3 Bernoulli numbers

Definition of the Bernoulli numbers B_m

Motivation

- We know that $\sum_{k=1}^{n} k = \frac{1}{2}n(n+1)$ and $\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1)$; but what is $\sum_{k=1}^{n} k^m$ in general?
- We know that $\sum_{n=1}^{\infty} n^{-2} = \pi^2/6$; but what is $\sum_{n=1}^{\infty} n^{-m}$ in general?
- Does $x^n + y^n = z^n$ have any solutions with $x, y, z \in \mathbb{N}$ and $n \ge 3$?

In all cases it turns that there is an answer which involves Bernoulli numbers.

Definition. $F(t) = \frac{t}{e^t - 1}$ with F(0) = 1.

 $1/F(t) = t^{-1}(e^t - 1) = 1 + \frac{t}{2!} + \frac{t^2}{3!} + \frac{t^3}{4!} + \dots$, so setting F(0) = 1 makes sense. Expand F(t) as a Taylor series:

$$F(t) = \frac{t}{e^t - 1} = \sum_{m=0}^{\infty} B_m \frac{t^m}{m!}.$$

Definition. The rational number B_m is called the *m*th Bernoulli Number.

F(t) is called the "exponential generating function" for the B_m .

m	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
B_m	1	$-\frac{1}{2}$	$\frac{1}{6}$	0	$-\frac{1}{30}$	0	$\frac{1}{42}$	0	$-\frac{1}{30}$	0	$\frac{5}{66}$	0	$-\frac{691}{2730}$	0	$\frac{7}{6}$	0
m	10	5	17	18	19		20		21	22	23	3	24	25		26
B_m	$-\frac{3617}{510}$		0	$\frac{43867}{798}$	0	-	$-\frac{174611}{330}$		0	$\frac{854513}{138}$	0	_	$-\frac{236364091}{2730}$	0	855	$\frac{53103}{6}$

In the problem sheet, we will show that F(t) - F(-t) = -t; hence $B_1 = -\frac{1}{2}$, and $B_m = 0$ for all odd m > 1.

Proposition 3.1. $\sum_{k=0}^{m-1} \binom{m}{k} B_k = 0$ for all $m \ge 2$.

Proof. Compare the coefficients on both sides of the identity $t = (e^t - 1)F(t)$.

Corollary 3.2. For all $m \ge 1$, $B_m = \frac{-1}{m+1} \sum_{k=0}^{m-1} \binom{m+1}{k} B_k$.

The sum of *m*-th powers of consequtive integers

We wish to find a general formula for $1^m + 2^m + 3^m + \cdots + (n-1)^m$.

- $1+2+3+\cdots+(n-1)=\frac{1}{2}n(n-1);$
- $1^2 + 2^2 + 3^2 + \dots + (n-1)^2 = \frac{1}{6}n(n-1)(2n-1);$
- $1^3 + 2^3 + 3^3 + \dots + (n-1)^3 = ?$

Notation. For $m \in \mathbb{N}$ let $S_m(n) = 1^m + 2^m + 3^m + \dots + (n-1)^m$.

Our aim is to compute $S_m(n)$, using Bernoulli numbers.

Theorem 3.3. For all $m \in \mathbb{N}$, $\mathcal{S}_m(n) = \sum_{k=0}^m \binom{m}{k} B_{m-k} \frac{n^{k+1}}{k+1}$. For example, $\mathcal{S}_3(n) = \frac{1}{4}(n^4 - 2n^3 + n^2) = \left(\frac{1}{2}n(n-1)\right)^2$. Proof. Evaluate $A = \sum_{a=0}^{n-1} e^{at}$ in two ways. Using $e^{at} = \sum_{m=0}^{\infty} a^m \frac{t^m}{m!}$ gives $A = \sum_{m=0}^{\infty} \frac{t^m}{m!} \mathcal{S}_m(n).$

$$A = \sum_{m=0}^{\infty} \frac{t^m}{m!} \mathcal{S}_m(n).$$

Summing A as a geometric series gives

$$A = \frac{e^{nt} - 1}{e^t - 1} = \frac{e^{nt} - 1}{t} \frac{t}{e^t - 1} = \frac{e^{nt} - 1}{t} F(t),$$

which leads to

$$A = \left(\sum_{k=0}^{\infty} n^{k+1} \frac{t^k}{(k+1)!}\right) \left(\sum_{j=0}^{\infty} B_j \frac{t^j}{j!}\right).$$

Comparing coefficients gives the result.

Lemma 3.4. If p - 1 divides m, then $S_m(p) \equiv -1 \pmod{p}$, otherwise $S_m(p) \equiv 0 \pmod{p}$.

Proof. Let g be a primitive element modulo p. Then

$$(g^m - 1) \cdot \mathcal{S}_m(p) \equiv (g^m - 1) \cdot \sum_{k=0}^{p-2} (g^k)^m = g^{m \cdot (p-1)} - 1 \equiv 0 \pmod{p}.$$

If $(p-1) \nmid m$, then $g^m \not\equiv 1$ and so $\mathfrak{S}_m(p) \equiv 0 \pmod{p}$. Otherwise $\mathfrak{S}_m(p) \equiv p-1 \equiv -1 \pmod{p}$.

Riemann's zeta-function

Definition. The Riemann zeta-function is defined by

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \dots$$

Remark. It diverges when s = 1, but we will see later that $\zeta(s)$ converges for s > 1. Here we are only interested in $\zeta(s)$ for integer values of s: we will give a formula valid for all positive even integers.

Theorem 3.5 (Euler). For all $m \in \mathbb{N}$,

$$\zeta(2m) = (-1)^{m+1} \frac{(2\pi)^{2m}}{2 \ (2m)!} \ B_{2m}.$$

Proof. See separate non-examinable handout.

cw '11

Examples: Taking m = 1 and using $B_2 = \frac{1}{6}$ gives $\zeta(2) = \pi^2/6$. Taking m = 2 and using $B_4 = -\frac{1}{30}$ gives $\zeta(4) = \pi^4/90$.

Corollary 3.6. (i). For all $m \in \mathbb{N}$, the sign of B_{2m} is $(-1)^{m+1}$.

(ii). The sequence $|B_{2m}|$ grows like $\frac{2(2m)!}{(2\pi)^{2m}} \sim 4\sqrt{\pi m} \cdot \left(\frac{m}{e\pi}\right)^{2m}$.

(iii). For all even $m \ge 18$ we have $|B_m| > m$.

Proof. $\zeta(2m) > 0$ since it is the sum of a series of positive terms, so $(-1)^{m+1}B_{2m} = \frac{2}{(2m)!}\zeta(2m) > 0$. Since $\zeta(2m) > 1$, we have $|B_{2m}| > \frac{2(2m)!}{(2\pi)^{2m}}$. The second expression follows from Stirling's formula. Now for m = 9, we get $B_{18}/18 > 3$ and the function $B_{2m}/2m$ increases quickly in m.

Congruences for Bernoulli Numbers

The Theorems stated in this lecture give information about the numerators and denominators of the (rational) Bernoulli numbers B_m . The first one tells us exactly what the denominator is.

Notation. For $m \in \mathbb{N}$ set $\Delta_m = \{ \text{primes } p \text{ such that } (p-1) \mid m \}.$

Theorem 3.7 (Clausen & von Staudt). For all even $m \in \mathbb{N}$,

$$C_m = B_m + \sum_{q \in \Delta_m} \frac{1}{q} \in \mathbb{Z}.$$

In particular, the denominator of B_m is precisely $\prod_{a \in \Delta_m} q$.

Example: For m = 50 we have $\Delta_{50} = \{2, 3, 11\}$, so $B_{50} + \frac{1}{2} + \frac{1}{3} + \frac{1}{11} = B_{50} + \frac{61}{66} \in \mathbb{Z}$. In fact, $B_{50} + \frac{61}{66} = 7500866746076964366855721$.

Proof. Let p be any prime, the aim is to show that the denominator of C_m is coprime to p. The theorem can be proven by induction on even m. First, m = 2 is easy. Let m > 2 be even. Then $B_{m-1} = 0$. The formula for $S_m(p)$ can be written as

$$\mathcal{S}_m(p) = B_m \cdot p + \sum_{k=2}^m \binom{m}{k} p \, B_{m-k} \frac{p^k}{k+1} \tag{1}$$

By induction, pB_{m-k} has no p in the denominator. In the problem sheet, we prove that, if $k \ge 2$, then the numerator of $p^k/(k+1)$ is divisible by p. Hence the sum is a rational number whose numerator is divisible by p. If $p \notin \Delta_m$, then $S_m(p) \equiv 0 \pmod{p}$ by lemma 3.4. So B_m , and hence C_m , have no p in the denominator. If $p \in \Delta_m$, then $S_m(p) + 1$ is divisible by p. So $B_m + \frac{1}{p}$, and hence C_m , have no p in the denominator. \Box

Finally, a congruence which tells us something about the numerator of B_m .

Theorem 3.8 (The Kummer Congruences). Let $m \in \mathbb{N}$ be even and $p \notin \Delta_m$. Then

$$m \equiv n \pmod{p-1} \implies \frac{B_m}{m} \equiv \frac{B_n}{n} \pmod{p}$$

by which we mean that the numerator of $\frac{B_m}{m} - \frac{B_n}{n}$ is divisible by p.

More generally, $m \equiv n \pmod{(p-1)p^k}$ implies

$$(1-p^{m-1})\frac{B_m}{m} \equiv (1-p^{n-1})\frac{B_n}{n} \pmod{p^k}.$$

Examples: $B_6/6 - B_2/2 = \frac{-5}{63}$ is divisible by p = 5 as $6 \equiv 2 \pmod{p-1}$. So is $B_{10}/10 - B_2/2 = \frac{-5}{66}$ or $B_{18}/18 - B_2/2 = \frac{21335}{7182}$.

Regular and irregular primes and Fermat's Last Theorem

Definition. The odd prime number p is called **regular** if p does not divide the numerator of B_m for all even $m \leq p - 3$. Otherwise p is irregular.

Examples: $p = 3, 5, 7, \dots, 31$ are all regular, but 37 is irregular: $B_{32} = -\frac{7709321041217}{510}$ and $7709321041217 = 37 \cdot 683 \cdot 305065927$. The significance of regularity comes from the following application.

Theorem 3.9 (Kummer, 1850). Let p be an odd regular prime. Then the equation

 $x^p + y^p = z^p$

has no solution in positive integers.

Proof. Omitted (uses Algebraic Number Theory).

Question: How many regular primes are there? Answer: No-one knows, but computer calculations suggest that 61% of primes are regular and 39% are irregular. What we can prove is this:

Theorem 3.10. There are infinitely many irregular primes.

Proof. Take the complete list of all irregular primes p_1, p_2, \ldots, p_r . Consider $N = 2 \prod_i (p_i - 1)$. By Corollary 3.6 we have $|B_N| > N$ because $N \ge 18$. So there exists a prime p which divides the numerator of B_N/N . We will show that p is irregular and not in the set $\{p_1, p_2, \ldots, p_r\}$. By Theorem 3.7, $p \notin \Delta_N$ since p divides the numerator but not the denominator of B_N . So $(p-1) \nmid N$. Hence $p \neq 2$ and $p \neq p_i$ for $1 \le i \le r$.

Take n with $0 \le n < p-1$ and $n \equiv N \pmod{p-1}$; then n is even and n > 0 since $(p-1) \nmid N$, so $2 \le n \le p-3$. By Theorem 3.8 we have

$$\frac{B_n}{n} \equiv \frac{B_N}{N} \equiv 0 \pmod{p},$$

so p divides the numerator of B_n ; hence p is irregular.

Theorem 3.11 (Wiles-Taylor-...). If $n \ge 3$, then $x^n + y^n = z^n$ has no solution in \mathbb{N} .