1 Prime Numbers and Arithmetic

Definition. A **prime number** is a positive integer p who has exactly two positive divisors, namely 1 and p.

Notation. For $m, n \in \mathbb{Z}$ write $m \mid n$ to mean m divides n, i.e. n = am for some $a \in \mathbb{Z}$.

Definition. Let p be a prime number. Given an integer $n \neq 0$, we write $\operatorname{ord}_p(n)$ for the largest power of p dividing n. So $p^{\operatorname{ord}_p(n)}$ divides n, but $p^{\operatorname{ord}_p(n)+1}$ does not.

Fundamental theorem of Arithmetic 1.1. Every nonzero $n \in \mathbb{Z}$ has a factorisation

$$n = \operatorname{sign}(n) \cdot \prod_{\text{primes } p} p^{\operatorname{ord}_p(n)} \qquad where \qquad \operatorname{sign}(n) = \begin{cases} +1 & \text{if } n > 0, \\ -1 & \text{if } n < 0. \end{cases}$$

This factorisation is unique. Each n has only a finite number of prime divisors, so the product is really finite: for each n, the exponent $\operatorname{ord}_p(n) = 0$ for all but a finite number of primes p.

Definition. The greatest common divisor of $m, n \in \mathbb{Z}$ is the largest integer which divides both m and n. Notation: gcd(m, n).

Euclidean algorithm can be used to find $g = \gcd(m, n)$ and also integers x, y such that g = mx + ny.

Notation. For $m \ge 1$ write $a \equiv b \pmod{m}$, read as "a is **congruent** to b modulo m", to mean $m \mid (a - b)$.

Chinese Remainder Theorem 1.2. Let $m_1, m_2, \ldots m_r$ be pairwise coprime integers and let a_1 , $a_2, \ldots a_r$ be integers. Then solving the congruences $x \equiv a_i \pmod{m_i}$ for all $1 \leq i \leq r$ is equivalent to solving a congruence $x \equiv b \pmod{m_1 \cdot m_2 \cdots m_r}$ for some integer b.

Theorem 1.3. There are infinitely many primes.

Proof. Suppose that there are only finitely many primes, say p_1, p_2, \ldots, p_k . Then $n = 1 + \prod_{i=1}^k p_i$ must have a prime factor not in $\{p_1, \ldots, p_k\}$.

Definition. An integer a is square-free if it has no square divisors greater than 1; alternatively, if $\operatorname{ord}_p(a) \in \{0,1\}$ for all primes p.

Lemma 1.4. If $n \in \mathbb{Z}$ is nonzero then $n = a \cdot b^2$ with a square-free.

Proof. Take b^2 to be the largest divisor of |n| which is a square and set $a = n/b^2$. If a square c^2 divides a, then c^2b^2 divides n. So by the maximality of b, we have c = 1 and a is square-free. \Box

Arithmetic Functions and the Möbius inversion theorem

Definition. An arithmetic function is any function $f: \mathbb{N} \to \mathbb{C}$.

Examples. Functions that you have seen in G12ALN like $\tau(n)$, counting the number of divisors of n, or $\sigma(n)$, the sum of all divisors of n. More generally we set $\sigma_k(n) = \sum_{d|n} d^k$, so that $\tau = \sigma_0$ and $\sigma = \sigma_1$. And there is Euler's totient function $\varphi(n)$ counting the number of integers $1 \leq m \leq n$ that are coprime to n.

n	1	2	3	4	5	6	7	8	9	10	11	12	$\dots p$ prime
$ au(n) \ \sigma(n) \ \sigma_2(n)$	1	2	2	3	2	4	2	4	3	4	2	6	2
$\sigma(n)$	1	3	4	7	6	12	8	15	13	18	12	28	p+1
$\sigma_2(n)$	1	5	10	21	26	50	50	85	91	130	122	210	$p^2 + 1$
$\varphi(n)$	1	1	2	2	4	2	6	4	6	4	10	4	p-1

Definition. The **Möbius function** $\mu \colon \mathbb{N} \to \{-1, 0, 1\}$ is defined by

$$\mu(n) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{if } n \text{ is not square-free} \\ (-1)^r & \text{if } n = p_1 p_2 \dots p_r \text{ with } p_i \text{ distinct primes.} \end{cases}$$
$$\frac{n \quad | \ 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad \dots \quad 30}{\mu(n) \quad 1 \quad -1 \quad -1 \quad 0 \quad -1 \quad 1 \quad -1 \quad 0 \quad 0 \quad 1 \quad -1 \quad 0 \quad -1} \end{cases}$$

Lemma 1.5. If n > 1 then $\sum_{d|n} \mu(d) = 0$.

Example.
$$\mu(12) + \mu(6) + \mu(4) + \mu(3) + \mu(2) + \mu(1) = 0 + 1 + 0 + (-1) + (-1) + 1 = 0$$

Proof. Write $n = p_1^{a_1} \cdots p_r^{a_r}$. Then in the sum $\sum_{d|n} \mu(d)$ we can neglect all terms for which d is not square-free:

$$\begin{split} \sum_{d|n} \mu(d) &= \sum_{\substack{d|n \\ \text{square-free}}} \mu(d) \\ &= \mu(1) + \mu(p_1) + \mu(p_2) + \dots + \mu(p_r) + \\ &+ \mu(p_1p_2) + \mu(p_1p_3) + \dots + \mu(p_{r-1}p_r) + \\ &+ \mu(p_1p_2p_3) + \dots + \mu(p_1p_2 \dots p_r) \\ &= 1 + r \cdot (-1)^1 + \binom{r}{2} (-1)^2 + \binom{r}{3} (-1)^3 + \dots + \binom{r}{r} (-1)^r \\ &= (1 + (-1))^r = 0 \end{split}$$

Definition. The convolution of two arithmetic functions f and g is f * g, defined by

$$(f * g)(n) = \sum_{d|n} f(d) \cdot g\left(\frac{n}{d}\right) = \sum_{de=n} f(d) \cdot g(e).$$

The arithmetic functions I and ε are defined by I(n)=1 for all n and

$$\varepsilon(n) = \begin{cases} 1 & \text{if } n = 1; \\ 0 & \text{if } n > 1. \end{cases}$$

Properties of convolution 1.6. For all f, g, h:

(i). $(f * I)(n) = \sum_{d|n} f(d)$ (ii). f * g = g * f(iii). f * (g * h) = (f * g) * h (v). $f * \varepsilon = \varepsilon * f = f$

Proof. The first property is by definition, the second follows from the symetry of the formula $(f * g)(n) = \sum_{ed=n} f(e)g(d)$. The second property is shown as follows:

$$\begin{pmatrix} f * (g * h) \end{pmatrix}(n) = \sum_{ec=n} f(c) \cdot (g * h)(e)$$

=
$$\sum_{ec=n} f(c) \cdot \sum_{ab=e} g(a)h(b)$$

=
$$\sum_{abc=n} f(c) \cdot g(a) \cdot h(b)$$

which is symetric again so it equals ((f * g) * h)(n) for all n. Property iv) is easy for n = 1 and is exactly what the previous lemma says for n > 1. The last property is easy again.

Möbius Inversion Theorem 1.7. If f is an arithmetic function and $F(n) = \sum_{d|n} f(d)$ then $f(n) = \sum_{d|n} \mu(d) \cdot F(\frac{n}{d})$.

$$Proof. \ F = f * I \implies \mu * F = \mu * (f * I) = f * (\mu * I) = f * \varepsilon = f.$$

Example. By definition, we have $\sigma(n) = \sum_{d|n} d$. So the Möbius inversion theorem for f(n) = n and $F(n) = \sigma(n)$ yields the formula

$$n = \sum_{d|n} \mu(d) \sigma\left(\frac{n}{d}\right).$$

For instance

$$12 = \mu(12)\sigma(1) + \mu(6)\sigma(2) + \mu(4)\sigma(3) + \mu(3)\sigma(4) + \mu(2)\sigma(6) + \mu(1)\sigma(12)$$

= 0 \cdot 1 + (+1) \cdot 3 + 0 \cdot 4 + (-1) \cdot 7 + (-1) \cdot 12 + (+1) \cdot 28.

Theorem 1.8. Let f be an arithmetic function such that f(1) = 1. Then there exists a unique arithmetic function g such that $f * g = \varepsilon$. The arithmetic function g is called the **Dirichlet inverse** of f.

Proof. For n = 1, we have $g(1) = (f * g)(1) = \varepsilon(1) = 1$. Let n > 1. By induction, assume that g(k) was constructed for all k < n. Then $(f * g)(n) = \varepsilon(n) = 0$ gives

$$g(n) = -\sum_{n \neq d|n} g(d) \cdot f\left(\frac{n}{d}\right).$$

Corollary 1.9. Let f and h be arithmetic functions such that f(1) = h(1) = 1. Then there exists a unique arithmetic function g such that f * g = h.

Proof. Take $g = g_1 * h$ where $f * g_1 = \varepsilon$.

Example. The Dirichlet inverse of I is μ , of course. What is Dirichlet inverse of τ ? We are looking for a function g such that $\tau * g = \varepsilon$. We can write $\tau = I * I$ and solve the equation on g:

$$\begin{split} I*I*g &= \varepsilon & \text{now * by } \mu \text{ on the left} \\ \mu*I*I*g &= \mu*\varepsilon \\ \varepsilon*I*g &= \mu \\ I*g &= \mu \\ \mu*I*g &= \mu*\mu \\ \varepsilon*g &= \mu*\mu \\ g &= \mu*\mu. \end{split}$$

Primitive elements

Recall that the Euler function $\varphi(m)$ counts the number of integer in $1 \leq a \leq m$ that are coprime to m.

Theorem 1.10. Let m > 1. For all a coprime to m, we have $a^{\varphi(m)} \equiv 1 \pmod{m}$.

The proof was given in G12ALN 5.4.6. In the problem sheet we will prove that $\varphi = \mu * id$ where id(n) = n.

Definition. Let m > 1 be an integer and a an integer coprime to m. The **multiplicative order** r(a) of a modulo m is the smallest integer k > 0 such that $a^k \equiv 1 \pmod{m}$.

The multiplicative order of elements modulo 13 are listed in the following table.

Lemma 1.11. The multiplicative order r(a) divides $\varphi(m)$ for all gcd(a,m) = 1.

Proof. Let $k = \gcd(r(a), \varphi(m))$. There are integers x and y such that $k = x r(a) + y \varphi(m)$. So

$$a^{k} = a^{x r(a) + y \varphi(m)} = (a^{r(a)})^{x} \cdot (a^{\varphi(m)})^{y} \equiv 1^{x} \cdot 1^{y} = 1 \pmod{m}$$

and the minimality of r(a) imply that k = r(a).

Definition. An integer g is called a **primitive element** modulo m if it has multiplicative order equal to $\varphi(m)$.

Sometimes they are also called **primitive root** modulo m. Primitive elements do not exist for all integers m, for instance for m = 12 and m = 15 there are no primitive elements:

a	1	5	7	11		a	1	2	4	7	8	11	13	14	
a r(a)	1	2	2	2		a r(a)	1	4	2	4	4	2	4	2	
fultiplicative order module 12						Multiplicative order module 15									

Multiplicative order modulo 12

Multiplicative order modulo 15

Theorem 1.12. Let p be a prime. Then there exist a primitive element g modulo p.

Proof. By Fermat's Little Theorem $a^{p-1} \equiv 1 \pmod{p}$ for $p \nmid a$, so X - a divides $X^{p-1} - 1$ in $\mathbb{Z}/_{p\mathbb{Z}}[X]$. Hence

$$X^{p-1} - 1 = (X - 1)(X - 2)(X - 3) \cdots (X - (p - 1))$$

Let $d \mid (p-1)$. The solutions a of $X^d - 1$ are exactly the elements with r(a) dividing d. Writing p-1 = dm, we get

$$(X^{d} - 1)(1 + X^{d} + X^{2d} + \dots + X^{(m-1)d}) = X^{p-1} - 1.$$

So $X^d - 1$ also factors into linear factors and there are d solutions to it. Let $\psi(d)$ be the number of elements $1 \leq a < p$ with multiplicative order d. We have shown that $d = \sum_{c|d} \psi(c)$. In other words $id = \psi * I$. Hence $\psi = id * \mu = \varphi$. So there are exactly $\varphi(p-1) > 0$ elements of multiplicative order p-1 modulo p.

Corollary 1.13. Let p be a prime and let a be an integer coprime to p. Given a primitive element g there exists exactly one $0 \le k < p-1$ such that $a \equiv g^k \pmod{p}$.

Proof. The list $\{g^0, g^1, g^2, \dots, g^{p-2}\}$ does not contain two elements that are congruent modulo p; otherwise $g^i \equiv g^j \pmod{p}$ and so g would have order |j-i| < p-1. Since there are p-1 elements, every non-zero residue class modulo p must appear exactly once in this list.

Note though, that there is no obvious choice for a primitive element. Often a small integer like 2, 3, 5, or 6 will be a primitive element. There are important open question on primitive elements like Artin's conjecture which asks if any integer a > 1 is a primitive element for infinitely many primes p, unless a is a square. In fact, it should happen roughly for 37.396% of all primes p. Primitive elements are also crucial for cryptography, like Elgamal's cipher (see G13CCR).