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3 Bernoulli numbers

De�nition of the Bernoulli numbers Bm

Motivation

• We know that
∑n
k=1 k = 1

2n(n+1) and
∑n
k=1 k

2 = 1
6n(n+1)(2n+1); but what is

∑n
k=1 k

m

in general?

• We know that
∑∞
n=1 n

−2 = π2/6; but what is
∑∞
n=1 n

−m in general?

• Does xn + yn = zn have any solutions with x, y, z ∈ N and n ≥ 3?

In all cases it turns that there is an answer which involves Bernoulli numbers.

De�nition. F (t) =
t

et − 1
with F (0) = 1.

1/F (t) = t−1(et − 1) = 1 + t
2! + t2

3! + t3

4! + . . . , so setting F (0) = 1 makes sense. Expand F (t) as
a Taylor series:

F (t) =
t

et − 1
=

∞∑
m=0

Bm
tm

m!
.

De�nition. The rational number Bm is called the mth Bernoulli Number.

F (t) is called the \exponential generating function" for the Bm.

m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Bm 1 − 1

2
1
6 0 − 1

30 0 1
42 0 − 1

30 0 5
66 0 − 691

2730 0 7
6 0

m 16 17 18 19 20 21 22 23 24 25 26
Bm − 3617

510 0 43867
798 0 − 174611

330 0 854513
138 0 − 236364091

2730 0 8553103
6

In the problem sheet, we will show that F (t)− F (−t) = −t; hence B1 = − 1
2 , and Bm = 0 for

all odd m > 1.

Proposition 3.1.

m−1∑
k=0

(
m

k

)
Bk = 0 for all m > 2.

Proof. Compare the coe�cients on both sides of the identity t = (et − 1)F (t).

Corollary 3.2. For all m > 1, Bm =
−1

m+ 1

m−1∑
k=0

(
m+ 1

k

)
Bk.

The sum of m-th powers of consequtive integers

We wish to �nd a general formula for 1m + 2m + 3m + · · ·+ (n− 1)m.

• 1 + 2 + 3 + · · ·+ (n− 1) = 1
2n(n− 1);

• 12 + 22 + 32 + · · ·+ (n− 1)2 = 1
6n(n− 1)(2n− 1);

• 13 + 23 + 33 + · · ·+ (n− 1)3 =?

Notation. For m ∈ N let Sm(n) = 1m + 2m + 3m + · · ·+ (n− 1)m.
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Our aim is to compute Sm(n), using Bernoulli numbers.

Theorem 3.3. For all m ∈ N, Sm(n) =

m∑
k=0

(
m

k

)
Bm−k

nk+1

k + 1
.

For example, S3(n) = 1
4 (n4 − 2n3 + n2) =

(
1
2n(n− 1)

)2
.

Proof. Evaluate A =
∑n−1
a=0 e

at in two ways. Using eat =
∑∞
m=0 a

m tm

m! gives

A =

∞∑
m=0

tm

m!
Sm(n).

Summing A as a geometric series gives

A =
ent − 1

et − 1
=
ent − 1

t

t

et − 1
=
ent − 1

t
F (t),

which leads to

A =

( ∞∑
k=0

nk+1 tk

(k + 1)!

) ∞∑
j=0

Bj
tj

j!

 .

Comparing coe�cients gives the result.

Lemma 3.4. If p− 1 divides m, then Sm(p) ≡ −1 (mod p), otherwise Sm(p) ≡ 0 (mod p).

Proof. Let g be a primitive element modulo p. Then

(gm − 1) · Sm(p) ≡ (gm − 1) ·
p−2∑
k=0

(gk)m = gm·(p−1) − 1 ≡ 0 (mod p).

If (p − 1) - m, then gm 6≡ 1 and so Sm(p) ≡ 0 (mod p). Otherwise Sm(p) ≡ p − 1 ≡ −1
(mod p).

Riemann's zeta-function

De�nition. The Riemann zeta-function is de�ned by

ζ(s) =

∞∑
n=1

1

ns
= 1 +

1

2s
+

1

3s
+

1

4s
+ . . .

Remark. It diverges when s = 1, but we will see later that ζ(s) converges for s > 1. Here we
are only interested in ζ(s) for integer values of s: we will give a formula valid for all positive
even integers.

Theorem 3.5 (Euler). For all m ∈ N,

ζ(2m) = (−1)m+1 (2π)2m

2 (2m)!
B2m.

Proof. See separate non-examinable handout.
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Examples: Taking m = 1 and using B2 = 1
6 gives ζ(2) = π2/6. Taking m = 2 and using

B4 = − 1
30 gives ζ(4) = π4/90.

Corollary 3.6. (i). For all m ∈ N, the sign of B2m is (−1)m+1.

(ii). The sequence |B2m| grows like 2(2m)!
(2π)2m ∼ 4

√
πm ·

(
m
eπ

)2m
.

(iii). For all even m > 18 we have |Bm| > m.

Proof. ζ(2m) > 0 since it is the sum of a series of positive terms, so (−1)m+1B2m = 2 (2m)!
(2π)2m ζ(2m) >

0. Since ζ(2m) > 1, we have |B2m| > 2(2m)!
(2π)2m . The second expression follows from Stirling's

formula. Now for m = 9, we get B18/18 > 3 and the function B2m/2m increases quickly in
m.

Congruences for Bernoulli Numbers

The Theorems stated in this lecture give information about the numerators and denominat-
ors of the (rational) Bernoulli numbers Bm. The �rst one tells us exactly what the denomin-
ator is.

Notation. For m ∈ N set ∆m = {primes p such that (p− 1) | m}.

Theorem 3.7 (Clausen & von Staudt). For all even m ∈ N,

Cm = Bm +
∑
q∈∆m

1

q
∈ Z.

In particular, the denominator of Bm is precisely
∏
q∈∆m

q.

Example: For m = 50 we have ∆50 = {2, 3, 11}, so B50 + 1
2 + 1

3 + 1
11 = B50 + 61

66 ∈ Z. In fact,
B50 + 61

66 = 7500866746076964366855721.

Proof. Let p be any prime, the aim is to show that the denominator of Cm is coprime to p.
The theorem can be proven by induction on evenm. First, m = 2 is easy. Letm > 2 be even.
Then Bm−1 = 0. The formula for Sm(p) can be written as

Sm(p) = Bm · p+

m∑
k=2

(
m

k

)
pBm−k

pk

k + 1
(1)

By induction, pBm−k has no p in the denominator. In the problem sheet, we prove that, if
k > 2, then the numerator of pk/(k+ 1) is divisible by p. Hence the sum is a rational number
whose numerator is divisible by p. If p 6∈ ∆m, then Sm(p) ≡ 0 (mod p) by lemma 3.4. So Bm,
and hence Cm, have no p in the denominator. If p ∈ ∆m, then Sm(p) + 1 is divisible by p. So
Bm + 1

p , and hence Cm, have no p in the denominator.

Finally, a congruence which tells us something about the numerator of Bm.

Theorem 3.8 (The Kummer Congruences). Let m ∈ N be even and p /∈ ∆m. Then

m ≡ n (mod p− 1) =⇒ Bm
m
≡ Bn

n
(mod p).

by which we mean that the numerator of Bm

m −
Bn

n is divisible by p.

http://en.wikipedia.org/wiki/Stirling's_approximation
http://en.wikipedia.org/wiki/Stirling's_approximation
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More generally, m ≡ n (mod (p− 1)pk) implies

(1− pm−1)
Bm
m
≡ (1− pn−1)

Bn
n

(mod pk).

Examples: B6/6−B2/2 = −5
63 is divisible by p = 5 as 6 ≡ 2 (mod p−1). So isB10/10−B2/2 = −5

66
or B18/18−B2/2 = 21335

7182 .

Regular and irregular primes and Fermat's Last Theorem

De�nition. The odd prime number p is called regular if p does not divide the numerator of
Bm for all even m 6 p− 3. Otherwise p is irregular.

Examples: p = 3, 5, 7, . . . , 31 are all regular, but 37 is irregular: B32 = − 7709321041217
510 and

7709321041217 = 37 · 683 · 305065927.
The signi�cance of regularity comes from the following application.

Theorem 3.9 (Kummer, 1850). Let p be an odd regular prime. Then the equation

xp + yp = zp

has no solution in positive integers.

Proof. Omitted (uses Algebraic Number Theory).

Question: How many regular primes are there?
Answer: No-one knows, but computer calculations suggest that 61% of primes are regular
and 39% are irregular. What we can prove is this:

Theorem 3.10. There are in�nitely many irregular primes.

Proof. Take the complete list of all irregular primes p1, p2, . . . , pr. Consider N = 2
∏
i(pi−1).

By Corollary 3.6 we have |BN | > N because N > 18. So there exists a prime p which divides
the numerator of BN/N . We will show that p is irregular and not in the set {p1, p2, . . . , pr}.
By Theorem 3.7, p /∈ ∆N since p divides the numerator but not the denominator of BN . So
(p− 1) - N . Hence p 6= 2 and p 6= pi for 1 6 i 6 r.
Take n with 0 6 n < p− 1 and n ≡ N (mod p− 1); then n is even and n > 0 since (p− 1) - N ,
so 2 6 n 6 p− 3. By Theorem 3.8 we have

Bn
n
≡ BN

N
≡ 0 (mod p),

so p divides the numerator of Bn; hence p is irregular.

Theorem 3.11 (Wiles-Taylor-. . . ). If n > 3, then xn + yn = zn has no solution in N.
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