1 Prime Numbers and Arithmetic

Definition. A prime number is a positive integer p who has exactly two positive divisors, namely 1 and p.

Notation. For $m, n \in \mathbb{Z}$ write $m \mid n$ to mean m divides n, i.e. $n=a m$ for some $a \in \mathbb{Z}$.
Definition. Let p be a prime number. Given an integer $n \neq 0$, we write $\operatorname{ord}_{p}(n)$ for the largest power of p dividing n. So $p^{\operatorname{ord}_{p}(n)}$ divides n, but $p^{\operatorname{ord}_{p}(n)+1}$ does not.

Fundamental theorem of Arithmetic 1.1. Every nonzero $n \in \mathbb{Z}$ has a factorisation

$$
n=\operatorname{sign}(n) \cdot \prod_{\text {primes } p} p^{\operatorname{ord}_{p}(n)} \quad \text { where } \quad \operatorname{sign}(n)= \begin{cases}+1 & \text { if } n>0 \\ -1 & \text { if } n<0\end{cases}
$$

This factorisation is unique. Each n has only a finite number of prime divisors, so the product is really finite: for each n, the exponent $\operatorname{ord}_{p}(n)=0$ for all but a finite number of primes p.

Definition. The greatest common divisor of $m, n \in \mathbb{Z}$ is the largest integer which divides both m and n. Notation: $\operatorname{gcd}(m, n)$.

Euclidean algorithm can be used to find $g=\operatorname{gcd}(m, n)$ and also integers x, y such that $g=m x+n y$.
Notation. For $m \geqslant 1$ write $a \equiv b(\bmod m)$, read as " a is congruent to b modulo m ", to mean $m \mid(a-b)$.

Chinese Remainder Theorem 1.2. Let $m_{1}, m_{2}, \ldots m_{r}$ be pairwise coprime integers and let a_{1}, $a_{2}, \ldots a_{r}$ be integers. Then solving the congruences $x \equiv a_{i}\left(\bmod m_{i}\right)$ for all $1 \leqslant i \leqslant r$ is equivalent to solving a congruence $x \equiv b\left(\bmod m_{1} \cdot m_{2} \cdots m_{r}\right)$ for some integer b.

Theorem 1.3. There are infinitely many primes.

Proof. Suppose that there are only finitely many primes, say $p_{1}, p_{2}, \ldots, p_{k}$. Then $n=1+\prod_{i=1}^{k} p_{i}$ must have a prime factor not in $\left\{p_{1}, \ldots, p_{k}\right\}$.

Definition. An integer a is square-free if it has no square divisors greater than 1 ; alternatively, if $\operatorname{ord}_{p}(a) \in\{0,1\}$ for all primes p.

Lemma 1.4. If $n \in \mathbb{Z}$ is nonzero then $n=a \cdot b^{2}$ with a square-free.

Proof. Take b^{2} to be the largest divisor of $|n|$ which is a square and set $a=n / b^{2}$. If a square c^{2} divides a, then $c^{2} b^{2}$ divides n. So by the maximality of b, we have $c=1$ and a is square-free.

Arithmetic Functions and the Möbius inversion theorem

Definition. An arithmetic function is any function $f: \mathbb{N} \rightarrow \mathbb{C}$.
Examples. Functions that you have seen in G12ALN like $\tau(n)$, counting the number of divisors of n, or $\sigma(n)$, the sum of all divisors of n. More generally we set $\sigma_{k}(n)=\sum_{d \mid n} d^{k}$, so that $\tau=\sigma_{0}$ and $\sigma=\sigma_{1}$. And there is Euler's totient function $\varphi(n)$ counting the number of integers $1 \leqslant m \leqslant n$ that are coprime to n.

n	1	2	3	4	5	6	7	8	9	10	11	12	\ldots	p prime
$\tau(n)$	1	2	2	3	2	4	2	4	3	4	2	6		2
$\sigma(n)$	1	3	4	7	6	12	8	15	13	18	12	28		$p+1$
$\sigma_{2}(n)$	1	5	10	21	26	50	50	85	91	130	122	210		$p^{2}+1$
$\varphi(n)$	1	1	2	2	4	2	6	4	6	4	10	4		$p-1$

Definition. The Möbius function $\mu: \mathbb{N} \rightarrow\{-1,0,1\}$ is defined by

$$
\mu(n)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } n \text { is not square-free } \\ (-1)^{r} & \text { if } n=p_{1} p_{2} \ldots p_{r} \text { with } p_{i} \text { distinct primes. }\end{cases}
$$

n	1	2	3	4	5	6	7	8	9	10	11	12	\ldots	30
$\mu(n)$	1	-1	-1	0	-1	1	-1	0	0	1	-1	0		-1

Lemma 1.5. If $n>1$ then $\sum_{d \mid n} \mu(d)=0$.
Example. $\mu(12)+\mu(6)+\mu(4)+\mu(3)+\mu(2)+\mu(1)=0+1+0+(-1)+(-1)+1=0$.
Proof. Write $n=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}$. Then in the sum $\sum_{d \mid n} \mu(d)$ we can neglect all terms for which d is not square-free:

$$
\begin{aligned}
\sum_{d \mid n} \mu(d)= & \sum_{\substack{d \mid n \\
\text { square-free }}} \mu(d) \\
= & \mu(1)+\mu\left(p_{1}\right)+\mu\left(p_{2}\right)+\cdots+\mu\left(p_{r}\right)+ \\
& \quad+\mu\left(p_{1} p_{2}\right)+\mu\left(p_{1} p_{3}\right)+\cdots+\mu\left(p_{r-1} p_{r}\right)+ \\
& \quad+\mu\left(p_{1} p_{2} p_{3}\right)+\cdots+\mu\left(p_{1} p_{2} \cdots p_{r}\right) \\
= & 1+r \cdot(-1)^{1}+\binom{r}{2}(-1)^{2}+\binom{r}{3}(-1)^{3}+\cdots+\binom{r}{r}(-1)^{r} \\
= & (1+(-1))^{r}=0
\end{aligned}
$$

Definition. The convolution of two arithmetic functions f and g is $f * g$, defined by

$$
(f * g)(n)=\sum_{d \mid n} f(d) \cdot g\left(\frac{n}{d}\right)=\sum_{d e=n} f(d) \cdot g(e) .
$$

The arithmetic functions I and ε are defined by $I(n)=1$ for all n and

$$
\varepsilon(n)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } n>1\end{cases}
$$

Properties of convolution 1.6. For all f, g, h :
(i). $(f * I)(n)=\sum_{d \mid n} f(d)$
(ii). $f * g=g * f$
(iii). $f *(g * h)=(f * g) * h$
(iv). $I * \mu=\mu * I=\varepsilon$

$$
(v) . f * \varepsilon=\varepsilon * f=f
$$

Proof. The first property is by definition, the second follows from the symetry of the formula $(f * g)(n)=\sum_{e d=n} f(e) g(d)$. The second property is shown as follows:

$$
\begin{aligned}
(f *(g * h))(n) & =\sum_{e c=n} f(c) \cdot(g * h)(e) \\
& =\sum_{e c=n} f(c) \cdot \sum_{a b=e} g(a) h(b) \\
& =\sum_{a b c=n} f(c) \cdot g(a) \cdot h(b)
\end{aligned}
$$

which is symetric again so it equals $((f * g) * h)(n)$ for all n. Propertiy iv) is easy for $n=1$ and is exactly what the previous lemma says for $n>1$. The last property is easy again.

Möbius Inversion Theorem 1.7. If f is an arithmetic function and $F(n)=\sum_{d \mid n} f(d)$ then $f(n)=\sum_{d \mid n} \mu(d) \cdot F\left(\frac{n}{d}\right)$.

Proof. $F=f * I \Longrightarrow \mu * F=\mu *(f * I)=f *(\mu * I)=f * \varepsilon=f$.
Example. By definition, we have $\sigma(n)=\sum_{d \mid n} d$. So the Möbius inversion theorem for $f(n)=n$ and $F(n)=\sigma(n)$ yields the formula

$$
n=\sum_{d \mid n} \mu(d) \sigma\left(\frac{n}{d}\right)
$$

For instance

$$
\begin{aligned}
12 & =\mu(12) \sigma(1)+\mu(6) \sigma(2)+\mu(4) \sigma(3)+\mu(3) \sigma(4)+\mu(2) \sigma(6)+\mu(1) \sigma(12) \\
& =0 \cdot 1+(+1) \cdot 3+0 \cdot 4+(-1) \cdot 7+(-1) \cdot 12+(+1) \cdot 28
\end{aligned}
$$

Theorem 1.8. Let f be an arithmetic function such that $f(1)=1$. Then there exists a unique arithmetic function g such that $f * g=\varepsilon$. The arithmetic function g is called the Dirichlet inverse of f.

Proof. For $n=1$, we have $g(1)=(f * g)(1)=\varepsilon(1)=1$. Let $n>1$. By induction, assume that $g(k)$ was constructed for all $k<n$. Then $(f * g)(n)=\varepsilon(n)=0$ gives

$$
g(n)=-\sum_{n \neq d \mid n} g(d) \cdot f\left(\frac{n}{d}\right) .
$$

Corollary 1.9. Let f and h be arithmetic functions such that $f(1)=h(1)=1$. Then there exists a unique arithmetic function g such that $f * g=h$.

Proof. Take $g=g_{1} * h$ where $f * g_{1}=\varepsilon$.

Example. The Dirichlet inverse of I is μ, of course. What is Dirichlet inverse of τ ? We are looking for a function g such that $\tau * g=\varepsilon$. We can write $\tau=I * I$ and solve the equation on g :

$$
\begin{aligned}
I * I * g & =\varepsilon & & \\
\mu * I * I * g & =\mu * \varepsilon & & \\
\varepsilon * I * g & =\mu & & \\
I * g & =\mu & & \\
\mu * I * g & =\mu * \mu & & \\
\varepsilon * g & =\mu * \mu & & \\
g & =\mu * \mu . & &
\end{aligned}
$$

Primitive elements

Recall that the Euler function $\varphi(m)$ counts the number of integer in $1 \leqslant a \leqslant m$ that are coprime to m.

Theorem 1.10. Let $m>1$. For all a coprime to m, we have $a^{\varphi(m)} \equiv 1(\bmod m)$.
The proof was given in G12ALN 5.4.6. In the problem sheet we will prove that $\varphi=\mu *$ id where $\operatorname{id}(n)=n$.

Definition. Let $m>1$ be an integer and a an integer coprime to m. The multiplicative order $r(a)$ of a modulo m is the smallest integer $k>0$ such that $a^{k} \equiv 1(\bmod m)$.

The multiplicative order of elements modulo 13 are listed in the following table.

a	1	2	3	4	5	6	7	8	9	10	11	12
$r(a)$	1	12	3	6	4	12	12	4	3	6	12	2

Lemma 1.11. The multiplicative order $r(a)$ divides $\varphi(m)$ for all $\operatorname{gcd}(a, m)=1$.

Proof. Let $k=\operatorname{gcd}(r(a), \varphi(m))$. There are integers x and y such that $k=x r(a)+y \varphi(m)$. So

$$
a^{k}=a^{x r(a)+y \varphi(m)}=\left(a^{r(a)}\right)^{x} \cdot\left(a^{\varphi(m)}\right)^{y} \equiv 1^{x} \cdot 1^{y}=1 \quad(\bmod m)
$$

and the minimality of $r(a)$ imply that $k=r(a)$.
Definition. An integer g is called a primitive element modulo m if has multiplicative order equal to $\varphi(m)$.

Sometimes they are also called primitive root modulo m.
Primitive elements do not exist for all integers m, for instance for $m=12$ and $m=15$ there are no primitive elements:

$$
\begin{array}{c|cccc}
a & 1 & 5 & 7 & 11 \\
r(a) & 1 & 2 & 2 & 2
\end{array}
$$

a	1	2	4	7	8	11	13	14
$r(a)$	1	4	2	4	4	2	4	2

Multiplicative order modulo 12
Multiplicative order modulo 15

Theorem 1.12. Let p be a prime. Then there exist a primitive element g modulo p.

Proof. By Fermat's Little Theorem $a^{p-1} \equiv 1(\bmod p)$ for $p \nmid a$, so $X-a$ divides $X^{p-1}-1$ in $\mathbb{Z} / p \mathbb{Z}[X]$. Hence

$$
X^{p-1}-1=(X-1)(X-2)(X-3) \cdots(X-(p-1))
$$

Let $d \mid(p-1)$. The solutions a of $X^{d}-1$ are exactly the elements with $r(a)$ dividing d. Writing $p-1=d m$, we get

$$
\left(X^{d}-1\right)\left(1+X^{d}+X^{2 d}+\cdots+X^{(m-1) d}\right)=X^{p-1}-1
$$

So $X^{d}-1$ also factors into linear factors and there are d solutions to it.
Let $\psi(d)$ be the number of elements $1 \leqslant a<p$ with multiplicative order d. We have shown that $d=\sum_{c \mid d} \psi(c)$. In other words $\operatorname{id}=\psi * I$. Hence $\psi=\mathrm{id} * \mu=\varphi$. So there are exactly $\varphi(p-1)>0$ elements of multiplicative order $p-1$ modulo p.

Corollary 1.13. Let p be a prime and let a be an integer coprime to p. Given a primitive element g there exists exactly one $0 \leqslant k<p-1$ such that $a \equiv g^{k}(\bmod p)$.

Proof. The list $\left\{g^{0}, g^{1}, g^{2}, \ldots, g^{p-2}\right\}$ does not contain two elements that are congruent modulo p; otherwise $g^{i} \equiv g^{j}(\bmod p)$ and so g would have order $|j-i|<p-1$. Since there are $p-1$ elements, every non-zero residue class modulo p must appear exactly once in this list.

Note though, that there is no obvious choice for a primitive element. Often a small integer like 2, 3,5 , or 6 will be a primitive element. There are important open question on primitive elements like Artin's conjecture which asks if any integer $a>1$ is a primitive element for infinitely many primes p, unless a is a square. In fact, it should happen roughly for 37.396% of all primes p. Primitive elements are also crucial for cryptography, like Elgamal's cipher (see G13CCR).

