \to \prod_{\nu} H^1(K_{\nu},E)\right)$$

• III(E/K) is an abelian torsion group.

$$\mathrm{III}(E/K) = \ker\left(H^1(K,E) \to \prod_{\nu} H^1(K_{\nu},E)\right)$$

- III(E/K) is an abelian torsion group.
- It is believed to be finite.

$$\mathrm{III}(E/K) = \ker\left(H^1(K,E) \to \prod_{\nu} H^1(K_{\nu},E)\right)$$

- III(E/K) is an abelian torsion group.
- It is believed to be finite.
- If it is then the parity $r_{an} \equiv r \pmod{2}$ holds.

$$\mathrm{III}(E/K) = \ker\left(H^1(K,E) \to \prod_{\nu} H^1(K_{\nu},E)\right)$$

- III(E/K) is an abelian torsion group.
- It is believed to be finite.
- If it is then the parity $r_{an} \equiv r \pmod{2}$ holds.
- If it is for a function field *K* then BSD is true for *K*.

$$\mathrm{III}(E/K) = \ker\left(H^1(K,E) \to \prod_{\nu} H^1(K_{\nu},E)\right)$$

- III(E/K) is an abelian torsion group.
- It is believed to be finite.
- If it is then the parity $r_{an} \equiv r \pmod{2}$ holds.
- If it is for a function field *K* then BSD is true for *K*.
- It is known to be finite for \mathbb{Q} if and only if $r_{an} \leq 1$.

Elliptic curves	Weak BSD	Full BSD	Generalisations

$$\frac{L^*(E)}{\Omega \cdot \operatorname{Reg}(E/\mathbb{Q})} = \frac{\prod_p c_p \cdot \# \operatorname{III}(E/\mathbb{Q})}{\left(\# E(\mathbb{Q})_{\operatorname{tors}}\right)^2}$$

< 🗗 >

Elliptic curves	Weak BSD	Full BSD	Generalisations

$$\frac{L^*(E)}{\Omega \cdot \operatorname{Reg}(E/\mathbb{Q})} = \frac{\prod_p c_p \cdot \# \operatorname{III}(E/\mathbb{Q})}{\left(\# E(\mathbb{Q})_{\operatorname{tors}}\right)^2}$$

• If $L(E, 1) \neq 0$, then $L(E, 1)/\Omega \in \mathbb{Q}$. (Winding number)

Elliptic curves	Weak BSD	Full BSD	Generalisations

$$\frac{L^*(E)}{\Omega \cdot \operatorname{Reg}(E/\mathbb{Q})} = \frac{\prod_p c_p \cdot \# \operatorname{III}(E/\mathbb{Q})}{\left(\# E(\mathbb{Q})_{\operatorname{tors}}\right)^2}$$

- If $L(E, 1) \neq 0$, then $L(E, 1)/\Omega \in \mathbb{Q}$. (Winding number)
- It is invariant under morphisms $E \to E'$ over \mathbb{Q} .

Elliptic curves	Weak BSD	Full BSD	Generalisations

$$\frac{L^*(E)}{\Omega \cdot \operatorname{Reg}(E/\mathbb{Q})} = \frac{\prod_p c_p \cdot \# \operatorname{III}(E/\mathbb{Q})}{\left(\# E(\mathbb{Q})_{\operatorname{tors}}\right)^2}$$

- If $L(E, 1) \neq 0$, then $L(E, 1)/\Omega \in \mathbb{Q}$. (Winding number)
- It is invariant under morphisms $E \to E'$ over \mathbb{Q} .
- If r_{an} ≤ 1, the group III(E/Q) is finite and the conjecture can be proven sage: E.prove_bsd().

Elliptic curves	Weak BSD	Full BSD	Generalisations

$$\frac{L^*(E)}{\Omega \cdot \operatorname{Reg}(E/\mathbb{Q})} = \frac{\prod_p c_p \cdot \# \operatorname{III}(E/\mathbb{Q})}{\left(\# E(\mathbb{Q})_{\operatorname{tors}}\right)^2}$$

- If $L(E, 1) \neq 0$, then $L(E, 1)/\Omega \in \mathbb{Q}$. (Winding number)
- It is invariant under morphisms $E \to E'$ over \mathbb{Q} .
- If r_{an} ≤ 1, the group III(E/Q) is finite and the conjecture can be proven sage: E.prove_bsd().
- Lots of numerical evidence for $r_{an} \ge 2$.

$$\frac{L^*(E)}{\Omega \cdot \operatorname{Reg}(E/\mathbb{Q})} = \frac{\prod_p c_p \cdot \# \operatorname{III}(E/\mathbb{Q})}{\left(\# E(\mathbb{Q})_{\operatorname{tors}}\right)^2}$$
$$E_2 : y^2 = x^3 + x + 2, \qquad r_{\operatorname{an}} = r = 0$$

- $L(E,1) \cong 0.874549$
- $\Omega \cong 3.49819$
- $\operatorname{Reg}(E/\mathbb{Q}) = 1$
- $L(E, 1)/\Omega \cong 0.250000.$
- In fact $L(E,1)/\Omega = \frac{1}{4}$.

• $c_2 = 4$ and $c_p = 1 \forall_{p \neq 2}$.

UTTT (- IO)

•
$$\#E(\mathbb{Q}) = 4$$

• $\operatorname{III}(E/\mathbb{Q})$ is trivial.

$$\frac{L^*(E)}{\Omega \cdot \operatorname{Reg}(E/\mathbb{Q})} = \frac{\prod_p c_p \cdot \# \operatorname{III}(E/\mathbb{Q})}{\left(\# E(\mathbb{Q})_{\operatorname{tors}}\right)^2}$$
$$E_2 : y^2 = x^3 + x + 2, \qquad r_{\operatorname{an}} = r = 1$$

- $L'(E, 1) \cong 1.78581$
- $\Omega \cong 3.74994$
- $\operatorname{Reg}(E/\mathbb{Q}) \cong 0.476223$
- LHS \approx 1.00000.
- In fact it is 1.

- $c_p = 1$.
- $E(\mathbb{Q}) = \mathbb{Z}$
- $\operatorname{III}(E/\mathbb{Q})$ is trivial.

$$\frac{L^*(E)}{\Omega \cdot \operatorname{Reg}(E/\mathbb{Q})} = \frac{\prod_p c_p \cdot \#\operatorname{III}(E/\mathbb{Q})}{\left(\#E(\mathbb{Q})_{\operatorname{tors}}\right)^2}$$
$$E_9 : y^2 = x^3 + x + 9, \qquad r_{\operatorname{an}} = r = 2$$

- $L^*(E) \cong 7.16561$
- $\Omega \cong 2.84721$

•
$$\operatorname{Reg}(E/\mathbb{Q}) \cong 2.51672$$

• LHS \cong 1.00000.

•
$$c_p = 1$$
.

•
$$E(\mathbb{Q}) = \mathbb{Z}^2$$

• $III(E/\mathbb{Q})$ should be trivial.

$$\frac{L^{*}(E)}{\Omega \cdot \operatorname{Reg}(E/\mathbb{Q})} = \frac{\prod_{p} c_{p} \cdot \#\operatorname{III}(E/\mathbb{Q})}{\left(\#E(\mathbb{Q})_{\operatorname{tors}}\right)^{2}}$$

$$E_{-47} : y^{2} = x^{3} + x - 47, \qquad r_{\operatorname{an}} = r = 0$$

$$\bullet \ L(E, 1) \cong 5.15400$$

$$\bullet \ c_{p} = 1$$

$$\bullet \ E(\mathbb{Q}) = 0$$

$$\bullet \ \operatorname{Reg}(E/\mathbb{Q}) = 1$$

$$\bullet \ UI(E/\mathbb{Q}) = \frac{\mathbb{Z}}{2\pi} \oplus \frac{\mathbb{Z}}{2\pi}$$

•
$$\operatorname{III}(E/\mathbb{Q}) = \mathbb{Z}/_{2\mathbb{Z}} \oplus \mathbb{Z}/_{2\mathbb{Z}}.$$

Christian Wuthrich

• $L(E, 1)/\Omega = 4$.

Elliptic curves	Weak BSD	Full BSD	Generalisations
Generalisatior	IS		

for abelian varieties

Generalisations

- for abelian varieties
- for general motives (Bloch-Kato conjectures)

Generalisations

- for abelian varieties
- for general motives (Bloch-Kato conjectures)
- p-adic versions
Generalisations

- for abelian varieties
- for general motives (Bloch-Kato conjectures)
- p-adic versions
- equivariant version

Elliptic curves	Weak BSD	Full BSD	Generalisations
<i>p</i> -adic version			

Let E/\mathbb{Q} be an elliptic curve and p a good prime such that $p \nmid a_p$.

p-adic Birch and Swinnerton-Dyer conjecture

 $\operatorname{ord}_{s=1} L_p(E, s) = \operatorname{rank}(E)$ and there is a formula for the leading term.

p-adic Birch and Swinnerton-Dyer conjecture

 $\operatorname{ord}_{s=1} L_p(E, s) = \operatorname{rank}(E)$ and there is a formula for the leading term.

Kato's Euler system

We have $\operatorname{ord}_{s=1} L_p(E, s) \ge \operatorname{rank}(E)$.

p-adic Birch and Swinnerton-Dyer conjecture

 $\operatorname{ord}_{s=1} L_p(E, s) = \operatorname{rank}(E)$ and there is a formula for the leading term.

Kato's Euler system

We have $\operatorname{ord}_{s=1} L_p(E, s) \ge \operatorname{rank}(E)$.

Recent work of Skinner-Urban: If $\operatorname{III}(E/\mathbb{Q})$ is finite and $\operatorname{Reg}_p(E/\mathbb{Q}) \neq 0$, then the *p*-adic BSD holds.

Let K/\mathbb{Q} be a finite Galois extension of group *G*.

Let K/\mathbb{Q} be a finite Galois extension of group *G*. Artin formalisms gives

$$L(E/K, s) = \prod_{\rho \in \operatorname{Irr}(G)} L(E, \rho, s)^{\dim(\rho)}.$$

< 🗗 >

Let K/\mathbb{Q} be a finite Galois extension of group *G*. Artin formalisms gives

$$L(E/K, s) = \prod_{\rho \in \operatorname{Irr}(G)} L(E, \rho, s)^{\dim(\rho)}.$$

Similar $E(K) \otimes \mathbb{C} = \bigoplus \rho^{r_{\rho}}$.

Let K/\mathbb{Q} be a finite Galois extension of group *G*. Artin formalisms gives

$$L(E/K, s) = \prod_{\rho \in \operatorname{Irr}(G)} L(E, \rho, s)^{\dim(\rho)}.$$

Similar $E(K) \otimes \mathbb{C} = \bigoplus \rho^{r_{\rho}}$.

Equivariant Birch and Swinnerton-Dyer conjecture

 $\operatorname{ord}_{s=1} L(E, \rho, s) = r_{\rho}.$

Equivariant version

Let K/\mathbb{Q} be a finite Galois extension of group *G*. Artin formalisms gives

$$L(E/K, s) = \prod_{\rho \in \operatorname{Irr}(G)} L(E, \rho, s)^{\dim(\rho)}.$$

Similar
$$E(K) \otimes \mathbb{C} = \bigoplus \rho^{r_{\rho}}$$
.

Equivariant Birch and Swinnerton-Dyer conjecture

 $\operatorname{ord}_{s=1} L(E, \rho, s) = r_{\rho}.$

Often there is a formula for the leading term involving the $\mathbb{Z}[G]$ -structure of $\mathrm{III}(E/K)$.