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3 Bernoulli numbers

Definition of the Bernoulli numbers B,,
Motivation

e Weknowthat ) | k= 3in(n+1)and > ;_ k* = tn(n+1)(2n+1); but whatis >, k™
in general?

e We know that -7, n=2 = 72/6; but what is 7~ | n~™ in general?
e Does 2™ + y™ = z™ have any solutions with z,y,z € Nand n > 3?
In all cases it turns that there is an answer which involves Bernoulli numbers.

Definition. F(t) =

t .
] with F(0) =1.

et —

I/Ft) =t —1) =1+ %+ g—z, + 2—3, +..., so setting F(0) = 1 makes sense. Expand F(¢) as
a Taylor series:

P(t) = — :iBm—.

Definition. The rational number B,, is called the mth Bernoulli Number.

F(t) is called the “exponential generating function” for the B,,.

m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
” .
Bpn |1 — % % 0 - % 0 Il2 0 - 3*10 0 % 0 B 2673310 0 6 0
m 16 17 18 19 20 21 22 23 24 25 26
B 3617 43867 174611 854513 0 236364091 0 8553103
m 510 798 330 138 2730 6

In the problem sheet, we will show that F(t) — F(—t) = —t; hence B, = —1, and B,, = 0 for
all odd m > 1.

m—1

Proposition 3.1. ];) (?) By, =0 forallm > 2.

Proof. Compare the coefficients on both sides of the identity ¢t = (¢! — 1)F(¢). 0
Corollary 3.2. Forallm > 1, B,, = b TS m+1 B
Y J.c. mz=4, 7rL—nL+1k:O k k-

The sum of m-th powers of consequtive integers

We wish to find a general formula for 1" 4+ 2™ + 3™ + ... 4+ (n — 1)™.
e 14243+ -+ (n—1)=1in(n-1);
e 12422432+ + (n—1)2=in(n—1)(2n—1);
o 34+ 2243 +...+(n—-1)3=?

Notation. Form e Nlet §,,(n) = 1" +2™ + 3™ + .- -+ (n — 1)™.



Further Number Theory G13FNT cw '11

Our aim is to compute §,,(n), using Bernoulli numbers.

Th 3.3. Forallm € N, 8,,(n) Zm:(m)B '
eorem 3.3. Forallm €N, §,,(n) = S —
k=0 k k+1

For example, 83(n) = 1(n* — 2n® 4+ n?) = (3n(n — 1))2.

oo

_ v =1 at ; t_ " i
Proof. Evaluate A=} — e intwo ways. Using e® ="~ a™ - gives

o0 tm
A=) —8m
m=0
Summing A as a geometric series gives
et —1 e™—1 ¢t et —1
-1 t et—1 t ®),
which leads to
> 2B
( ) §=0
Comparing coefficients gives the result. O

Lemma 3.4. Ifp — 1 divides m, then §,,(p) = —1 (mod p), otherwise §,,(p) =0 (mod p).

Proof. Let g be a primitive element modulo p. Then

p—2
(g™ —1) 8mp) = (g™ —1)-> (") =g™P"V-1=0 (mod p).
k=0
If (p —1) f m, then ¢™ # 1 and so §,,(p) = 0 (mod p). Otherwise §,,(p) = p—1 = -1
(mod p). O

Riemann’s zeta-function

Definition. The Riemann zeta-function is defined by

=1 11

Z S=ltg gttt
—n 3%

Remark. 1t diverges when s = 1, but we will see later that ((s) converges for s > 1. Here we

are only interested in ((s) for integer values of s: we will give a formula valid for all positive

even integers.

Theorem 3.5 (Euler). For allm € N,

m+1 (27{-)27”

Proof. See separate non-examinable handout. O
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Examples: Taking m = 1 and using B, = ¢ gives ((2) = «2/6. Taking m = 2 and using
By = —35 gives ((4) = 7*/90.

Corollary 3.6. (i). For all m € N, the sign of By, is (—1)™"*.

(ii). The sequence |Bs,,| grows like 2@ml 4 Sam - (ﬂ)m.

(27!‘)27” en

(iii). For all even m > 18 we have |B,,| > m.

Proof. ((2m) > 0since it is the sum of a series of positive terms, so (—1)™"! By, = %C(Qm) >
0. Since ¢((2m) > 1, we have |By,,| > (22(72523,7' The second expression follows from |Stirling’s

formula. Now for m = 9, we get Bys/18 > 3 and the function B,,,/2m increases quickly in
m. O

Congruences for Bernoulli Numbers

The Theorems stated in this lecture give information about the numerators and denominat-
ors of the (rational) Bernoulli numbers B,,. The first one tells us exactly what the denomin-
ator is.

Notation. For m € N set A,,, = {primes p such that (p — 1) | m}.

Theorem 3.7 (Clausen & von Staudt). For all even m € N,

1
Orn = Bm + Z - € 7.
q€EA,

In particular, the denominator of B, is precisely [[ A, 4.

Example: For m = 50 we have Asg = {2,3,11}, s0 Bsg + 3 + 5 + 15 = Bso + 5 € Z. In fact,
Bso + % = 7500866746076964366855721.

Proof. Let p be any prime, the aim is to show that the denominator of C,, is coprime to p.
The theorem can be proven by induction on even m. First, m = 2 is easy. Let m > 2 be even.
Then B,,,—; = 0. The formula for 8,,(p) can be written as

S(p) = B +§:m B ol (1)
m\P) = Dm P — k p m—kk+1

By induction, pB,,_, has no p in the denominator. In the problem sheet, we prove that, if
k > 2, then the numerator of p*/(k +1) is divisible by p. Hence the sum is a rational number
whose numerator is divisible by p. If p ¢ A,,,, then §,,(p) =0 (mod p) by lemma[3.4]. So B,,,
and hence C,,, have no p in the denominator. If p € A,,,, then §,,(p) + 1 is divisible by p. So
B,, + %, and hence C,,, have no p in the denominator. O

Finally, a congruence which tells us something about the numerator of B,,.
Theorem 3.8 (The Kummer Congruences). Let m € N be even and p ¢ A,,. Then

Bm B'Il
m=n (modp-1) = — =
m n

(mod p).

by which we mean that the numerator of 2= — B js djvisible by p.


http://en.wikipedia.org/wiki/Stirling's_approximation
http://en.wikipedia.org/wiki/Stirling's_approximation
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More generally, m = n (mod (p — 1)p*) implies
B B
1— mflimzl_ n—1y~n d k:.
A=p") == -p")— = (modp")

Examples: Bs/6—By/2 = 32 is divisible by p = 5as 6 = 2 (mod p—1). Sois Byo/10—By/2 = 52

or B18/18 — 32/2 = 271138325 .

Regular and irregular primes and Fermat’s Last Theorem

Definition. The odd prime number p is called regular if p does not divide the numerator of
B,, for all even m < p — 3. Otherwise p is irregular.

Examples: p = 3,5,7,...,31 are all regular, but 37 is irregular: Bj, = —T709321041217 apq

7709321041217 = 37 - 683 - 305065927 .
The significance of regularity comes from the following application.

Theorem 3.9 (Kummer, 1850). Let p be an odd regular prime. Then the equation
2P+ yP = 2P

has no solution in positive integers.

Proof. Omitted (uses Algebraic Number Theory). O

Question: How many regular primes are there?
Answer: No-one knows, but computer calculations suggest that 61% of primes are regular
and 39% are irregular. What we can prove is this:

Theorem 3.10. There are infinitely many irregular primes.

Proof. Take the complete list of all irregular primes p1, ps,...,p,. Consider N = 2[[,(p; —1).
By Corollary[3.6|we have |By| > N because N > 18. So there exists a prime p which divides
the numerator of By /N. We will show that p is irregular and not in the set {p1,p2,...,p:}.
By Theorem|[3.7] p ¢ Ay since p divides the numerator but not the denominator of By. So
(p—1)tN. Hencep#2and p#p; for1 <i<r.
Take nwithO<n<p—-1landn=N (mod p—1); thenn is even and n > 0 since (p — 1)1 N,
s0 2 < n < p— 3. By Theorem[3.8 we have

Bn _ BN

=N =0 (mod p),

so p divides the numerator of B,,; hence p is irregular. O

Theorem 3.11 (Wiles-Taylor-...). If n > 3, then 2" + y™ = 2™ has no solution in N.
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