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2 Quadratic Reciprocity

2.1 Motivation

In G12ALN 5.3 you have leared how to solve linear equation modulo an integer. The next more
complicated sort of equation will be quadratic equations. But this is really much more complicated.
Even modulo integers m it seems difficult.
We will answer in this chapter how to solve equations like x2 ≡ a (mod p) for a prime p. In
fact, that is an exageration: We will only learn how to detect whether or not this equation has a
solution.
Note that the question is without interest when p = 2. We will therefore assume throughout this
chapter that p is an odd prime.
For p = 3, we see that x2 ≡ 2 has no solution, since 02 ≡ 0 and 12 ≡ (−1)2 ≡ 1. For p = 5, we can
compute all squares:

x 0 1 2 3 4

x2 0 1 4 4 1

So only when a ≡ 0, 1, 4 (mod 5), we have a solution to x2 ≡ a (mod p). Similarly for p = 7, we
have

x 0 1 2 3 4 5 6

x2 0 1 4 2 2 4 1

so only a ≡ 0, 1, 2, 4 admit a “square root”, but not a ≡ 3, 5, 6.

Reduction to the prime case

[non-exminable] More generally, we could ask for a quadratic equation x2 + a x + b ≡ 0 (mod m).
Suppose for simplicity that m is odd. Then we can complete the square

(
x + a

2

)2 ≡ 1
4 (a2 − 4 b)

(mod m). So we are reduced to find a solution to an equation of the form x2 ≡ a (mod m)
discussed above.
We can use the Chinese remainder theorem to reduce to the case when m = pk is a prime power.
Let m = pa1

1 · · · par
r be the prime factorisation of m. If we can find a solution xi to the equation

x2 ≡ a (mod pai
i ) then the Chinese remainder theorem gives us a solution x modulo m. If there

is a prime pi such that we can not find a solution to x2 ≡ a (mod pai
i ), then we will never be able

to find a solution modulo m either.
Note that there are several solutions modulo pi in general and we will find plenty of solutions
modulo m. E.g. x2 ≡ 4 (mod 15) has four solutions modulo 15, namely x ≡ 2, 7, 8, 13 (mod 15).
Let p be an odd prime. Finally one would like to reduce the question modulo pk to a question
modulo p. This can be done indeed using Hensel’s lemma (G12ALN 5.3.5). We review it in the
last chapter.

2.2 The Legendre symbol

Definition. A quadratic residue modulo p is an integer a (mod p) such that p - a and x2 ≡ a
(mod p) does have solutions; a quadratic non-residue1 modulo p is an integer a such that (p - a
and) x2 ≡ a (mod p) has no solutions.

Lemma 2.1. Let p be an odd prime. Let g be a primitive element modulo p. Then a ≡ gk (mod p)
is a quadratic residue if and only if k is even, otherwise it is a quadratic non-residue. There are
exactly p−1

2 quadratic residues modulo p and just as many quadratic non-residues.

1A stupid name: It should be “non-quadratic residue”.
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Proof. If k = 2n is even, then x = gn is a solution to x2 ≡ gk (mod p) and hence gk is a quadratic
residue. Conversely, if b = gn is a solution to x2 ≡ gk (mod p) then 2n ≡ k (mod p − 1). Since
p− 1 is even, k must be even, too.
Now, g0, g2, g4, . . . , gp−3 are all quadratic residues modulo p and g1, g3, g5, . . . , gp−2 are all quadratic
non-residues modulo p. There are p−1

2 of each.

This would be false if p were not assumed to be prime. The only invertible residue classes that are
square modulo 15 are 1 and 4.

Definition. The Legendre Symbol (a
p ) is defined for a ∈ Z and p an odd prime by

(a

p

)
=


0 if p | a;
+1 if p - a and x2 ≡ a (mod p) has solutions;
−1 if p - a and x2 ≡ a (mod p) has no solutions.

So (a
p ) = +1 when a is a quadratic residue and (a

p ) = −1 when a is a quadratic non-residue
modulo p.

Remark. The number of solutions to x2 ≡ a (mod p) is always 1 + (a
p ).

Proposition 2.2. (i). (a
p ) = ( b

p ) when a ≡ b (mod p);

(ii). Euler’s Criterion: (a
p ) ≡ a(p−1)/2 (mod p);

(iii). (−1
p ) = (−1)(p−1)/2 =

{
+1 if p ≡ 1 (mod 4);
−1 if p ≡ 3 (mod 4);

(iv). (ab
p ) = (a

p )( b
p ).

Proof. (i). Clear.

(ii). If p | a, then both sides are zero modulo p.

Otherwise a ≡ gk for some k, where g is a fixed primitive element modulo p. Now (a
p ) =

(−1)k.

Let h = g(p−1)/2. Since h2 ≡ 1, but h 6≡ 1 (mod p), we have h ≡ −1 (mod p). Now
a(p−1)/2 ≡ hk ≡ (−1)k modulo p.

(iii). The previous part with a = −1.

(iv). Part ii) shows that (ab
p ) ≡ (a

p )( b
p ), so they are equal as both are −1, 0, 1.

Example. In principle, Euler’s criterion give a way to compute (a
p ). But it is hardly faster than

checking all residue classes x for a solution to x2 ≡ a (mod p). For p = 11, we get

a 0 1 2 3 4 5 6 7 8 9 10

a5 0 1 32 243 1024 3125 7776 16807 32768 59049 100000
a5 mod 11 0 1 −1 1 1 1 −1 −1 −1 1 −1

( a
11 ) 0 1 −1 1 1 1 −1 −1 −1 1 −1
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Note that Euler’s criterion is false when p is not a prime. For instance is 27 6≡ ±1 modulo 15 so
15 can not be a prime. More convincingly, 31996001 ≡ 2664001 6≡ ±1 despite the fact that 3 is not
a square modulo 3992003. So 3992003 is not prime.
An important consequence of the last item in the proposition is the following. If we want to know
how to evaluate (a

p ) for all a, it is enough to evaluate (−1
p ), ( 2

p ) and ( q
p ) for odd primes q, as we

can first factor a. E.g.(−2143018
p

)
=

(−1
p

)
·
(2

p

)
·
(101

p

)
·
(1032

p

)
=

(−1
p

)
·
(2

p

)
·
(101

p

)
.

We will now proceed to give a formula for exactly the other two Legendre symbols ( 2
p ) and ( q

p ).
But first we not an interesting consequence of the propostion:

Theorem 2.3. There are infinitely many primes of the form 4n + 1.

Proof. Suppose {p1, . . . pr} is the complete list of primes of the form 4n + 1. Let p be a prime
divisor of n = (2p1 · · · pr)2 + 1. Then −1 is a quadratic residue modulo p, so p ≡ 1 (mod 4). But
p can not be equal to pi. Contradiction.

2.3 The Computation of (2
p
)

We wish to find a closed formula for ( 2
p ) only depending on the odd prime p. Here is what the first

few values look like

p 3 5 7 11 13 17 19 23 27 31 37
( 2

p ) −1 −1 1 −1 −1 1 −1 1 −1 1 −1

Definition. Let n be an integer. The integer m such that m ≡ n (mod p) and |m| < p
2 is called

the least residue of n modulo p.

Proposition 2.4. ( 2
p ) = (−1)(p

2−1)/8 =

{
+1 if p ≡ ±1 (mod 8);
−1 if p ≡ ±3 (mod 8).

Proof. Consider the least residues of all even integers 2, 4, . . . , p− 1.

p− 1 ≡ −1 ≡ (−1)1 · 1
2 ≡ 2 ≡ (−1)2 · 2

p− 3 ≡ −3 ≡ (−1)3 · 3 . . .

There are p−1
2 elements in the list. Their product gives

2
p−1
2 ·

(p− 1
2

)
! ≡ (−1)

1
2 ·

p−1
2 · p+1

2 ·
(p− 1

2

)
! (mod p) .

Simplifying by the factorial on both sides and using Euler’s criterion proves the proposition.
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2.4 Gauss’s Lemma

The method used to compute ( 2
p ) works for (a

p ) in general:

Gauss’s lemma 2.5. Suppose p - a. Let µ be the number of least residues of the elements in
{a, 2a, 3a, . . . , p−1

2 a} that are negative. Then (a
p ) = (−1)µ.

Proof. The least residues of the k · a are, up to sign, all the numbers between 1 and p−1
2 , since

k1 a ≡ ±k2 a (mod p) is impossible unless k1 = k2. Taking the product gives

a(p−1)/2((p− 1)/2)! ≡ (−1)µ((p− 1)/2)! (mod p)

and hence
a(p−1)/2 ≡ (−1)µ (mod p)

from which the result follows by Euler’s criterion.

Example. As an example we can take a = 3 and p = 11. So p−1
2 = 5 and we are looking at the set

{3, 6, 9, 12, 15}. The least residues are

k · a 3 6 9 12 15
least residue 3 −5 −2 1 4

So µ = 2 and ( 3
11 ) = (−1)2 = +1. Indeed 52 ≡ 3 (mod 11).

We could also use Gauss’ lemma to compute (a
p ), but it still requires to look at p−1

2 integers, which
is very large when p is very large.

2.5 The Law of Quadratic Reciprocity

Quadratic Reciprocity Law 2.6. Let p and q be distinct odd primes. Then

(i). (−1
p ) = (−1)(p−1)/2 =

{
+1 if p ≡ 1 (mod 4);
−1 if p ≡ 3 (mod 4).

(ii). ( 2
p ) = (−1)(p

2−1)/8 =

{
+1 if p ≡ ±1 (mod 8);
−1 if p ≡ ±3 (mod 8).

(iii). (p
q )( q

p ) = (−1)
p−1
2

q−1
2 =

{
+1 if p ≡ 1 (mod 4) or q ≡ 1 (mod 4);
−1 if p ≡ 3 (mod 4) and q ≡ 3 (mod 4).

We have seen part i) and part ii) already. We will prove the most difficult part iii) later.

Computation of Legendre symbols

Here an example of how to compute Legendre symbols very fast.(44
47

)
=

( 4
47

)
·
(11

47

)
=

(11
47

)
= −

(47
11

)
= −

( 3
11

)
= (−1) · (−1) ·

(11
3

)
=

(2
3

)
= −1

or faster (44
47

)
=

(−3
47

)
=

(−1
47

)
·
( 3

47

)
= (−1) · (−1) ·

(47
3

)
=

(2
3

)
= −1

It is very quick to compute ( 1000003
3000017 ) this way, knowing that both entries are primes here. Otherwise

we would have to factor and that may be very time consuming for large integers. Luckily there is
a generalisation of Legendre symbols called Kronecker symbols (or Jacobi symbols) which satisfy
a quadratic reciprocity even for composite numbers. But we do not go into details here.
So a computer can decide in mili-seconds if a given integer a is a quadratic residue modulo a huge
prime p.
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Primes for which a is a quadratic residue

The quadratic reciprocity law has an amazing consequence. Fix an a and look for all primes p for
which (a

p ) = +1. In fact this only depends on the residue class of p modulo 4 · |a| (and sometimes
on |a| only).
For instance if a = q is a prime which is congruent to +1 modulo 4. Then ( q

p ) = (p
q ) by iii). The

later only depends on the residue class of p modulo q = a. As an example, we can take a = 5.
Then 5 is a quadratic residue modulo p if and only if (p

5 ) = +1, i.e. if and only if p ≡ 1 or 4
modulo 5.

p 3 5 7 11 13 17 19
( 5

p ) −1 0 −1 1 −1 −1 1
p mod 5 3 0 2 1 3 2 4

If instead a = q is a prime which is congruent to 3 modulo 4. Then ( q
p ) = ±(p

q ) with the sign +1
if and only if p ≡ +1 (mod 4). So we have that(q

p

)
= +1 ⇔

{(
(p

q ) = +1 and p ≡ +1 (mod 4)
)

or(
(p

q ) = −1 and p ≡ −1 (mod 4)
)
.

The first condition in both cases is a condition on p modulo q while the second is a condition on p
modulo 4. So by the Chinese remainder theorem, we can formulate one condition modulo 4q. As
an example, we can take a = 3. The above shows that 3 is a quadratic residue modulo p if and only
if either

(
p ≡ +1 (mod 3) and p ≡ 1 (mod 4)

)
or

(
p ≡ −1 (mod 3) and p ≡ −1 (mod 4)

)
. That

is equivalent to either p ≡ 1 (mod 12) or p ≡ −1 (mod 12) by the Chinese remainder theorem.

p 3 5 7 11 13 17 19
( 3

p ) 0 −1 −1 1 1 −1 −1
p mod 12 0 5 7 −1 1 5 7

When a is composite, we can first factor it and then treat each case separately. For instance, we
find for a = −3 that (−3

p

)
=

{
+1 if p ≡ 1 (mod 3);
−1 if p ≡ 2 (mod 3).

See the additional handout for more examples.

2.6 The proof of the Quadratic Reciprocity law

Proof of iii). [non-examinable] Let R = {(x, y) ∈ Z2| 1 6 x 6 (p− 1)/2, and 1 6 y 6 (q − 1)/2}.
Clearly #R = p−1

2 · q−1
2 . We divide the set R into four disjoint parts according to the value of the

function z = 2(py − qx):

A = {(x, y) ∈ R| p <z};
C = {(x, y) ∈ R| 0 <z < p};
D = {(x, y) ∈ R| −q <z < 0};
B = {(x, y) ∈ R| z < −q}.

Note that z does not take the values −q, 0, p for (x, y) ∈ R, since p | z ⇔ p | x and q | z ⇔ q | y.
Hence

p− 1
2

· q − 1
2

= #R = #A + #B + #C + #D.

Let µC be the number of elements in {q, 2q, 3q, . . . , p−1
2 q} whose least residue is negative. By

Gauss’ lemma, we have (−1)µC = ( q
p ). Let µD be the number of negative least residues among

{p, 2p, . . . , q−1
2 p}, hence (−1)µD = (p

q ).
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We will show that #A = #B, and then that #C = µC and #D = µD. From these the theorem
follows :

p− 1
2

· q − 1
2

≡ µC + µD (mod 2) .

#A = #B: This is because R is symmetric about its centre point
(

p+1
4 , q+1

4

)
. The map

(x, y) 7→ (x′, y′) =
(p + 1

2
− x,

q + 1
2

− y
)

has the property that (x, y) ∈ A ⇐⇒ (x′, y′) ∈ B, since z + z′ = p− q implies z > p ⇔ z′ < −q,
so gives a bijection between the points in A and those in B.
#C = µC : Fix 1 6 x 6 p−1

2 . Then

(x, y) ∈ C ⇐⇒ 0 < z < p ⇐⇒ py − p/2 < qx < py.

For each x this inequality holds for at most one y, and is precisely the condition that the least
residue of q x modulo p is negative. So the total number of these (x, y) pairs is exactly the integer
µC .
#D = µD: Similarly (interchanging p and q).

Figure 1: Illustration of the proof for p = 17 and q = 13.


