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IWASAWA THEORY OF THE FINE SELMER

GROUP

CHRISTIAN WUTHRICH

Abstract

The fine Selmer group of an elliptic curve E over a number field K is
obtained as a subgroup of the usual Selmer group by imposing stronger
conditions at places above p. We prove a formula for the Euler-cha-
racteristic of the fine Selmer group over a Zp-extension and use it to
compute explicit examples.

1. Introduction

Let E be an elliptic curve defined over a number field K and let p be an

odd prime. We choose a finite set of places Σ in K containing all places above

p ·∞ and such that E has good reduction outside Σ. The Galois group of the

maximal extension of K which is unramified outside Σ is denoted by GΣ(K).

In everything that follows ⊕Σ always stands for the product over all finite

places υ in Σ. Let E{p} be the GΣ(K)-module of all torsion points on E

whose order is a power of p. For a finite extension L : K, the fine Selmer

group is defined to be the kernel

0 � R(E/L) � H1(GΣ(L), E{p}) � ⊕Σ H1(Lυ, E{p})

where H i(Lυ, ·) is a shorthand for the product ⊕w|υH i(Lw, ·) over all places

w in L above υ. If L is an infinite extension, we define R(E/L) to be the

inductive limit of R(E/L′) for all finite subextensions L : L′ : K. Note that

R(E/L) does not depend on the choice of the set Σ.

The fine Selmer group has often appeared in the Iwasawa theory of elliptic

curves and has different names such as the “strict” or “restricted” Selmer

group. We stick to the terminology in [5].

In this article we will be concerned with the behaviour of the fine Selmer

group in a given Zp-extension ∞K : K which will often be the cyclotomic

Zp-extension. Let Γ be the Galois group of ∞K : K and let Λ be the Iwasawa-

algebra of Γ. Given a topological generator γ of Γ, we may identify Λ with
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Zp[[T ]]. It is well known that the Pontryagin-dual of R(E/∞K) is a finitely

generated Λ-module.

The same is true of the dual of the classical p-primary Selmer group

S(E/∞K). We recall the important results of Perrin-Riou [10] and Schnei-

der [16]. If p is assumed to be an odd prime such that E has good ordinary

reduction at all places above p, then there exists a canonical p-adic height

pairing on the Selmer group whose regulator is linked to the Iwasawa theory

of the Selmer group S(E/∞K). More precisely, if the p-primary part of the

Tate-Shafarevich group X(E/K){p} is finite and if the regulator does not

vanish then the dual of S(E/∞K) is a torsion Λ-module and the order of

vanishing of its characteristic power series fS ∈ Λ at T = 0 is equal to the

corank of S(E/K). Moreover the leading coefficient f ∗
S
(0) of fS at T = 0 can

be computed as

(1.1) f∗
S
(0) ≡ Regp(E/K) ·

∏

υ cυ ·N
2
p ·#X(E/K){p}

(#E(K){p})2
(mod Z×

p )

where Regp(E/K) is the normalised p-adic regulator on E(K), Np is the

product of the number of points on the reduction at the places above p and cυ

is the Tamagawa number of E at υ. Note the importance of the assumption

that E has ordinary reduction above p. See for instance [8] for results in the

supersingular case.

This article proves the analogous results for the fine Selmer group. One of

the important differences is that we are allowed to drop all conditions on the

odd prime p. In particular E may have bad reduction of any type and the

supersingular situation does not seem to differ in any way from the ordinary

situation.

The compact version of the fine Selmer group R(E/K) is defined to be the

kernel of the following localisation map

(1.2) 0 � R(E/K) � H1(GΣ(K), TpE) � ⊕υ|p H1(Kυ, TpE)

where TpE = lim
←−

E[pk] is the Tate-module of E. It will be shown in Lemma 3.1

that R(E/K) is a free Zp-module whose rank is equal to the corank of

R(E/K).

Perrin-Riou has defined in [11] and [12] a p-adic height pairing on the fine

Selmer group R(E/K) affiliated with the chosen Zp-extension. We recall

the definition in section 5. Perrin-Riou made the conjecture that the height

pairing is non-degenerate. The regulator of the p-adic hieght may be linked

to the Iwasawa theory of the fine Selmer group, see Proposition 5.3. It will

appear in the formula of the leading term of the characteristic series fR of the

dual of the fine Selmer group R(E/∞K). Other arithmetic invariants of E
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also appear, including the order of the fine Tate-Shafarevich group �(E/K)

with respect to p as defined in [19]. See section 6 for a definition.

We state here the main theorem only in the special situation when the

elliptic curve is defined over Q; see Theorem 6.1 for the general statement. If

E is an elliptic curve over Q a much celebrated theorem of Kato [7, Theorem

12.4] states that the dual of R(E/∞Q) is a torsion Λ-module (the so called

weak Leopoldt conjecture for E). In the general case this can be checked via

the non-degeneracy of the p-adic height on the fine Selmer group. Similarly

it is known that the order of vanishing of fR at T = 0 is equal to the corank

of R(E/K), if the regulator is non-zero; see [11, Proposition 3.4.5] and [12,

Corollaire 3.4.3].

Let ∞Q be the cyclotomic Zp-extension of Q and let nQ be its nth layer.

Theorem 1.1. Let E/Q be an elliptic curve whose Tate-Shafarevich group

X(E/Q) has finite p-primary part. Suppose that the p-adic height on the

fine Selmer group is non-degenerate. Then there is an injection with finite

cokernel J of R(E/Q) into the cokernel of the corestriction map

cor: lim
←−
n

H1(GΣ(nQ), TpE) � H1(GΣ(Q), TpE).

If the reduction is potentially good, then the leading coefficient of the charac-

teristic power series of the dual of the fine Selmer group R(E/∞Q) is equal

to

(1.3) f∗
R
(0) ≡ Reg(R(E/Q)) ·

∏

υ cυ ·# TorsZp
(D) ·#�(E/Q)

#J
(mod Z×

p )

where D is the cokernel of the localisation map from E(Q)⊗Zp to the p-adic

completion of E(Qp).

The proof of the theorem is given in section 7. See Corollary 6.3 for the

statement split up according to whether E has rank 0, 1 or greater than 1.

In sections 9, 10 and 11 we include a list of interesting examples. Unlike

for the formula 1.1, the expression on the right hand side is not explicitly

computable due to the presence of the unknown size of the cokernel J . Nev-

ertheless the formula is still very useful to determine fR or even R(E/∞Q).

We show how to use the formulae (1.3) and (1.1) and analytic information

from [13].

For almost all cases, the result is that fR is a simple power of T ; in other

words that R(E/∞Q) has the same corank as R(E/Q) and that �(E/∞Q)

is still finite, if �(E/Q) is finite. This provides ample evidence that the µ-

invariant of the fine Selmer group should always be trivial as conjectured by

Coates and Sujatha in [5, Conjecture A].
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It is not true that fR is always a power of T . The discussion of an example

in which the corank of the fine Selmer group over ∞Q is strictly larger than

over Q is included in section 11. The proof relies on the computation of the

rank of the Mordell-Weil over the first two layers of the Z3-extension.

So far, we cannot find a single example of a curve E/Q and an odd prime

p for which we can prove that the fine Tate-Shafarevich group �(E/∞Q) is

infinite. See also Question 8.3 in [19].

Motivated by Proposition 9.2, we make the following

Conjecture 1.2. Let E/Q be an elliptic curve. The set of primes p for

which the corank of R(E/∞Q) is larger than the corank of R(E/Q) is finite.

It is a pleasure to thank John Coates, Robert Pollack and Karl Rubin for

helpful discussions.

2. Notations

If f is a map between Zp-modules with finite kernel and cokernel, we write

z(f) =
# ker(f)

# coker(f)
.

For any p-primary abelian group A, the expression Adiv stands for the

maximal divisible subgroup of A and A/ div for the quotient of A by Adiv.

The Pontryagin dual of an abelian group A is written Â and its p-primary

part is denoted by A{p}.

To ease notations of Galois-cohomology we will use the following shorter

notations for any GΣ(K)-module M :

H i
Σ
(K, M) = H i(GΣ(K), M)

H i
Σ
(∞K, M) = H i(GΣ(∞K), M)

The following projective limits along the corestriction maps will often appear

∞H i(E/K) = lim
←−
n

H i(GΣ(nK), TpE)

where TpE is the Tate module lim
←−

E[pk]. The Γ-module ∞H i(E/K) does not

depend on the choice of the finite set Σ containing all bad places, all places

above p and above ∞. It is trivial for i 6= 1, 2.

If υ is a place in K and L is an extension of K, the following notation will

be used

H i(Lυ, M) = ⊕w|υH i(Lw, M)

whenever M is a module under the absolute Galois group of Kυ.
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The fine Selmer group R(E/K) was already defined in the beginning of the

introduction. There are also two compact versions of the fine Selmer group;

the first is defined by the exact sequence (1.2) and the second smaller group

is RΣ(E/K), obtained by imposing the local conditions at all places in Σ:

0 � RΣ(E/K) � H1
Σ
(K, TpE) � ⊕Σ H1(Kυ, TpE)

It is not difficult to see that RΣ(E/K) has finite index in R(E/K), since

H1(Kυ, TpE) is finite if υ does not divide p.

A Zp-extension ∞K : K can be given as the fixed field of the kernel of a

homomorphism λ : GΣ(K) �� Zp. Conversely a surjective morphism λ in

Hom(GΣ(K), Zp) is determined by ∞K up to multiplication by a unit in Z×
p .

In particular, if σ is an element in GΣ(K), then its action on a basis ζ ∈ Tpµ

is given by σ(ζ) = ζχ(σ) for some χ(σ) in Z×
p . Then λ = 1

p
· logp ◦χ defines the

cyclotomic Zp-extension cycK of K, where logp : Z×
p � pZp is the p-adic

logarithm.

2.1. Global duality. For the proof of the main theorem, the global du-

ality of Poitou-Tate (see [9, Theorem 8.6.8]) will be used. Over the field K,

we can extract a five term exact sequence

0 � R(E/K) � H1
Σ
(K, E{p})

� ⊕Σ H1(Kυ, E{p})

0 ≺ RΣ(E/K)∧ ≺ H1
Σ
(K, TpE)∧ ≺

and a four term exact sequence

0 � E(K){p} � ⊕ΣE(Kυ){p} � H2
Σ
(K, TpE)∧ � R(E/K) � 0.

Finally, it also shows that RΣ(E/K) is dual to the kernel of the localisation

map from H2
Σ
(K, E{p}) to ⊕ΣH2(Kυ, E{p}). Since the target of this map is

trivial by local Tate duality, RΣ(E/K) is dual to H2
Σ
(K, E{p}).

The global duality over ∞K can be formulated similarly, e.g. the five term

sequence becomes:

0 � R(E/∞K) � H1
Σ
(∞K, E{p})

�⊕Σ H1(∞Kυ, E{p})

0 ≺ H2
Σ
(∞K, E{p}) ≺ ∞H1(E/K)∧ ≺
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3. The compact fine Selmer group is a free Zp-module

The snake lemma can be applied to the following commutative diagram

with exact rows.

0 � E(K){p} � H1
Σ
(K, TpE) � TpH

1
Σ
(K, E{p}) � 0

0 � ⊕ΣE(Kυ){p}
g

� ⊕ΣH1(Kυ, TpE)

g

� ⊕ΣTpH
1(Kυ, E{p})

g

� 0

Using that the functor Tp is left-exact, we see that there is an exact sequence

0 � RΣ(E/K) � TpR(E/K) � TΣ

where TΣ is the finite cokernel of the vertical map on the left hand side. The

sums in the bottom exact sequence of the previous diagram can be replaced

by the sums running only over the places above p, one obtains an injection of

R(E/K) into TpR(E/K) of finite index. Hence we have proved that

Lemma 3.1. The compact fine Selmer groups R(E/K) and RΣ(E/K) are

free Zp-modules contained in TpR(E/K).

A counter-example showing that R(E/K) is not always equal to TpR(E/K)

is given in (9) of [19].

In particular the lemma provides us with a map a defined as the dual of

the composition

(3.1)

R(E/K)∧ �� (R(E/K)div)
∧

HomZp
(TpR(E/K), Zp)

w

w

w

w

w

� � HomZp
(RΣ(E/K), Zp)

Hence a is a map from HomZp
(RΣ(E/K), Zp)

∧ to R(E/K) whose kernel has

order

# ker(a) = [TpR(E/K) : RΣ(E/K)]

= [TpR(E/K) : R(E/K)] · [R(E/K) : RΣ(E/K)]

and the cokernel is dual to R(E/K)/ div. In other words, we have

(3.2) z(a) =
[TpR(E/K) : R(E/K)] · [R(E/K) : RΣ(E/K)]

#(R(E/K)/ div)
.

4. Control theorem

We repeat here for the sake of completeness the proof of the well-known

control theorem for the fine Selmer group. See for instance Proposition 7.4.4

in [15].
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Proposition 4.1. The restriction map b : R(E/K) � R(E/∞K)Γ has

finite kernel and cokernel. The kernel has no more elements than E(K){p}

and the cokernel has no more elements than
∏

υ|p E(Kυ){p} ·
∏

υ-p cυ, where

cυ is the Tamagawa number of E at υ.

Proof. We consider the following commutative diagram with exact rows

(4.1)

0 � R(E/∞K)Γ � H1
Σ
(∞K, E{p})Γ � ⊕ΣH1(∞Kυ, E{p})Γ

0 � R(E/K)

b
f

� H1
Σ
(K, E{p})

ff

� ⊕ΣH1(Kυ, E{p})

ff

The Hochschild-Serre spectral sequence yields that the middle vertical map is

surjective and its kernel is the group Tgl = H1(Γ, E(∞K){p}); similarly the

kernel of the vertical map on the right is equal to

Tloc = ⊕ΣH1(Γ, H0(∞Kυ, E{p})).

So there are two exact sequences deduced from the spectral sequence of

Hochschild-Serre

(4.2)
0 � Tgl � H1

Σ
(K, E{p}) � H1

Σ
(∞K, E{p})Γ � 0

0 � Tloc � ⊕ΣH1(Kυ, E{p}) � ⊕ΣH1(∞Kυ, E{p})Γ � 0

The next two lemmata will finish the proof of the proposition. �

Lemma 4.2. The group Tgl is a finite group of order bounded by E(K){p}.

Moreover, if ∞K is the cyclotomic Zp-extension and E has potentially good

reduction at all primes above p, then Tgl has exactly as many elements as

E(K){p}.

Proof. Let M be the Γ-module E(∞K){p} and so Tgl = H1(Γ, M). If

M is finite, and this is the case under the more restrictive hypothesis of the

second statement (see [6]), then #H1(Γ, M) = #H0(Γ, M) and so #Tgl =

#E(K){p}. Now let D be the maximal divisible subgroup of M and consider

the exact sequence of Γ-modules 0 � TpD � VpD � D � 0, where

TpD is lim
←−

D[pk] and VpD = TpD ⊗ Qp. Since H1(Γ, VpD) and H2(Γ, TpD)

vanish, we see that DΓ is finite and H1(Γ, D) is trivial. Now the cohomology

of the short exact sequence 0 � D � M � M/D � 0 shows

that Tgl = H1(Γ, M) is equal to H1(Γ, M/D) which has the same number

of elements as H0(Γ, M/D). This latter group is equal to the quotient of

MΓ = E(K){p} by DΓ, because H1(Γ, D) vanishes. Hence

#Tgl =
#E(K){p}

#DΓ
.

�
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Lemma 4.3. Let υ be a finite place of K. The group

Tυ = H1(Γ, H0(∞Kυ, E{p})

is a finite group of order bounded by the order of E(Kυ){p}. If υ does not lie

above p, its order is equal to the highest power of p dividing the Tamagawa

number cυ. If ∞K is the cyclotomic Zp-extension, υ divides p and the reduc-

tion of E at υ is potentially good, then the order of Tυ is equal to the order of

E(Kυ){p}.

Proof. Let w be any place of ∞K above υ. By Shapiro’s lemma, Tυ is

isomorphic to H1(Γw, E(∞Kw){p}) where Γw is the decomposition group of

Γ at w. If υ splits completely in ∞K, then Γw is trivial and the statement is

clear. Otherwise Γw is isomorphic to Zp and the proof of the bound can be

copied from the proof of the previous lemma.

Finally the statement for the case that υ does not lie above p is contained

in Lemma 3.4 of [4]. �

5. The height pairing

In this section, we construct the p-adic height pairing on the fine Selmer

group. The construction follows closely the original definition of Perrin-Riou

in [11], but its presentation is simplified and adapted to our needs. We make

a further assumption1 on the finite set Σ, namely we impose that the class

group of the Σ-integers in K is trivial. This can be achieved by adding a set

of generators of the class group to the set Σ. The final result in Theorem 6.1

is independent of this choice.

5.1. Extensions. Let ξ : σ � ξσ be a 1-cocycle representing an el-

ement of the compact fine Selmer group RΣ(E/K). Its class belongs to

H1(GΣ(K), TpE), which is equal to Ext1GΣ(K)(TpE, Zp(1)), i.e. it corresponds

to a short exact sequence

(5.1) 0 � Zp(1) � Tξ � TpE � 0

of GΣ(K)-modules. Explicitly this can be constructed in the following manner:

As a Zp-module Tξ is just the direct sum Zp(1) ⊕ TpE, but with the twisted

GΣ(K)-action given by the the formula

(ζ, Q)σ = (ζσ + 〈ξσ , Qσ〉, Qσ) for all ζ ∈ Zp(1), Q ∈ TpE and σ ∈ GΣ(K),

where we denoted by 〈·, ·〉 the Weil-pairing TpE ⊗ TpE � Zp(1).

1This is not strictly necessary but simplifies the exposition.
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If υ is a place in Σ and Gυ any decomposition group at υ, then the se-

quence (5.1) is a split exact sequence of Gυ-module. This follows directly

from the definition of RΣ(E/K), given that resυ(ξ) is trivial in H1(Kυ, TpE).

Lemma 5.1. We have the following diagram

0 � H1
Σ
(K, Zp(1)) � H1

Σ
(K, Tξ) � H1

Σ
(K, TpE) � 0

0 � ⊕ΣH1(Kυ, Zp(1))

g

� ⊕ΣH1(Kυ, Tξ)

g

� ⊕ΣH1(Kυ, TpE)

g

� 0

Proof. It is already clear why the bottom line is exact. The triviality in

the upper left hand corner is due to the fact that TpE(K) = 0. On the right

hand side we should complete the diagram with the following square

H1
Σ
(K, TpE) � H2

Σ
(K, Zp(1))

⊕ΣH1(KυTpE)

g

� ⊕ΣH2(Kυ, Zp(1))

g

But we know that the bottom map is trivial and, by global class field theory

(see [9, Theorem 8.6.3]), that the map on the right hand side is injective by

assumption of the triviality of the class group of the Σ-integers. This proves

the lemma. �

We will now apply the snake lemma to the diagram in the previous lemma.

The kernel of the vertical map on the right hand side is precisely RΣ(E/K).

For the left hand side, the global duality of Poitou-Tate, see [9, Theorem

10.3.12], gives an exact sequence

H1
Σ
(K, Zp(1)) � ⊕Σ H1(Kυ, Zp(1)) � H1

Σ
(K, Qp/Zp

)∧ � 0

in which the zero at the end is a consequence of the assumption on the class

group of the Σ-integers. The last non-zero term is actually the Galois group

GΣ(K)p-ab of the maximal abelian p-extension of K which is unramified out-

side Σ. The snake lemma provides us with a map

Hξ : RΣ(E/K) � GΣ(K)p-ab

and hence for every Zp-extension given by a morphism λ : GΣ(K) �� Zp we

obtain a pairing

〈·, ·〉λ : RΣ(E/K)×RΣ(E/K) � Zp

(ξ, η) � λ(Hξ(η))

called the p-adic height pairing affiliated with the Zp-extension. There is a

unique extension of this pairing to the group R(E/K):

R(E/K)×R(E/K) � Qp
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The p-adic regulator of the fine Selmer group Regλ(R(E/K)) is defined to

be the determinant of this pairing, which is well-defined up to multiplication

by a unit in Zp. The choice of the surjective morphism λ only changes the

regulator by a unit. The pairing is non-degenerate if and only if the regulator

is non-zero.

For the rest of the article the following conjecture due to Perrin-Riou,

see [11, Conjecture 3.3.7.B.i], will play a crucial role.

Conjecture 5.2. The p-adic regulator Regcyc(R(E/K)) of the fine Selmer

group affiliated with the cyclotomic Zp-extension is non-zero.

Starting with the same element ξ, we could also construct an extension

0 � Qp/Zp
(1) � Wξ � E{p} � 0

defined as before using the Weil pairing E{p} ⊗E{p} � Qp/Zp
(1). Thanks

to the assumption on the class group, there is a diagram like before

� H1
Σ

(

K, Qp/Zp
(1)

)

� H1
Σ
(K, Wξ) � H1

Σ
(K, E{p}) � 0

0 � ⊕ΣH1
(

Kυ, Qp/Zp
(1)

)

g

� ⊕ΣH1(Kυ, Wξ)

g

� ⊕ΣH1(Kυ, E{p})

g

� 0

and the snake lemma yields a map

Hξ : R(E/K) � H1
Σ
(K, Zp)

∧.

The Zp-extension given by λ ∈ Hom(GΣ(K), Zp) = H1
Σ
(K, Zp) allows us to

define a second pairing

〈·, ·〉λ : RΣ(E/K)× R(E/K) � Qp/Zp

(ξ, η) � Hξ(η)(λ)

It is immediate that the dual

â : Hom(R(E/K), Qp/Zp
) � HomZp

(RΣ(E/K), Zp)

of the map a defined in (3.1) sends the second pairing Hξ to the first pairing

Hξ for all ξ in RΣ(E/K).

5.2. Iwasawa theoretic height. The previously defined pairing on the

fine Selmer group can be decomposed into a sequence of maps that will link

the regulator to the Euler-characteristic of the fine Selmer group.

Fix a topological generator γ of the Galois group Γ of our Zp-extension

given by λ, i.e. λ(γ) ∈ Z×
p . With this choice, we may identify H1(Γ, M) with

the coinvariance MΓ for all Γ-modules M .

The restriction provides us with a map b : R(E/K) � R(E/∞K)Γ as in

Proposition 4.1. The identity induces a map

c : R(E/∞K)Γ � R(E/∞K)Γ
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and there is a map

d : R(E/∞K)Γ � H1
Σ
(∞K, E{p})Γ

coming from the natural inclusion. The spectral sequence of Hochschild-Serre

gives a transgression map

(5.2) e : H1
Σ
(∞K, E{p})Γ � � H2

Σ
(K, E{p})

whose cokernel is equal to HΣ(∞K, E{p})Γ. The global duality in section 2.1

states that there is an isomorphism

(5.3) f : H2
Σ
(K, E{p})∧

∼=
� RΣ(E/K).

Proposition 5.3. The p-adic height pairing on the fine Selmer group

hλ : RΣ(E/K) � HomZp
(RΣ(E/K), Zp)

corresponding to the Zp-extension λ, given by hλ(ξ)(η) = 〈ξ, η〉λ is equal to

the composition in the commutative diagram

(5.4)

HomZp
(RΣ(E/K), Zp)

∧ ĥλ
� RΣ(E/K)∧

R(E/K)

a
g

H2
Σ
(K, E{p})

f
f

R(E/∞K)Γ

b
g

c
� R(E/∞K)Γ

d
� H1

Σ
(∞K, E{p})Γ

e
f

The proof of this proposition is given in section 4.4 of [10] or, in our nota-

tions, in [17, I.6].

5.3. The analytic height pairing. In [2] an analytic version of the p-

adic height pairing on the fine Selmer group is used to compute some cases of

the main conjecture for curves with supersingular reduction. We give here a

slightly different formula.

We may suppose the elliptic curve E is given in a Weierstrass equation

with integral coefficients. According to Proposition 2 in [18], there exists

a subgroup of finite index in E(K), denoted by E•(K), of points P whose

coordinates can be represented as fractions of coprime integers, i.e.

P =

(

a(P )

e(P )2
,

b(P )

e(P )3

)

for some elements a(P ), b(P ) and e(P ) in the ring of integers OK of K, defined

up to multiplication by a unit in O
×
K .
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Proposition 5.4. Let P and Q be two elements in R(E/K) which are

in the image of the Kummer map κ : E(K) ⊗ Zp � H1
Σ
(K, TpE). Let

{Pk}k and {Qk}k be sequences of points converging to P and Q in E(K)⊗Zp

respectively. Assume that Pk and Qk belong to E•(K) for all k. Then the

cyclotomic p-adic height pairing of P and Q is equal to

〈P, Q〉cyc =
1

2p
· lim

k→∞
logp ◦NK:Q

(

a(Pk) · a(Qk)

a(Pk + Qk)

)

where logp denotes the p-adic logarithm.

For a proof of this formula we refer the reader to [17, Theorem IV.8]. If the

p-primary part of the Tate-Shafarevich group X(E/K) is finite, then there is

a subgroup of finite index in R(E/K) for which the above formula applies and

hence one could use this formula for computing the p-adic regulator. Never-

theless there is a faster algorithm for its computation using the σ-function of

Bernardi [1] and the p-adic elliptic logarithm. For details see section VI.1.1

in [17].

Note also that this formula proves the fact that the pairing is indeed bilinear

and symmetric.

6. The Euler-characteristic

Using the choice of a topological generator γ of Γ, we identify Λ with Zp[[T ]]

by sending γ − 1 to T . A torsion Λ-module X gives rise to a characteristic

power series fX which is a non-zero element of Λ, defined up to a unit in Λ×.

The leading coefficient of fX at T = 0,

f∗
X
(0) =

fX(T )

T ordT (fX)

∣

∣

∣

∣

T=0

∈ Zp \ {0}

is called the Euler-characteristic of the Λ-module X . Its valuation is indepen-

dent of the choice of γ.

Theorem 6.1. Let E be an elliptic curve defined over a number field

K. Suppose the p-adic height affiliated with a Zp-extension ∞K : K is non-

degenerate. Then

(1) The dual of R(E/∞K) is a torsion Λ-module.

(2) Let r be the corank of R(E/K). Then the characteristic power series

fR(T ) of the dual of R(E/∞K) has a zero of order r at T = 0.

(3) There is an injection

R(E/K) � � ∞H2(E/K)Γ =
(

lim
←−

H2
Σ
(nK, TpE)

)Γ

whose cokernel J is finite.
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(4) The leading coefficient of fR has the same valuation as

f∗
R
(0) ≡ Regλ(R(E/K)) ·

#Tloc ·#
(

R(E/K)/ div
)

#Tgl ·#J ·#I
(mod Z×

p )

where I is the index of R(E/K) in TpR(E/K) defined in section 3

and Tgl and Tloc were defined in (4.2).

The formula can be simplified substantially if one assume more restrictive

hypotheses. The following corollaries specify the theorem to cases when the

Zp-extension is cyclotomic. The first three conclusions of the theorem are

still valid and so only a reformulation of the leading coefficient of fR is given.

But first, we need some more definitions: the subgroup of elements in R(E/K)

that belong to the image of the Kummer map E(K)⊗Qp/Zp
� H1

Σ
(K, E{p})

will be denoted by M(E/K). The fine Tate-Shafarevich group �(E/K) is

defined to be the quotient of R(E/K) by M(E/K). It naturally identifies with

a subgroup of the p-primary part of the Tate-Shafarevich group X(E/K). For

properties of this group we refer the reader to [19].

Corollary 6.2. Assume that E has potentially good reduction at all place

above p and that the fine Tate-Shafarevich group �(E/K) is finite. If the

cyclotomic p-adic height is non-degenerate then the leading coefficient of the

characteristic power series fR of the dual of the fine Selmer group R(E/∞K)

is equal to

f∗
R
(0) ≡ Regcyc(R(E/K)) ·

# TorsZp
(D) ·

∏

υ-p cυ ·#�(E/K)

#J
(mod Z×

p )

with D being the cokernel of the localisation map from E(K)⊗Zp to the p-adic

completion of ⊕υ|pE(Kυ).

Proof. By Lemma 4.2 we know that Tgl has the same order as E(K){p}

and Lemma 4.3 tells us that

#Tloc =
∏

υ-p

c(p)
υ ·

∏

υ|p

#E(Kυ){p} ≡
∏

υ-p

cυ ·
∏

υ|p

#E(Kυ){p} (mod Z×
p )

under our assumptions. Here c
(p)
υ is the highest power of p dividing cυ. If

the fine Tate-Shafarevich group is finite, then R(E/K) coincides with its

subgroup M(E/K) defined to be the elements in the image of the Kummer

map E(K) ⊗ Zp � H1
Σ
(K, TpE). Similarly TpR(E/K) can be replaced by

TpM(E/K). Now the Theorem 7.1 in [19] can be used to compute I : it states

that there is an exact sequence

(6.1) 0 � I � T � TorsZp
(D) � M(E/K)/ div � 0
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with T beings the quotient of ⊕υ|pE(Kυ){p} by the global torsion points. By

the finiteness of �(E/K) we have a short exact sequence

(6.2) 0 � M(E/K)/ div � R(E/K)/ div ��(E/K) � 0

and hence we can compute modulo Z×
p

#Tloc

#Tgl
·
#(R(E/K)/ div)

#I
≡

∏

υ-p

cυ ·#T ·
#(M(E/K)/ div) ·#�(E/K)

#I

≡
∏

υ-p

cυ ·#I ·# TorsZp
(D) ·

#�(E/K)

#I

which finished the proof of the corollary. �

Finally we specify to the case of a curve over Q and treat the cases of rank 0,

1 and strictly bigger than 1 separately.

Corollary 6.3. Let E be an elliptic curve defined over Q with potentially

good reduction at p whose Tate-Shafarevich group X(E/Q) is finite. The fine

Selmer group R(E/Q) is trivial if the rank of E(Q) is less than 2 and its rank

is equal to rank(E(Q)) − 1 otherwise. If E(Q) is finite then

fR(0) ≡
#E(Qp){p} ·

∏

cυ ·#�(E/Q)

#E(Q){p} ·#J
(mod Z×

p ).

If the rank of E(Q) is equal to 1 then

fR(0) ≡
#D ·

∏

cυ ·#X(E/Q){p}

#J
(mod Z×

p ).

If E(Q) has rank strictly larger than 1 and the p-adic height is non-degenerate

on the fine Selmer group then

f∗
R
(0) ≡ Regcyc(R(E/Q)) ·

#D ·
∏

cυ ·#X(E/Q){p}

#J
(mod Z×

p ).

Proof. These formulae are simply obtained by specifying the formula in

the previous corollary. If the rank of E(Q) is smaller than 2, then R(E/Q) is

trivial and hence the p-adic height pairing is automatically non-degenerate of

regulator equal to 1. If the rank is zero then D is the quotient of E(Qp) by

E(Q){p}. If the rank is positive, then D has to be torsion and by Theorem 3.5

in [19] the fine Tate-Shafarevich group �(E/Q) coincides with the p-primary

part of X(E/Q). Finally the assumption that the reduction is potentially

good and that p 6= 2 assures that cp is not divisible by p and the term
∏

υ-p cυ

has the same valuation as the product of all Tamagawa numbers. �
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7. Proof of Theorem 6.1

The first two assertions are well-known. The first conclusion, that the

dual Y of the fine Selmer group R(E/∞K) is Λ-torsion is usually called the

weak Leopoldt conjecture; it is equivalent to the vanishing of H2
Σ
(∞K, E{p})

(see Proposition 1.3.2 in [12]). The two conclusions are now contained in

Corollaire 3.4.3 of [12]. A different proof is presented in I.7 and I.8 of [17].

In particular, we deduce that the map e in (5.2) whose cokernel is equal

to H2
Σ
(∞K, E{p})Γ must be an isomorphism. By Proposition 4.1, the map b

has finite kernel and cokernel, by (3.2) and (5.3) the same is true for a and

f . Since hλ has the same property by the assumption on the non-degeneracy

of the height, all maps in the diagram (5.4), have finite kernel and cokernel

except maybe c and d. It follows that the kernel of c is finite. Hence the

map ĉ : Y Γ � YΓ has finite cokernel and this, together with the fact that

Y is Λ-torsion, is sufficient to show that ĉ has also finite kernel and that the

leading coefficient of fR has the same valuation as z(c). In fact it can be

deduced from the decomposition theorem for finitely generated Λ-modules.

(See Lemma I.28 in [17] or Lemme 0.2.3 in [10]). It follows now that d has

finite kernel and cokernel, too.

Note that the target of d is isomorphic (via e and f) to RΣ(E/K)∧ which

is known to be a divisible group by Lemma 3.1. Hence the finite cokernel of

d is trivial. We need the following

Lemma 7.1. There is a surjective map

⊕ΣH1(∞Kυ, E{p})Γ
g
� (∞H1(E/K)∧)Γ.

Proof. Define the group ∞C by the exact sequence

(7.1) 0 � R(E/∞K) � H1
Σ
(∞K, E{p}) � ∞C � 0

The global duality in section 2.1 over ∞K allows us to complete this by another

exact sequence

(7.2) 0 � ∞C � ⊕Σ H1(∞Kυ, E{p}) � ∞H1(E/K)∧ � 0

where the last zero comes from the proven weak Leopoldt conjecture, because

H2
Σ
(∞K, E{p}) is trivial. So from (7.1) we conclude that

(7.3)
0 � R(E/∞K)Γ � H1

Σ
(∞K, E{p})Γ � ∞CΓ �

� R(E/∞K)Γ
d
� H1

Σ
(∞K, E{p})Γ � ∞CΓ � 0

is an exact sequence in which the surjective map d appears. Hence ∞CΓ is

trivial. From (7.2) we see that

(7.4) 0 � ∞CΓ � ⊕Σ H1(∞Kυ, E{p})Γ �
(

∞H1(E/K)∧
)Γ

� 0



16 CHRISTIAN WUTHRICH

and the lemma follows. �

We will need the short exact sequence

(7.5) 0 � ∞H1(E/K)Γ
cor
� H1

Σ
(K, TpE) � ∞H2(E/K)Γ � 0

which is a consequence of the spectral sequence of Tate, see Theorem II.1.11

and II.1.12 in [9]. The dual of this sequence can now be put together with

the two exact sequences (4.2) in a larger commutative diagram:

0 0 0

H1
Σ
(∞K, E{p})Γ

f

◦ � ⊕ΣH1(∞Kυ, E{p})Γ

f

◦ � (∞H1(E/K)Γ)∧

f

H1
Σ
(K, E{p})

f

◦ � ⊕ΣH1(Kυ, E{p})

f

◦ � H1
Σ
(K, TpE)∧

f

Tgl

f

◦ � Tloc

f

◦ � (∞H2(E/K)Γ)∧

f

0

f

0

f

0

f

Here the vertical lines are exact sequences; the horizontal lines are not exact

but they form at least a cochain complex (completed with zeros to the left

and the right), which is symbolised with the arrows of the form ◦ � . Note

that the top line is the Γ-invariance of a part of the global duality over ∞K

as we used it before for the definition on ∞C. In order to recover the bottom

complex, we take the second sequence exposed in 2.1

(7.6)

0 � E(∞K){p} � ∞T � ∞H2(E/K)∧ � R(E/∞K) � 0

where ∞T is ⊕ΣH0(∞Kυ, E{p}). The Γ-coinvariance of this sequence gives

the desired complex

(7.7) 0 � Tgl ◦ � Tloc ◦ � (∞H2(E/K)Γ)∧ � R(E/∞K)Γ � 0.

The middle complex of the above huge diagram is actually simply a part

of the global duality sequence over K and, hence, is exact in the middle.

The long exact sequence associated to this short exact sequence of cochain

complexes breaks up into two exact sequences with four terms. Denote the

cochain complexes by Z•
top, Z•

mi and Z•
bo respectively and fix notations so that

their zero-th term is on the middle vertical line. Comparing with (4.1), we
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get that the first part is simply

(7.8)

0 � H−1(Z•
bo) � H−1(Z•

mi) � H−1(Z•
top) � H0(Z•

bo) � 0

0 � ker(b)

w

w

w

w

� R(E/K)

w

w

w

w

b
� R(E/∞K)Γ

w

w

w

w

� coker(b)

w

w

w

w

� 0

Lemma 7.1 shows that H1(Z•
top) = 0. The sequence (7.4) proves that ∞CΓ is

the kernel of Z0
top � Z1

top; together with (7.3) this yields H0(Z•
top) = ker d.

Finally the sequence (7.7) shows that H1(Z•
bo) is equal to R(E/∞K)Γ, hence

we have

0 � H0(Z•
top) � H1(Z•

bo) � H1(Z•
mi) � H1(Z•

top) � 0

0 � ker(d)

w

w

w

w

� R(E/∞K)Γ

w

w

w

w

w

� RΣ(E/K)∧

w

w

w

w

� 0

w

w

w

w

w

We shall prove now the third statement of Theorem 6.1. Since ker(d) is

finite, the previous exact sequence shows that there is an injection of RΣ(E/K)

into the dual of R(E/∞K)Γ with finite cokernel. (It is actually not difficult to

show that this map is the composition d̂◦ ê◦ f̂ .) Then from the sequence (7.7),

one deduces an injection of the dual of R(E/∞K)Γ into ∞H2(E/K)Γ whose

cokernel lies in the finite group Tloc, see Lemma 4.3. Thus we have an injection

of RΣ(E/K) into the group ∞H2(E/K)Γ with image of finite index.

There is also a map from R(E/K) into ∞H2(E/K)Γ obtained by sending

R(E/K) into H1
Σ
(K, TpE), followed by the second map in the sequence (7.5)

coming from Tate’s spectral sequence. This map restricts to the previous

injection on RΣ(E/K). Since R(E/K) is Zp-free by Lemma 3.1, the kernel

of R(E/K) � ∞H2(E/K)Γ must be trivial.

Finally, we come to the last part of the theorem, namely the computation

of f∗
R
(0) = z(c). From the previous computations, we may compute the order

of J as

#J · [R(E/K) : RΣ(E/K)] = [∞H2(E/K)Γ : RΣ(E/K)]

= # ker(d) · [(∞H2(E/K)Γ)∧ : R(E/∞K)Γ]

= # ker(d) ·
#Tloc ·#H1(Z•

bo)

#Tgl ·#H0(Z•
bo)

.
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In the last line, we have used the complex (7.7). The identification in (7.8)

allows us to rewrite the expression as

#J · [R(E/K) : RΣ(E/K)] = # ker(d) ·
#Tloc ·# ker(b)

#Tgl ·# coker(b)

= z(d) · z(b) ·
#Tloc

#Tgl
(7.9)

We now compute z(c) using the decomposition of the p-adic height in (5.4),

(7.9), (3.2) and the fact that e and f are isomorphisms.

z(c) =
z(ĥ)

z(f) · z(e) · z(d) · z(b) · z(a)

= Regλ(RΣ(E/K)) ·
#Tloc

#Tgl ·#J · [R(E/K) : RΣ(E/K)]
·

·
#(R(E/K)/ div)

[R(E/K) : RΣ(E/K)] ·#I

If the regulator on RΣ(E/K) is replaced by Regλ(R(E/K)) times the square

of the index [R(E/K) : RΣ(E/K)], the index cancels from the formula. We

obtain the formula in the theorem, which is now independent of the chosen

set Σ. �

8. On the µ-invariant

Proposition 8.1. Let E be an elliptic curve over Q which admits an

isogeny defined over Q of degree p. Then the µ-invariant of the dual of

R(E/∞Q) is zero.

Proof. Let C the kernel of the isogeny. The fixed field K of the kernel of the

map Gal(Q̄ : Q) � Aut(C) is a cyclic extension of Q over which E admits

a p-torsion point. By Corollary 3.6 of [5] this is enough to guarantee that

the µ-invariant over K is trivial. (The proof relies on the theorem of Ferrero-

Washington on the triviality of the classical µ-invariant.) The µ-invariant over

Q can only be smaller. �

Coates and Sujatha made the following

Conjecture 8.2. Let E/K be an elliptic curve over a number field. Then

the µ-invariant of the fine Selmer group with respect to the cyclotomic Zp-

extension is zero.

We will see in the examples that our computation provide ample numerical

evidence for this conjecture over Q.
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9. Curves of rank 0

In this and the following two sections, we wish to give several numerical

examples in order to explain what one can obtain from the Euler-characteristic

formula in Corollary 6.3. The curve E will always be defined over Q and we

will frequently assume that the Tate-Shafarevich group is finite.

The first part is concerned with elliptic curves E of rank 0 over Q. Since

M(E/Q), contained in E(Q) ⊗ Qp/Zp
, is trivial, we see that R(E/Q) is equal

to �(E/Q). On the compact side, we know that R(E/Q) is zero if and only

�(E/Q) is finite; in which case, the group J is therefore nothing else but

J = coker
(

cor: ∞H1(E/Q)Γ � H1
Σ
(Q, TpE)

)

= ∞H2(E/Q)Γ.

Proposition 9.1. Suppose X(E/Q) is finite. If E(Q) is finite but non-

trivial, then R(E/∞Q) and J are trivial for all primes p > 7 not dividing
∏

υ cυ or #X(E/Q).

Proof. For p > 5, we have 0 < #Ẽns(Fp) < 2p by the theorem of Hasse-

Weil. Since there is a point of finite order 1 < ` 6 7 defined over Q, the

number of points in the reduction must be divisible by ` and hence can not be

equal to p unless ` = p. Therefore for a prime p > 7 dividing
∏

cυ, there can

not be a point of order p on E(Qp). Hence the numerator in the first formula of

Corollary 6.3 contains only factors which are not divisible by p. This formula

only applies if E has potentially good reduction at p; but if not the numerator

is still a bound on the product #J · fR(0). Hence #J = fR(0) = 1, and so

fR ∈ Λ× implies that R(E/Q) is finite.

Moreover we see from Proposition 4.1, we see that b is an isomorphism,

i.e. R(E/Q)Γ is trivial. This implies that R(E/∞Q) is trivial because it is

finite. �

If there is no torsion point defined over Q, then it is still true that the fine

Selmer group over ∞Q is most often trivial:

Proposition 9.2. For an elliptic curve E/Q of rank 0 with finite X(E/Q),

there is a set of density of 1 of primes for which R(E/∞Q) is finite. If E

admits an isogeny of degree p to a curve with a non-trivial torsion point, we

may take the set to include all but a finite number of primes.

Proof. The proof of Proposition 5.1 in Greenberg’s part of [3] can be applied

to the formula in Corollary 6.3. �
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9.1. Numerical examples. It is quite traditional to consider as a first

example the curves of conductor 11. They are given by the three equations

E1 : y2 + y = x3 − x2 − 10 x − 20

E2 : y2 + y = x3 − x2 − 7820 x − 263580

E3 : y2 + y = x3 − x2

For all good, ordinary primes p 6= 5, the Selmer group S(Ei/∞Q) is trivial

(see [4, Theorem 4.6]), and for all supersingular primes it is isomorphic to Λ

(see [4, Theorem 4.5]). For p = 5, we have

S(E1/∞Q)∧ = Λ/(5) S(E2/∞Q)∧ = Λ/(52) S(E3/∞Q)∧ = 0

Proposition 9.3. The fine Selmer groups R(Ei/∞Q) of the curves of con-

ductor 11 are trivial for all odd primes p and all i, except for E1 and p = 5

in which case it is finite but non-trivial and J contains 5 elements.

Proof. It is known that the Tate-Shafarevich groups of the three curves Ei

are trivial, see [17, Lemma VI.3]. Let p be a prime not dividing 2 · 5 · 11 and,

hence, of good reduction. The first formula in Corollary 6.3 gives

#J · fR(0) ≡ #Ei(Qp){p} (mod Z×
p )

because the product of the Tamagawa factors is equal to 5 (for E1 only) or 1

and there are no global p-torsion points for p 6= 5. On E1 there is a rational

5-torsion point. This implies just as in the proof of Proposition 9.1 that p > 7

is non-anomalous, hence we can check that Ei(Qp){p} is trivial for all p 6= 5.

So for all these primes J and R(Ei/∞Q) are trivial.

For p = 11, one can deduce that #J · fR(0) = 1 in the same manner, but

using the formula in Theorem 6.1 which hold also for primes of bad reduction.

Finally for p = 5, we know that the characteristic power series of the Selmer

groups are powers of 5. But 5 can not divide the series fR by Proposition 8.1

because of the presence of isogenies of degree 5. Hence we have also here that

R(Ei/∞Q) is finite. On the other hand, we compute that #J · fR(0) = #J is

equal to 5 for E1 and 1 for the other curves. For i = 2 and 3, Proposition 4.1

proves that R(Ei/∞Q)Γ is trivial, whence so is R(Ei/∞Q). Meanwhile for

i = 1 we have #R(E1/∞Q)Γ = 5. �

Another more complicated example is the curve 182D1 given by

E : y2 + x y + y = x3 − x2 + 3 x − 5

and the prime p = 5. Unlike in the previous case we do not have an isogeny

of degree p at our disposition. The Mordell-Weil group E(Q) is trivial and

the product
∏

cυ is equal to 1. The 5-primary part of the Tate-Shafarevich

group X(E/Q) can be verified to be trivial using the Heegner point over
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the field Q(i). Although there is no 5-torsion point in E(Q), there is one in

E(Q5), hence we have #J · fR(0) = 5. Even though we can not conclude

whether R(E/∞Q) is finite or not, we can still decide that Conjecture 8.2

holds. Since E[p] is an irreducible Galois-representation, the theorem of Kato

shows that fS divides the p-adic L-function. The invariants of this latter have

been computed by Pollack [13] and he claims that µS = 0. Since fR divides

fS, we must have that µR = 0. The λ-invariant of the usual Selmer group

equals at most 2.

10. Curves of rank 1

Compared to the computations for curves of rank 0, the only big difference

is the presence of the term D in the formula in Corollary 6.3. Let E be the

curve 37A1

E : y2 + y = x3 − x.

It is known that E(Q) is a free group generated by P = (0, 0) and X(E/Q) =

0, see [17, Lemma VI.5.]. We choose the good ordinary non-anomalous prime

p = 179 which is the smallest prime for which D is non-trivial, see (6) in [19].

The formula gives now #J · fR(0) = p. But since the prime p has good

ordinary reduction, we may use the Euler-characteristic formula (1.1) for the

usual Selmer group and we get that f∗
S
(0) is a unit and hence fS = T . Hence we

can deduce that fR = 1 and that J has p elements. In particular R(E/∞Q)

is finite but non-trivial. The same way one proves the following, see [17,

Proposition VI.6.].

Proposition 10.1. The fine Selmer group R(E/∞Q) for the curve 37A1

is finite for all odd primes p < 1000.

We do not know anything about the distribution of primes p for a fixed

elliptic curve E for which the group D is non-trivial. But it seems that for

curves of rank 1, there might be an infinite set of such p but probably of

density 0. Nevertheless even for these primes, the above method consisting of

comparing with the usual Selmer group gives for most of them that the fine

Selmer group R(E/∞Q) is finite. This is in support of the Conjecture 1.2.

More computations can be found in [17, Table VI.2].

Here is a supersingular example:

E : y2 + x y + y = x3 − x2.

This is the curve labelled 53A1 whose Mordell-Weil group is generated by P =

(0, 0). Conjecturally the Tate-Shafarevich group is trivial; it can be shown

with a 3-descent that X(E/Q)[3] is trivial. We consider the supersingular
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prime p = 3. There are no 3-torsion points on E(Q3), but D is of order

3, because the first multiple of P in the kernel of reduction at 3 is 7 · P =

( 40
81 ,− 1025

729 ) which is already in the second layer of the formal group. Hence

#J · fR(0) = 3. Now, Pollack [13] computes for this example the Iwasawa

invariants of the 3-adic analytic L-functions of the + and − Selmer groups as

defined in [14]. They are both equal to T . Using Kobayashi’s result [8] on the

main conjecture in the supersingular context and that fR has to divide both

of these analytic L-function, we draw the conclusion that fR is trivial and so

R(E/∞Q) is, once again, finite.

11. Curves of rank > 2

The situation is similar to the rank 1 case. One more factor is appearing,

due to the fact that the fine Selmer group R(E/Q) is no longer finite, namely

the regulator. The non-degeneracy of the p-adic height implies that R(E/∞Q)

is Λ-torsion. But over Q this is known unconditionally by the much celebrated

theorem of Kato. We still need to compute the p-adic height for computing a

bound on the leading coefficient f∗
R
(0).

The methods for proving that the characteristic power series fR is equal to

T r where r is the corank of R(E/Q) are the same as before : If the formula

for #J · f∗
R
(0) does not prove it, we will try to compare it with the classical

formula (1.1) for f∗
S
(0). The last possibilities would be to use either an isogeny

of degree p, if there is one defined over Q, or to use analytic computations by

Pollack [13] and the divisibility of Kato. But all these methods are only useful

to give upper bounds on the Iwasawa-invariants of R(E/∞Q). For tables and

details of the computation, we refer the reader to [17, Table VI.3].

So far, we did not present any example in which the characteristic power

series fR is not simply a power of T . The last example gives now a curve with

a different behaviour. In this case one can prove that the fine Selmer group

has to grow because the rank of the fine Mordell-Weil group increases. There

is no known example yet of an elliptic curve E/Q and a prime p for which the

group �(E/∞Q) is infinite. Compare this with the Question 8.3 in [19].

The following example is a rather complicated case for which the character-

istic series of the fine Selmer group is not trivial. Let E be the curve 5692A1

given by

E : y2 = x3 + x2 − 18 x + 25.

The Mordell-Weil group is a free group generated by the points P1 = (0, 5)

and P2 = (1, 3). We are interested in this curve for the prime p = 3. It has
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good ordinary, anomalous reduction at p, but E(Q3){3} = 0. The analytic

order of X(E/Q) is 1 and the product of Tamagawa numbers is 3.

Assuming the triviality of the 3-primary part of the X(E/Q), we get that

the fine regulator has valuation 5 and the formula in Corollary 6.3 shows that

#J · f∗
R
(0) has valuation 6. Since it has ordinary reduction, we may compare

with the characteristic series of the Selmer group. The first coefficient f ∗
S
(0)

is 33 by (1.1) if X(E/Q) has no 3-torsion.

Proposition 11.1. Assume that the 3-primary part of X(E/Q) is trivial.

Then the characteristic power series of the Selmer group is equal to

fS = T 2 · (3 + 3T + T 2)2 · (3 + 9T + 18T 2 + 21T 3 + 15T 4 + 6T 5 + T 6)

= ((1 + T )3 − 1) · ((1 + T )9 − 1)

The characteristic power series for the dual of the fine Selmer group is

fR = T · (3 + 3T + T 2) = (1 + T )3 − 1.

The group J contains 35 elements. In particular, we have that E(∞Q) has

rank 12, M(E/∞Q) has rank 3 and X(E/∞Q) is finite.

Proof. Let 1Q be the first layer of the cyclotomic Z3-extension of Q; it is

generated by α satisfying α3 − 3α + 1 = 0. With some luck, we were able to

find six independent points in E(1Q).

P3 = (−α2 − 2 · α + 2,− 3 · α2 − 3 · α + 4),

P4 = (−α2 − 2 · α + 3,− 2 · α2 − 2 · α),

P5 = (−2 · α2 − 3 · α + 4,− α2 + 2),

P6 = (−2 · α2 − 2 · α + 6,− 2 · α2 + 2 · α + 9).

Hence the rank of E(1Q) is at least 6. Next, we are looking at the second

layer 2Q defined by β with β3− 3 β = α. Again we are lucky and find a point

P7 = (− β6 + 7 · β4 − β3 − 14 · β2 + 4 · β + 7,

β7 − 3 · β6 − 7 · β5 + 20 · β4 + 11 · β3 − 36 · β2 + β + 15)

which is linearly independent from the previous six points. The rank of E(2Q)

has to be at least 12.

The series fS is therefore divisible by the right hand side of the formula in

the proposition. Since f∗
S
(0) = 33, this divisibility must be an equality.

Because the rank of the Mordell-Weil group is jumping from rankE(Q) = 2

to rankE(1Q) = 6, it is clear that the fine Mordell-Weil group increases its

rank from 1 to 3, in other words (3 + 3T + T 2) divides exactly once fR. It is

not possible that the last factor divides fR.

�
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The analytic 3-adic L-function can be shown to be divisible by the three

irreducible factors in the formula, but by no other distinguished polynomial

or by p. I am thankful to Robert Pollack for this computation.

References

1. Dominique Bernardi, Hauteur p-adique sur les courbes elliptiques, Seminar on Number
Theory, Paris 1979–80, Progr. Math., vol. 12, Birkhäuser Boston, 1981, pp. 1–14.
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Mathématique de France, Paris, 2004.

8. Shin-ichi Kobayashi, Iwasawa theory for elliptic curves at supersingular primes, Invent.
Math. 152 (2003), no. 1, 1–36.

9. Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number
fields, Grundlehren der Mathematischen Wissenschaften, vol. 323, Springer, 2000.
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