The Birch and Swinnerton-Dyer conjecture

Christian Wuthrich

17 Jan 2012

An elliptic curve E over a field K is

An elliptic curve E over a field K is

- a projective curve of genus 1 with a specified base-point $O \in E(K)$.

An elliptic curve E over a field K is

- a projective curve of genus 1 with a specified base-point $O \in E(K)$.
- an non-singular equation of the form

$$
E: \quad y^{2}=x^{3}+A x+B
$$

for some A and B in K.

An elliptic curve E over a field K is

- a projective curve of genus 1 with a specified base-point $O \in E(K)$.
- an non-singular equation of the form

$$
E: \quad y^{2}=x^{3}+A x+B
$$

for some A and B in K if $\operatorname{char}(K)>3$.

An elliptic curve E over a field K is

- a projective curve of genus 1 with a specified base-point $O \in E(K)$.
- an non-singular equation of the form

$$
E: \quad y^{2}=x^{3}+A x+B
$$

for some A and B in K if $\operatorname{char}(K)>3$.

- a projective curve with an algebraic group structure.

An elliptic curve E over a field K is

- a projective curve of genus 1 with a specified base-point $O \in E(K)$.
- an non-singular equation of the form

$$
E: \quad y^{2}=x^{3}+A x+B
$$

for some A and B in K if $\operatorname{char}(K)>3$.

- a projective curve with an algebraic group structure.

Our main question
How can we determine the set of solutions $E(K)$ with coordinates in K ?

Question

Are there infinitely many rational solutions to E over \mathbb{Q} ?

Question

Are there infinitely many rational solutions to E over \mathbb{Q} ?
Example

$$
E_{2}: \quad y^{2}=x^{3}+x+2
$$

Question

Are there infinitely many rational solutions to E over \mathbb{Q} ?
Example

$$
E_{2}: \quad y^{2}=x^{3}+x+2
$$

has only three solutions $(-1,0),(1,-2)$, and $(1,2)$.

Question

Are there infinitely many rational solutions to E over \mathbb{Q} ?
Example

$$
E_{1}: \quad y^{2}=x^{3}+x+1
$$

Question

Are there infinitely many rational solutions to E over \mathbb{Q} ?
Example

$$
E_{1}: \quad y^{2}=x^{3}+x+1
$$

has infinitely many solutions. $(0, \pm 1),\left(\frac{1}{4}, \pm \frac{9}{4}\right),(72, \pm 611), \ldots$

Question

Are there infinitely many rational solutions to E over \mathbb{Q} ?

Example

$$
E_{1}: \quad y^{2}=x^{3}+x+1
$$

has infinitely many solutions. $(0, \pm 1),\left(\frac{1}{4}, \pm \frac{9}{4}\right),(72, \pm 611), \ldots$
The following x-coordinates are

$$
\begin{aligned}
& -\frac{287}{1296}, \quad \frac{43992}{82369}, \quad \frac{26862913}{1493284}, \quad \frac{139455877527}{1824793048}, \quad-\frac{3596697936}{8760772801}, \\
& 7549090222465 \\
& 8662944250944 \text {, } \\
& \frac{51865013741670864}{6504992707996225}, \\
& -\frac{173161424238594532415}{310515636774481238884}, ~ \ldots
\end{aligned}
$$

Addition on elliptic curves

$$
E: \quad y^{2}=x^{3}+A x+B
$$

Addition on elliptic curves

$$
E: \quad y^{2}=x^{3}+A x+B
$$

Addition on elliptic curves

$$
E: \quad y^{2}=x^{3}+A x+B
$$

Any two points P and Q on E

Addition on elliptic curves

$$
E: \quad y^{2}=x^{3}+A x+B
$$

Any two points P and Q on E are linked by a line

Addition on elliptic curves

$E: \quad y^{2}=x^{3}+A x+B$
Any two points P and Q on E
are linked by a line
intersecting the curve in a third point $R=(x, y)$.

Addition on elliptic curves

$E: \quad y^{2}=x^{3}+A x+B$
Any two points P and Q on E are linked by a line
intersecting the curve in a third point $R=(x, y)$.

Set $P+Q=(x,-y)$.

Addition on elliptic curves

$E: \quad y^{2}=x^{3}+A x+B$
Any two points P and Q on E are linked by a line
intersecting the curve in a third point $R=(x, y)$.

Set $P+Q=(x,-y)$.

Elliptic curves over finite fields

Hasse-Weil bound

An elliptic curve E over \mathbb{F}_{p} satisfies

$$
N_{p}=\# E\left(\mathbb{F}_{p}\right)=p+1-a_{p}
$$

with $\quad\left|a_{p}\right|<2 \sqrt{p}$.

Elliptic curves over finite fields

Hasse-Weil bound

An elliptic curve E over \mathbb{F}_{p} satisfies

$$
N_{p}=\# E\left(\mathbb{F}_{p}\right)=p+1-a_{p}
$$

with $\quad\left|a_{p}\right|<2 \sqrt{p}$.

Curve sepc160k1

$$
\begin{aligned}
E & : y^{2}=x^{3}+7 \quad \text { with } \\
p & =1461501637330902918203684832716283019651637554291 \\
N_{p} & =1461501637330902918203686915170869725397159163571
\end{aligned}
$$

Elliptic curves over number fields

Mordell-Weil theorem

An elliptic curve E over a number field K then $E(K)$ is a finitely generated abelian group.

Elliptic curves over number fields

Mordell-Weil theorem

An elliptic curve E over a number field K then $E(K)$ is a finitely generated abelian group.

- The finite torsion group is easy to determine.

Elliptic curves over number fields

Mordell-Weil theorem

An elliptic curve E over a number field K then $E(K)$ is a finitely generated abelian group.

- The finite torsion group is easy to determine.
- The rank r of $E(K)$ is difficult, but often small.

Elliptic curves over number fields

Mordell-Weil theorem

An elliptic curve E over a number field K then $E(K)$ is a finitely generated abelian group.

- The finite torsion group is easy to determine.
- The rank r of $E(K)$ is difficult, but often small.
- E_{2} has rank 0 and $E_{2}(\mathbb{Q})=\mathbb{Z} / 4 \mathbb{Z}(1,2)$, while

Elliptic curves over number fields

Mordell-Weil theorem

An elliptic curve E over a number field K then $E(K)$ is a finitely generated abelian group.

- The finite torsion group is easy to determine.
- The rank r of $E(K)$ is difficult, but often small.
- E_{2} has rank 0 and $E_{2}(\mathbb{Q})=\mathbb{Z} / 4 \mathbb{Z}(1,2)$, while
- E_{1} has rank 1 and $E_{1}(\mathbb{Q})=\mathbb{Z}(0,1)$.

Bryan Birch and Sir Peter Swinnerton-Dyer

Let E be an elliptic curve over \mathbb{Q} with $A, B \in \mathbb{Z}$.

Let E be an elliptic curve over \mathbb{Q} with $A, B \in \mathbb{Z}$. Let N_{p} be the number of solutions of E modulo p.

Let E be an elliptic curve over \mathbb{Q} with $A, B \in \mathbb{Z}$. Let N_{p} be the number of solutions of E modulo p. Consider the function

$$
f(X)=\log \left(\prod_{\text {primes } p \leqslant X} \frac{N_{p}}{p}\right)
$$

Let E be an elliptic curve over \mathbb{Q} with $A, B \in \mathbb{Z}$. Let N_{p} be the number of solutions of E modulo p.
Consider the function

$$
f(X)=\log \left(\prod_{\text {primes } p \leqslant X} \frac{N_{p}}{p}\right)
$$

Conjecture

$f(X)$ stays bounded if and only if there are only finitely many solutions in \mathbb{Q}.

Conjecture

$f(X)$ grows like $r \cdot \log (\log (X))$, where r is the rank of $E(\mathbb{Q})$.

Conjecture

$f(X)$ grows like $r \cdot \log (\log (X))$, where r is the rank of $E(\mathbb{Q})$.

Conjecture

$f(X)$ grows like $r \cdot \log (\log (X))$, where r is the rank of $E(\mathbb{Q})$.

The L-series

Define

$$
L(E, s)=\prod_{p \text { good }} \frac{1}{1-a_{p} \cdot p^{-s}+p \cdot p^{-2 s}}=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

for $\operatorname{Re}(s)>\frac{3}{2}$.

The L-series

Define

$$
L(E, s)=\prod_{p \text { good }} \frac{1}{1-a_{p} \cdot p^{-s}+p \cdot p^{-2 s}}=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

for $\operatorname{Re}(s)>\frac{3}{2}$. Note

$$
" L(E, 1)=\prod_{p} \frac{p}{N_{p}}=\exp (-f(\infty)) "
$$

The L-series

Define

$$
L(E, s)=\prod_{p \text { good }} \frac{1}{1-a_{p} \cdot p^{-s}+p \cdot p^{-2 s}}=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

for $\operatorname{Re}(s)>\frac{3}{2}$. Note

$$
" L(E, 1)=\prod_{p} \frac{p}{N_{p}}=\exp (-f(\infty)) "
$$

Weak Birch and Swinnerton-Dyer conjecture 1000000\$

The function $L(E, s)$ has a zero of order r, the rank of $E(\mathbb{Q})$, at $s=1$.

Results

Taylor-Wiles et al.

If E / \mathbb{Q}, then $L(E, s)$ has an analytic continuation to \mathbb{C}.
In fact, $L(E, s)=L(f, s)$ for a modular form f.

Results

Taylor-Wiles et al.

If E / \mathbb{Q}, then $L(E, s)$ has an analytic continuation to \mathbb{C}.
In fact, $L(E, s)=L(f, s)$ for a modular form f.
Coates-Wiles, Gross-Zagier-Kolyvagin
If $r_{\mathrm{an}}=\operatorname{ord}_{s=1} L(E, s) \leqslant 1$, then $r_{\mathrm{an}}=r$.

Results

Taylor-Wiles et al.

If E / \mathbb{Q}, then $L(E, s)$ has an analytic continuation to \mathbb{C}.
In fact, $L(E, s)=L(f, s)$ for a modular form f.
Coates-Wiles, Gross-Zagier-Kolyvagin
If $r_{\text {an }}=\operatorname{ord}_{s=1} L(E, s) \leqslant 1$, then $r_{\mathrm{an}}=r$.
If $r_{\mathrm{an}}=1$, a Heegner point can be constructed from f.

Results

Taylor-Wiles et al.

If E / \mathbb{Q}, then $L(E, s)$ has an analytic continuation to \mathbb{C}.
In fact, $L(E, s)=L(f, s)$ for a modular form f.
Coates-Wiles, Gross-Zagier-Kolyvagin
If $r_{\mathrm{an}}=\operatorname{ord}_{s=1} L(E, s) \leqslant 1$, then $r_{\mathrm{an}}=r$.
If $r_{\mathrm{an}}=1$, a Heegner point can be constructed from f.
If $r_{\mathrm{an}}>1$,???

Let E be an elliptic curve over a number field K. Define

$$
L(E / K, s)=\prod_{v} \frac{1}{1-a_{v} q_{v}^{s}+q_{v}^{1-2 s}}
$$

which converges for $\operatorname{Re}(s)>\frac{3}{2}$.

Let E be an elliptic curve over a number field K. Define

$$
L(E / K, s)=\prod_{v} \operatorname{det}\left(1-\operatorname{Frob}_{v} q_{v}^{-s} \mid V_{\ell} E^{I_{v}}\right)^{-1}
$$

which converges for $\operatorname{Re}(s)>\frac{3}{2}$.

Let E be an elliptic curve over a number field K. Define

$$
L(E / K, s)=\prod_{v} \operatorname{det}\left(1-\operatorname{Frob}_{v} q_{v}^{-s} \mid V_{\ell} E^{I_{v}}\right)^{-1}
$$

which converges for $\operatorname{Re}(s)>\frac{3}{2}$.

Weak Birch and Swinnerton-Dyer conjecture

$\operatorname{ord}_{s=1} L(E / K, s)=\operatorname{rank} E(K)$.

Let E be an elliptic curve over a number field K. Define

$$
L(E / K, s)=\prod_{v} \operatorname{det}\left(1-\operatorname{Frob}_{v} q_{v}^{-s} \mid V_{\ell} E^{I_{v}}\right)^{-1}
$$

which converges for $\operatorname{Re}(s)>\frac{3}{2}$.

Weak Birch and Swinnerton-Dyer conjecture

$\operatorname{ord}_{s=1} L(E / K, s)=\operatorname{rank} E(K)$.

Tate

If K is the function field of a curve over a finite field, e.g. $K=\mathbb{F}_{p}(T)$, then $\operatorname{ord}_{s=1} L(E / K, s) \geqslant \operatorname{rank} E(K)$.

Let E be an elliptic curve over a number field K. Define

$$
L(E / K, s)=\prod_{v} \operatorname{det}\left(1-\operatorname{Frob}_{v} q_{v}^{-s} \mid V_{\ell} E^{I_{v}}\right)^{-1}
$$

which converges for $\operatorname{Re}(s)>\frac{3}{2}$.

Weak Birch and Swinnerton-Dyer conjecture

$\operatorname{ord}_{s=1} L(E / K, s)=\operatorname{rank} E(K)$.

Tate

If K is the function field of a curve over a finite field, e.g. $K=\mathbb{F}_{p}(T)$, then $\operatorname{ord}_{s=1} L(E / K, s) \geqslant \operatorname{rank} E(K)$.

Nekovář, T\&V Dokchitser
If \ldots, then $\operatorname{ord}_{s=1} L(E / K, s) \equiv \operatorname{rank} E(K)(\bmod 2)$

The conjecture also predicts the leading term

$$
L(E, s)=L^{*}(E) \cdot(s-1)^{r}+\cdots
$$

in analogy to the class number formula.

The conjecture also predicts the leading term

$$
L(E, s)=L^{*}(E) \cdot(s-1)^{r}+\cdots
$$

in analogy to the class number formula.
Birch and Swinnerton-Dyer conjecture

$$
L^{*}(E)=\frac{\prod_{p} c_{p} \cdot \Omega \cdot \operatorname{Reg}(E / \mathbb{Q}) \cdot \# \amalg(E / \mathbb{Q})}{\left(\# E(\mathbb{Q})_{\text {tors }}\right)^{2}}
$$

Birch and Swinnerton-Dyer conjecture

$$
\frac{L^{*}(E)}{\Omega \cdot \operatorname{Reg}(E / \mathbb{Q})}=\frac{\prod_{p} c_{p} \cdot \# \amalg(E / \mathbb{Q})}{\left(\# E(\mathbb{Q})_{\text {tors }}\right)^{2}}
$$

Birch and Swinnerton-Dyer conjecture

$$
\frac{L^{*}(E)}{\Omega \cdot \operatorname{Reg}(E / \mathbb{Q})}=\frac{\prod_{p} c_{p} \cdot \# \amalg(E / \mathbb{Q})}{\left(\# E(\mathbb{Q})_{\text {tors }}\right)^{2}}
$$

- $\Omega \in \mathbb{R}$ is a period.

Birch and Swinnerton-Dyer conjecture

$$
\frac{L^{*}(E)}{\Omega \cdot \operatorname{Reg}(E / \mathbb{Q})}=\frac{\prod_{p} c_{p} \cdot \# \amalg(E / \mathbb{Q})}{\left(\# E(\mathbb{Q})_{\text {tors }}\right)^{2}}
$$

- $\Omega \in \mathbb{R}$ is a period.
- $\operatorname{Reg}(E / \mathbb{Q}) \in \mathbb{R}$ is the regulator.

Birch and Swinnerton-Dyer conjecture

$$
\frac{L^{*}(E)}{\Omega \cdot \operatorname{Reg}(E / \mathbb{Q})}=\frac{\prod_{p} c_{p} \cdot \# \amalg(E / \mathbb{Q})}{\left(\# E(\mathbb{Q})_{\text {tors }}\right)^{2}}
$$

- $\Omega \in \mathbb{R}$ is a period.
- $\operatorname{Reg}(E / \mathbb{Q}) \in \mathbb{R}$ is the regulator.
- $c_{p} \in \mathbb{Z}$ is a Tamagawa number.

Birch and Swinnerton-Dyer conjecture

$$
\frac{L^{*}(E)}{\Omega \cdot \operatorname{Reg}(E / \mathbb{Q})}=\frac{\prod_{p} c_{p} \cdot \# \amalg(E / \mathbb{Q})}{\left(\# E(\mathbb{Q})_{\text {tors }}\right)^{2}}
$$

- $\Omega \in \mathbb{R}$ is a period.
- $\operatorname{Reg}(E / \mathbb{Q}) \in \mathbb{R}$ is the regulator.
- $c_{p} \in \mathbb{Z}$ is a Tamagawa number.
- $\amalg(E / \mathbb{Q})$ is the mysterious Tate-Shafarevich group.

The Tate-Shafarevich group

$$
Ш(E / K)=\operatorname{ker}\left(H^{1}(K, E) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)\right)
$$

- $\amalg(E / K)$ is an abelian torsion group.

The Tate-Shafarevich group

$$
Ш(E / K)=\operatorname{ker}\left(H^{1}(K, E) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)\right)
$$

- $Ш(E / K)$ is an abelian torsion group.
- It is believed to be finite.

The Tate-Shafarevich group

$$
Ш(E / K)=\operatorname{ker}\left(H^{1}(K, E) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)\right)
$$

- $\amalg(E / K)$ is an abelian torsion group.
- It is believed to be finite.
- If it is then the parity $r_{\mathrm{an}} \equiv r(\bmod 2)$ holds.

The Tate-Shafarevich group

$$
Ш(E / K)=\operatorname{ker}\left(H^{1}(K, E) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)\right)
$$

- $\amalg(E / K)$ is an abelian torsion group.
- It is believed to be finite.
- If it is then the parity $r_{\mathrm{an}} \equiv r(\bmod 2)$ holds.
- If it is for a function field K then BSD is true for K.

The Tate-Shafarevich group

$$
Ш(E / K)=\operatorname{ker}\left(H^{1}(K, E) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)\right)
$$

- $\amalg(E / K)$ is an abelian torsion group.
- It is believed to be finite.
- If it is then the parity $r_{\mathrm{an}} \equiv r(\bmod 2)$ holds.
- If it is for a function field K then BSD is true for K.
- It is known to be finite for \mathbb{Q} if and only if $r_{\mathrm{an}} \leqslant 1$.

Birch and Swinnerton-Dyer conjecture

$$
\frac{L^{*}(E)}{\Omega \cdot \operatorname{Reg}(E / \mathbb{Q})}=\frac{\prod_{p} c_{p} \cdot \# \amalg(E / \mathbb{Q})}{\left(\# E(\mathbb{Q})_{\text {tors }}\right)^{2}}
$$

Birch and Swinnerton-Dyer conjecture

$$
\frac{L^{*}(E)}{\Omega \cdot \operatorname{Reg}(E / \mathbb{Q})}=\frac{\prod_{p} c_{p} \cdot \# Ш(E / \mathbb{Q})}{\left(\# E(\mathbb{Q})_{\text {tors }}\right)^{2}}
$$

- If $L(E, 1) \neq 0$, then $L(E, 1) / \Omega \in \mathbb{Q}$. (Winding number)

Birch and Swinnerton-Dyer conjecture

$$
\frac{L^{*}(E)}{\Omega \cdot \operatorname{Reg}(E / \mathbb{Q})}=\frac{\prod_{p} c_{p} \cdot \# \amalg(E / \mathbb{Q})}{\left(\# E(\mathbb{Q})_{\text {tors }}\right)^{2}}
$$

- If $L(E, 1) \neq 0$, then $L(E, 1) / \Omega \in \mathbb{Q}$. (Winding number)
- It is invariant under morphisms $E \rightarrow E^{\prime}$ over \mathbb{Q}.

Birch and Swinnerton-Dyer conjecture

$$
\frac{L^{*}(E)}{\Omega \cdot \operatorname{Reg}(E / \mathbb{Q})}=\frac{\prod_{p} c_{p} \cdot \# Ш(E / \mathbb{Q})}{\left(\# E(\mathbb{Q})_{\text {tors }}\right)^{2}}
$$

- If $L(E, 1) \neq 0$, then $L(E, 1) / \Omega \in \mathbb{Q}$. (Winding number)
- It is invariant under morphisms $E \rightarrow E^{\prime}$ over \mathbb{Q}.
- If $r_{\mathrm{an}} \leqslant 1$, the group $\amalg(E / \mathbb{Q})$ is finite and the conjecture can be proven sage: E.prove_bsd().

Birch and Swinnerton-Dyer conjecture

$$
\frac{L^{*}(E)}{\Omega \cdot \operatorname{Reg}(E / \mathbb{Q})}=\frac{\prod_{p} c_{p} \cdot \# Ш(E / \mathbb{Q})}{\left(\# E(\mathbb{Q})_{\text {tors }}\right)^{2}}
$$

- If $L(E, 1) \neq 0$, then $L(E, 1) / \Omega \in \mathbb{Q}$. (Winding number)
- It is invariant under morphisms $E \rightarrow E^{\prime}$ over \mathbb{Q}.
- If $r_{\mathrm{an}} \leqslant 1$, the group $\amalg(E / \mathbb{Q})$ is finite and the conjecture can be proven sage: E.prove_bsd().
- Lots of numerical evidence for $r_{\mathrm{an}} \geqslant 2$.

$$
\begin{gathered}
\frac{L^{*}(E)}{\Omega \cdot \operatorname{Reg}(E / \mathbb{Q})}=\frac{\prod_{p} c_{p} \cdot \# \amalg(E / \mathbb{Q})}{\left(\# E(\mathbb{Q})_{\text {tors }}\right)^{2}} \\
E_{2}: y^{2}=x^{3}+x+2, \quad r_{\mathrm{an}}=r=0
\end{gathered}
$$

- $L(E, 1) \cong 0.874549$
- $\Omega \cong 3.49819$
- $c_{2}=4$ and $c_{p}=1 \forall_{p \neq 2}$.
- $\operatorname{Reg}(E / \mathbb{Q})=1$
- $\# E(\mathbb{Q})=4$
- $L(E, 1) / \Omega \cong 0.250000$.
- $\amalg(E / \mathbb{Q})$ is trivial.
- In fact $L(E, 1) / \Omega=\frac{1}{4}$.

$$
\begin{gathered}
\frac{L^{*}(E)}{\Omega \cdot \operatorname{Reg}(E / \mathbb{Q})}=\frac{\prod_{p} c_{p} \cdot \# \amalg(E / \mathbb{Q})}{\left(\# E(\mathbb{Q})_{\text {tors }}\right)^{2}} \\
E_{2}: y^{2}=x^{3}+x+2, \quad r_{\mathrm{an}}=r=1
\end{gathered}
$$

- $L^{\prime}(E, 1) \cong 1.78581$
- $\Omega \cong 3.74994$
- $c_{p}=1$.
- $\operatorname{Reg}(E / \mathbb{Q}) \cong 0.476223$
- $E(\mathbb{Q})=\mathbb{Z}$
- LHS $\cong 1.00000$.
- $\amalg(E / \mathbb{Q})$ is trivial.
- In fact it is 1 .

$$
\begin{gathered}
\frac{L^{*}(E)}{\Omega \cdot \operatorname{Reg}(E / \mathbb{Q})}=\frac{\prod_{p} c_{p} \cdot \# \amalg(E / \mathbb{Q})}{\left(\# E(\mathbb{Q})_{\text {tors }}\right)^{2}} \\
E_{9}: y^{2}=x^{3}+x+9, \quad r_{\mathrm{an}}=r=2
\end{gathered}
$$

- $L^{*}(E) \cong 7.16561$
- $c_{p}=1$.
- $\Omega \cong 2.84721$
- $\operatorname{Reg}(E / \mathbb{Q}) \cong 2.51672$
- LHS $\cong 1.00000$.
- $E(\mathbb{Q})=\mathbb{Z}^{2}$
- $\amalg(E / \mathbb{Q})$ should be trivial.

$$
\begin{gathered}
\frac{L^{*}(E)}{\Omega \cdot \operatorname{Reg}(E / \mathbb{Q})}=\frac{\prod_{p} c_{p} \cdot \# \amalg(E / \mathbb{Q})}{\left(\# E(\mathbb{Q})_{\text {tors }}\right)^{2}} \\
E_{-47}: y^{2}=x^{3}+x-47, \quad r_{\mathrm{an}}=r=0
\end{gathered}
$$

- $L(E, 1) \cong 5.15400$
- $\Omega \cong 1.28850$
- $\operatorname{Reg}(E / \mathbb{Q})=1$
- $c_{p}=1$
- $E(\mathbb{Q})=0$
- $\amalg(E / \mathbb{Q})=\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$.

Generalisations

- for abelian varieties

Christian Wuthrich

Generalisations

- for abelian varieties
- for general motives (Bloch-Kato conjectures)

Generalisations

- for abelian varieties
- for general motives (Bloch-Kato conjectures)
- p-adic versions

Generalisations

- for abelian varieties
- for general motives (Bloch-Kato conjectures)
- p-adic versions
- equivariant version

p-adic version

Let E / \mathbb{Q} be an elliptic curve and p a good prime such that $p \nmid a_{p}$.

p-adic version

Let E / \mathbb{Q} be an elliptic curve and p a good prime such that $p \nmid a_{p}$. There is a p-adic L-series $L_{p}(E, s) \in \mathbb{Z}_{p}$ for $s \in \mathbb{Z}_{p}$ such that $L_{p}(E, 1)=L(E, 1) / \Omega \in \mathbb{Q}$.

p-adic version

Let E / \mathbb{Q} be an elliptic curve and p a good prime such that $p \nmid a_{p}$. There is a p-adic L-series $L_{p}(E, s) \in \mathbb{Z}_{p}$ for $s \in \mathbb{Z}_{p}$ such that $L_{p}(E, 1)=L(E, 1) / \Omega \in \mathbb{Q}$.
p-adic Birch and Swinnerton-Dyer conjecture
$\operatorname{ord}_{s=1} L_{p}(E, s)=\operatorname{rank}(E)$ and there is a formula for the leading term.

p-adic version

Let E / \mathbb{Q} be an elliptic curve and p a good prime such that $p \nmid a_{p}$. There is a p-adic L-series $L_{p}(E, s) \in \mathbb{Z}_{p}$ for $s \in \mathbb{Z}_{p}$ such that $L_{p}(E, 1)=L(E, 1) / \Omega \in \mathbb{Q}$.
p-adic Birch and Swinnerton-Dyer conjecture
$\operatorname{ord}_{s=1} L_{p}(E, s)=\operatorname{rank}(E)$ and there is a formula for the leading term.

Kato's Euler system
We have $\operatorname{ord}_{s=1} L_{p}(E, s) \geqslant \operatorname{rank}(E)$.

p-adic version

Let E / \mathbb{Q} be an elliptic curve and p a good prime such that $p \nmid a_{p}$. There is a p-adic L-series $L_{p}(E, s) \in \mathbb{Z}_{p}$ for $s \in \mathbb{Z}_{p}$ such that $L_{p}(E, 1)=L(E, 1) / \Omega \in \mathbb{Q}$.
p-adic Birch and Swinnerton-Dyer conjecture
$\operatorname{ord}_{s=1} L_{p}(E, s)=\operatorname{rank}(E)$ and there is a formula for the leading term.

Kato's Euler system
We have $\operatorname{ord}_{s=1} L_{p}(E, s) \geqslant \operatorname{rank}(E)$.
Recent work of Skinner-Urban: If $\amalg(E / \mathbb{Q})$ is finite and $\operatorname{Reg}_{p}(E / \mathbb{Q}) \neq 0$, then the p-adic BSD holds.

Equivariant version

Let K / \mathbb{Q} be a finite Galois extension of group G.

Equivariant version

Let K / \mathbb{Q} be a finite Galois extension of group G.
Artin formalisms gives

$$
L(E / K, s)=\prod_{\rho \in \operatorname{Irr}(G)} L(E, \rho, s)^{\operatorname{dim}(\rho)}
$$

Equivariant version

Let K / \mathbb{Q} be a finite Galois extension of group G.
Artin formalisms gives

$$
L(E / K, s)=\prod_{\rho \in \operatorname{Irr}(G)} L(E, \rho, s)^{\operatorname{dim}(\rho)}
$$

Similar $E(K) \otimes \mathbb{C}=\bigoplus \rho^{r_{\rho}}$.

Equivariant version

Let K / \mathbb{Q} be a finite Galois extension of group G.
Artin formalisms gives

$$
L(E / K, s)=\prod_{\rho \in \operatorname{Irr}(G)} L(E, \rho, s)^{\operatorname{dim}(\rho)}
$$

Similar $E(K) \otimes \mathbb{C}=\bigoplus \rho^{r_{\rho}}$.
Equivariant Birch and Swinnerton-Dyer conjecture
$\operatorname{ord}_{s=1} L(E, \rho, s)=r_{\rho}$.

Equivariant version

Let K / \mathbb{Q} be a finite Galois extension of group G.
Artin formalisms gives

$$
L(E / K, s)=\prod_{\rho \in \operatorname{Irr}(G)} L(E, \rho, s)^{\operatorname{dim}(\rho)}
$$

Similar $E(K) \otimes \mathbb{C}=\bigoplus \rho^{r_{\rho}}$.
Equivariant Birch and Swinnerton-Dyer conjecture
$\operatorname{ord}_{s=1} L(E, \rho, s)=r_{\rho}$.
Often there is a formula for the leading term involving the $\mathbb{Z}[G]$-structure of $\amalg(E / K)$.

