3 Bernoulli numbers

Definition of the Bernoulli numbers B_{m}

Motivation

- We know that $\sum_{k=1}^{n} k=\frac{1}{2} n(n+1)$ and $\sum_{k=1}^{n} k^{2}=\frac{1}{6} n(n+1)(2 n+1)$; but what is $\sum_{k=1}^{n} k^{m}$ in general?
- We know that $\sum_{n=1}^{\infty} n^{-2}=\pi^{2} / 6$; but what is $\sum_{n=1}^{\infty} n^{-m}$ in general?
- Does $x^{n}+y^{n}=z^{n}$ have any solutions with $x, y, z \in \mathbb{N}$ and $n \geq 3$?

In all cases it turns that there is an answer which involves Bernoulli numbers.
Definition. $F(t)=\frac{t}{e^{t}-1}$ with $F(0)=1$.
$1 / F(t)=t^{-1}\left(e^{t}-1\right)=1+\frac{t}{2!}+\frac{t^{2}}{3!}+\frac{t^{3}}{4!}+\ldots$, so setting $F(0)=1$ makes sense. Expand $F(t)$ as a Taylor series:

$$
F(t)=\frac{t}{e^{t}-1}=\sum_{m=0}^{\infty} B_{m} \frac{t^{m}}{m!}
$$

Definition. The rational number B_{m} is called the m th Bernoulli Number.
$F(t)$ is called the "exponential generating function" for the B_{m}.

m	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
B_{m}	1	$-\frac{1}{2}$	$\frac{1}{6}$	0	$-\frac{1}{30}$	0	$\frac{1}{42}$	0	$-\frac{1}{30}$	0	$\frac{5}{66}$	0	$-\frac{691}{2730}$	0	$\frac{7}{6}$	0
m	16	17	18	19	20	21	22	23	24	25	26					
B_{m}	$-\frac{3617}{510}$	0	$\frac{43867}{798}$	0	$-\frac{174611}{330}$	0	$\frac{854513}{138}$	0	$-\frac{236364091}{2730}$	0	$\frac{8553103}{6}$					

In the problem sheet, we will show that $F(t)-F(-t)=-t$; hence $B_{1}=-\frac{1}{2}$, and $B_{m}=0$ for all odd $m>1$.

Proposition 3.1. $\sum_{k=0}^{m-1}\binom{m}{k} B_{k}=0$ for all $m \geqslant 2$.

Proof. Compare the coefficients on both sides of the identity $t=\left(e^{t}-1\right) F(t)$.

Corollary 3.2. For all $m \geqslant 1, B_{m}=\frac{-1}{m+1} \sum_{k=0}^{m-1}\binom{m+1}{k} B_{k}$.

The sum of m-th powers of consequtive integers

We wish to find a general formula for $1^{m}+2^{m}+3^{m}+\cdots+(n-1)^{m}$.

- $1+2+3+\cdots+(n-1)=\frac{1}{2} n(n-1)$;
- $1^{2}+2^{2}+3^{2}+\cdots+(n-1)^{2}=\frac{1}{6} n(n-1)(2 n-1)$;
- $1^{3}+2^{3}+3^{3}+\cdots+(n-1)^{3}=$?

Notation. For $m \in \mathbb{N}$ let $\mathcal{S}_{m}(n)=1^{m}+2^{m}+3^{m}+\cdots+(n-1)^{m}$.

Our aim is to compute $\mathcal{S}_{m}(n)$, using Bernoulli numbers.
Theorem 3.3. For all $m \in \mathbb{N}, \mathcal{S}_{m}(n)=\sum_{k=0}^{m}\binom{m}{k} B_{m-k} \frac{n^{k+1}}{k+1}$.
For example, $\mathcal{S}_{3}(n)=\frac{1}{4}\left(n^{4}-2 n^{3}+n^{2}\right)=\left(\frac{1}{2} n(n-1)\right)^{2}$.
Proof. Evaluate $A=\sum_{a=0}^{n-1} e^{a t}$ in two ways. Using $e^{a t}=\sum_{m=0}^{\infty} a^{m} \frac{t^{m}}{m!}$ gives

$$
A=\sum_{m=0}^{\infty} \frac{t^{m}}{m!} \mathcal{S}_{m}(n)
$$

Summing A as a geometric series gives

$$
A=\frac{e^{n t}-1}{e^{t}-1}=\frac{e^{n t}-1}{t} \frac{t}{e^{t}-1}=\frac{e^{n t}-1}{t} F(t)
$$

which leads to

$$
A=\left(\sum_{k=0}^{\infty} n^{k+1} \frac{t^{k}}{(k+1)!}\right)\left(\sum_{j=0}^{\infty} B_{j} \frac{t^{j}}{j!}\right)
$$

Comparing coefficients gives the result.

Lemma 3.4. If $p-1$ divides m, then $\mathcal{S}_{m}(p) \equiv-1(\bmod p)$, otherwise $\mathcal{S}_{m}(p) \equiv 0(\bmod p)$.

Proof. Let g be a primitive element modulo p. Then

$$
\left(g^{m}-1\right) \cdot \mathcal{S}_{m}(p) \equiv\left(g^{m}-1\right) \cdot \sum_{k=0}^{p-2}\left(g^{k}\right)^{m}=g^{m \cdot(p-1)}-1 \equiv 0 \quad(\bmod p)
$$

If $(p-1) \nmid m$, then $g^{m} \not \equiv 1$ and so $\mathcal{S}_{m}(p) \equiv 0(\bmod p)$. Otherwise $\mathcal{S}_{m}(p) \equiv p-1 \equiv-1$ $(\bmod p)$.

Riemann's zeta-function

Definition. The Riemann zeta-function is defined by

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\ldots
$$

Remark. It diverges when $s=1$, but we will see later that $\zeta(s)$ converges for $s>1$. Here we are only interested in $\zeta(s)$ for integer values of s : we will give a formula valid for all positive even integers.

Theorem 3.5 (Euler). For all $m \in \mathbb{N}$,

$$
\zeta(2 m)=(-1)^{m+1} \frac{(2 \pi)^{2 m}}{2(2 m)!} B_{2 m}
$$

Proof. See separate non-examinable handout.

Examples: Taking $m=1$ and using $B_{2}=\frac{1}{6}$ gives $\zeta(2)=\pi^{2} / 6$. Taking $m=2$ and using $B_{4}=-\frac{1}{30}$ gives $\zeta(4)=\pi^{4} / 90$.
Corollary 3.6. (i). For all $m \in \mathbb{N}$, the sign of $B_{2 m}$ is $(-1)^{m+1}$.
(ii). The sequence $\left|B_{2 m}\right|$ grows like $\frac{2(2 m)!}{(2 \pi)^{2 m}} \sim 4 \sqrt{\pi m} \cdot\left(\frac{m}{e \pi}\right)^{2 m}$.
(iii). For all even $m \geqslant 18$ we have $\left|B_{m}\right|>m$.

Proof. $\zeta(2 m)>0$ since it is the sum of a series of positive terms, so $(-1)^{m+1} B_{2 m}=\frac{2(2 m)!}{(2 \pi)^{2 m}} \zeta(2 m)>$ 0 . Since $\zeta(2 m)>1$, we have $\left|B_{2 m}\right|>\frac{2(2 m)!}{(2 \pi)^{2 m}}$. The second expression follows from Stirling's formula. Now for $m=9$, we get $B_{18} / 18>3$ and the function $B_{2 m} / 2 m$ increases quickly in m.

Congruences for Bernoulli Numbers

The Theorems stated in this lecture give information about the numerators and denominators of the (rational) Bernoulli numbers B_{m}. The first one tells us exactly what the denominator is.

Notation. For $m \in \mathbb{N}$ set $\Delta_{m}=\{$ primes p such that $(p-1) \mid m\}$.

Theorem 3.7 (Clausen \& von Staudt). For all even $m \in \mathbb{N}$,

$$
C_{m}=B_{m}+\sum_{q \in \Delta_{m}} \frac{1}{q} \in \mathbb{Z}
$$

In particular, the denominator of B_{m} is precisely $\prod_{q \in \Delta_{m}} q$.
Example: For $m=50$ we have $\Delta_{50}=\{2,3,11\}$, so $B_{50}+\frac{1}{2}+\frac{1}{3}+\frac{1}{11}=B_{50}+\frac{61}{66} \in \mathbb{Z}$. In fact, $B_{50}+\frac{61}{66}=7500866746076964366855721$.

Proof. Let p be any prime, the aim is to show that the denominator of C_{m} is coprime to p. The theorem can be proven by induction on even m. First, $m=2$ is easy. Let $m>2$ be even. Then $B_{m-1}=0$. The formula for $\mathcal{S}_{m}(p)$ can be written as

$$
\begin{equation*}
\mathcal{S}_{m}(p)=B_{m} \cdot p+\sum_{k=2}^{m}\binom{m}{k} p B_{m-k} \frac{p^{k}}{k+1} \tag{1}
\end{equation*}
$$

By induction, $p B_{m-k}$ has no p in the denominator. In the problem sheet, we prove that, if $k \geqslant 2$, then the numerator of $p^{k} /(k+1)$ is divisible by p. Hence the sum is a rational number whose numerator is divisible by p. If $p \notin \Delta_{m}$, then $\mathcal{S}_{m}(p) \equiv 0(\bmod p)$ by lemma 3.4. So B_{m}, and hence C_{m}, have no p in the denominator. If $p \in \Delta_{m}$, then $\mathcal{S}_{m}(p)+1$ is divisible by p. So $B_{m}+\frac{1}{p}$, and hence C_{m}, have no p in the denominator.

Finally, a congruence which tells us something about the numerator of B_{m}.
Theorem 3.8 (The Kummer Congruences). Let $m \in \mathbb{N}$ be even and $p \notin \Delta_{m}$. Then

$$
m \equiv n \quad(\bmod p-1) \Longrightarrow \frac{B_{m}}{m} \equiv \frac{B_{n}}{n} \quad(\bmod p)
$$

by which we mean that the numerator of $\frac{B_{m}}{m}-\frac{B_{n}}{n}$ is divisible by p.

More generally, $m \equiv n\left(\bmod (p-1) p^{k}\right)$ implies

$$
\left(1-p^{m-1}\right) \frac{B_{m}}{m} \equiv\left(1-p^{n-1}\right) \frac{B_{n}}{n} \quad\left(\bmod p^{k}\right)
$$

Examples: $B_{6} / 6-B_{2} / 2=\frac{-5}{63}$ is divisible by $p=5$ as $6 \equiv 2(\bmod p-1)$. So is $B_{10} / 10-B_{2} / 2=\frac{-5}{66}$ or $B_{18} / 18-B_{2} / 2=\frac{21335}{7182}$.

Regular and irregular primes and Fermat's Last Theorem

Definition. The odd prime number p is called regular if p does not divide the numerator of B_{m} for all even $m \leqslant p-3$. Otherwise p is irregular.
Examples: $p=3,5,7, \ldots, 31$ are all regular, but 37 is irregular: $B_{32}=-\frac{7709321041217}{510}$ and $7709321041217=37 \cdot 683 \cdot 305065927$.
The significance of regularity comes from the following application.
Theorem 3.9 (Kummer, 1850). Let p be an odd regular prime. Then the equation

$$
x^{p}+y^{p}=z^{p}
$$

has no solution in positive integers.

Proof. Omitted (uses Algebraic Number Theory).
Question: How many regular primes are there?
Answer: No-one knows, but computer calculations suggest that 61% of primes are regular and 39% are irregular. What we can prove is this:

Theorem 3.10. There are infinitely many irregular primes.
Proof. Take the complete list of all irregular primes $p_{1}, p_{2}, \ldots, p_{r}$. Consider $N=2 \prod_{i}\left(p_{i}-1\right)$. By Corollary 3.6 we have $\left|B_{N}\right|>N$ because $N \geqslant 18$. So there exists a prime p which divides the numerator of B_{N} / N. We will show that p is irregular and not in the set $\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$. By Theorem 3.7, $p \notin \Delta_{N}$ since p divides the numerator but not the denominator of B_{N}. So $(p-1) \nmid N$. Hence $p \neq 2$ and $p \neq p_{i}$ for $1 \leqslant i \leqslant r$.
Take n with $0 \leqslant n<p-1$ and $n \equiv N(\bmod p-1)$; then n is even and $n>0$ since $(p-1) \nmid N$, so $2 \leqslant n \leqslant p-3$. By Theorem 3.8 we have

$$
\frac{B_{n}}{n} \equiv \frac{B_{N}}{N} \equiv 0 \quad(\bmod p)
$$

so p divides the numerator of B_{n}; hence p is irregular.
Theorem 3.11 (Wiles-Taylor-. .). If $n \geqslant 3$, then $x^{n}+y^{n}=z^{n}$ has no solution in \mathbb{N}.

