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4 L-functions

In this chapter, we will use analytic tools to study prime numbers. We first start by giving a
new proof that there are infinitely many primes and explain what one can say about exactly “how
many primes there are”. Then we will use the same tools to proof Dirichlet’s theorem on primes
in arithmetic progressions.

4.1 Riemann’s zeta-function and its behaviour at s = 1

Definition. The Riemann zeta function ζ(s) is defined by

ζ(s) =
∑
n>1

1
ns

=
1
1s

+
1
2s

+
1
3s

+
1
4s

+ · · · .

The series converges (absolutely) for all s > 1.

Remark. The series also converges for complex s provided that Re(s) > 1.

Example. From the last chapter, ζ(2) = π2/6, ζ(4) = π4/90. But ζ(1) is not defined since
∑

1
n

diverges. However we can still describe the behaviour of ζ(s) as s ↘ 1 (which is my notation for
s → 1+, i.e. s > 1 and s → 1).

Proposition 4.1.
lim
s↘1

(s− 1) · ζ(s) = 1.

Proof. Summing the inequality (n + 1)−s <
∫ n+1

n
1
xs dx < n−s for n > 1 gives

ζ(s)− 1 <

∫ ∞

1

1
xs

dx =
1

s− 1
< ζ(s)

and hence 1 < (s− 1)ζ(s) < s; now let s ↘ 1.

Corollary 4.2.

lim
s↘1

log ζ(s)
log

(
1

s−1

) = 1.

Proof. Write
log ζ(s)
log

(
1

s−1

) =
log(s− 1)ζ(s)

log
(

1
s−1

) + 1

and let s ↘ 1.

Remark (This can be ignored by those who did not take G12COF). It is possible to extend the
Riemann zeta function ζ(s) to an entire function on the whole of C \ {1}, which has a simple pole
at s = 1 with residue 1 (as can be seen from proposition 4.1). Although the series

∑
n>1 n−s we

used originally to define ζ(s) only converges when Re(s) > 1, there are alternative formulas which
agree with this when Re(s) > 1 but also make sense for all complex s (except s = 1); and then
ζ(s)− 1

s−1 is entire.
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4.2 Euler Product expansion for ζ(s)

Notation. Let P denote the set of all primes, so P = {2, 3, 5, 7, . . . }.

Proposition 4.3 (Euler Product expansion of ζ(s)). For s > 1,

ζ(s) =
∏
p∈P

1
1− p−s

.

Proof. For each prime p we have

1
1− p−s

= 1 +
1
ps

+
1

p2s
+ · · ·

multiplying over all primes gives the sum of terms n−s with each n ∈ N appearing exactly once
because of unique factorisation.

Remark. As a formal identity this result encodes the unique factorisation of positive integers into
a single formula; but the product also converges properly, so this is a genuine equality of analytic
functions.

Lemma 4.4. There is a bound b such that∣∣∣∣log ζ(s)−
∑
p∈P

1
ps

∣∣∣∣ < b

for all s > 1.

Proof. Using the series expansion for log(1 + x) with x = −p−s gives

log
( 1

1− p−s

)
=

∑
m>1

1
m
· 1
pms

;

using the Euler Product formula for ζ(s) then gives

log ζ(s) =
∑
p∈P

∑
m>1

1
m
· 1
pms

=
∑
p∈P

1
ps

+ R(s)

where R(s) =
∑

m>2

∑
p∈P m−1 · p−ms; finally, R(s) is bounded.

Theorem 4.5. The sum
∑

1
p , where p runs over all primes p, diverges.

Proof. By proposition 4.1 ζ(s) has a pole at s = 1, so has log ζ(s). By lemma 4.4, this means that∑
p∈P p−s diverges as s ↘ 1.

This divergence is very slow:

x 10 100 103 104 105 106∑
p6x

1
p 1.176 1.803 2.198 2.483 2.705 2.887

In fact we have
∑

p6x
1
p ∼ log(log(x)). This follows from the following BIG theorem. Define π(x)

to be the number of primes p 6 x.
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Figure 1: The prime number theorem

Theorem 4.6 (Prime Number Theorem). We have

lim
x→∞

π(x)
x/ log(x)

= 1 .

The proof uses complex function theory and the fact that ζ(1 + it) 6= 0 for 0 6= t ∈ R.

x 10 100 103 104 105 106 107 108

π(x) 4 25 168 1229 9592 78498 6.6 · 105 5.8 · 106

π(x)/(x/ log(x)) 0.921 1.151 1.161 1.132 1.104 1.084 1.071 1.061
π(x)− x/ log(x) -0.3 3.3 23 143 906 6116 4.4 · 104 3.3 · 105

x 109 1010 1011 1012 1013 . . . 1023

π(x) 5.1 · 107 4.6 · 108 4.1 · 109 3.8 · 1010 3.5 · 1011 . . . 1.9 · 1021

π(x)/(x/ log(x)) 1.054 1.048 1.043 1.039 1.034 . . . 1.020
π(x)− x/ log(x) 2.6 · 106 2.1 · 107 1.7 · 108 1.4 · 109 1.2 · 1010 . . . 3.7 · 1019

4.3 Dirichlet densities of sets of primes

We have now found twice the fact that there are infinitely many primes. We also know that there
are infinitely many primes of the form 4k + 1. Can we generalise this? So the question is:

In an arithmetic progression a, a + m,a + 2m,a + 3m, . . . , with gcd(a,m) = 1, do
infinitely many primes occur?

Obviously if a and m are not coprime then there are only finitely many primes in the arithmetic
progression.

Examples. • a = 1, m = 1: 1, 2, 3, 4, . . . –yes (all primes).

• a = 1, m = 2: 1, 3, 5, 7, . . . –yes (all odd primes).

• a = 1, m = 4: 1, 5, 9, 13, 17, . . . –yes (all primes of the form 4k + 1: see chapter II).

• a = 3, m = 4: 3, 7, 11, 15, . . . –how many primes have the form 4k + 3 ???
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We actually want to say a bit more. Are there more primes of the form 4k + 1 than primes of the
form 4k + 3 ? But in order to answer such question, we first need a good way of measuring how
big a set of primes is, as a proportion of the set of all primes? In other words, if X is some set of
primes, can we define its density dens(X)?

Definition. Let X ⊂ P. We say that X has natural density δ if the limit

lim
N→∞

#{p ∈ X | p 6 N}
#{p ∈ P | p 6 N}

exists and is equal to δ.

Example. Let X be the set of primes of the form 4k + 1. Then

N 100 103 104 105 106

#{p∈X|p6N}
#{p∈P|p6N} 0.44 0.47 0.495 0.4986 0.49906

So it looks like the natural density of X is 1
2 . This is true but too hard to prove. We will replace

the natural density by another notion of density.

We’ll consider the quotient ∑
p∈X

1
ps

/
log

( 1
s− 1

)
as a function of s, and study its behaviour as s ↘ 1. When X = P, lemma 4.4 and corollary 4.2
imply that

lim
s↘1

∑
p∈P p−s

log 1
s−1

= 1 . (,)

Definition. Let X ⊂ P be any set of prime numbers. Define the Dirichlet density of X to be the
value of the limit

dens(X) = lim
s↘1

∑
p∈X

1
ps

log 1
s−1

,

provided that the limit exists.

Proposition 4.7 (Properties of Dirichlet Density).

(i). 0 6 dens(X) 6 1, if it exists.

(ii). dens(P) = 1.

(iii). If X is finite or empty then dens(X) = 0.

(iv). If X1 ∩X2 = ∅ then dens(X1 ∪X2) = dens(X1) + dens(X2).

Proof. The second statement was shown before. The first comes from

0 6
∑
p∈X

1
ps

6
∑
p∈P

1
ps

for all s > 1,

the third from the fact that
∑

p∈X p−s is bounded if X is finite or empty, and the last one follows
from ∑

p∈X1∪X2

1
ps

=
∑

p∈X1

1
ps

+
∑

p∈X2

1
ps

.

Each time we may divide by log 1
s−1 and then letting s ↘ 1.

How will we use this? As a corollary we can say the following: If dens(X) > 0 then X is infinite.
Or even that if dens(X) > 0 then

∑
p∈X

1
p diverges.

We’ll use this to answer the above question: it turns out that the density of the set of primes p ≡ a
(mod m) is positive when gcd(a,m) = 1, so these sets are infinite.
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4.4 A special case of Dirichlet’s theorem

Recall the Riemann zeta function ζ(s) =
∑

n>1
1

ns . We used this to find the density of the set of
all primes. It is the simplest example of an “L-function”, which is a function given by a series of
the form

∑
n>1

f(n)
ns for some arithmetic function f .

Here we will consider some of these, which are related to the problem of whether there are infinitely
many primes in arithmetic progressions, by studying the density of sets of primes.

Notation. For all a,m ∈ Z with m > 0 and gcd(a,m) = 1 we set

P(a,m) = {p ∈ P | p ≡ a (mod m)} = {primes of the form a + mk for some k ∈ Z} .

Our aim is to prove that all these sets are infinite by finding their densities. To start with we’ll
take m = 4 and study the densities of

P(1, 4) = {p ∈ P | p ≡ 1 (mod 4)} and P(3, 4) = {p ∈ P | p ≡ 3 (mod 4)}.

Definition. Define the arithmetic function χ1 : Z → {−1, 0, 1} by

χ1(n) =


+1 if n ≡ 1 (mod 4);
0 if n is even;
−1 if n ≡ 3 (mod 4).

In the problem sheet, we will show that χ1(mn) = χ1(m)χ1(n) for all m,n ∈ Z.

Definition. The function L(s, χ1) is defined for s > 1 by the series

L(s, χ1) =
∑
n>1

χ1(n)
ns

=
1
1s
− 1

3s
+

1
5s
− 1

7s
+−+ · · ·

Since |χ1(n)n−s| 6 |n−s|, convergence of L(s, χ1) for s > 1 follows by comparison with the series
for ζ(s). This is our first example of a Dirichlet L-function. Note that the coefficients χ1(n)
depend on n modulo 4; other Dirichlet L-functions will have coefficients defined using other moduli.

Proposition 4.8. L(s, χ1) has an Euler Product expansion

L(s, χ1) =
∏
p∈P

1

1− χ1(p)
ps

.

Proof. Similar to proposition 4.3: see problem sheet 4.

Lemma 4.9. There is a bound
∣∣∣log L(s, χ1)−

∑
p∈P

χ1(p)
ps

∣∣∣ < b1 for all s > 1.

Proof. As in lemma 4.4.

Lemma 4.10. log L(s, χ1) is bounded as s ↘ 1; in fact L(1, χ1) = π
4 .
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Figure 2: The graphs of ζ(s), L(s, χ1)

Proof. On the one hand, for all s > 1 we have

L(s, χ1) = (1− 1
3s

) + (
1
5s
− 1

7s
) + (

1
9s
− 1

11s
) + · · · > 1− 1

3s
>

2
3
.

On the other hand,

L(s, χ1) = 1− (
1
3s
− 1

5s
)− (

1
7s
− 1

9s
)− · · · < 1.

So 2
3 < L(s, χ1) < 1 for all s > 1. For the last part, the formula

L(1, χ1) = 1− 1
3

+
1
5
− 1

7
+ · · · = π

4

is Leibnitz formula for π. It can be found by putting x = 1 in

arctan(x) = x− x3

3
+

x5

5
− x7

7
+

x9

9
−+ · · · .

Theorem 4.11. Both P(1, 4) and P(3, 4) have density 1
2 ; in particular, both sets are infinite.

Proof. By the previous two lemmas,∑
p≡1 (mod 4)

1
ps
−

∑
p≡3 (mod 4)

1
ps

=
∑
p∈P

χ1(p)
ps

is bounded as s ↘ 1. Dividing by log(1/(s− 1)) and letting s ↘ 1 gives

dens(P(1, 4))− dens(P(3, 4)) = 0.

But dens(P(1, 4)) + dens(P(3, 4)) = 1 since P(1, 4) ∪ P(3, 4) is the set of all primes except p = 2.
Hence the result.

4.5 Dirichlet characters

Definition. Let m > 1 be an integer. A Dirichlet character modulo m is an arithmetic function
χ : Z → C such that

(i). χ(a) = 0 if and only if gcd(a,m) > 1,
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(ii). χ(a + m) = χ(a) for all a, and

(iii). χ(ab) = χ(a) · χ(b) for all a and b.

[G13GTH-people] In other words χ factors as Z → Z/mZ → C such that restricted to
(Z/mZ

)× it
is a group homomorphism to C×. We consider the group

(Z/mZ
)× of all invertible residue classes

modulo m. If m = p is prime then
(Z/pZ

)× is cyclic of order p − 1. The order of
(Z/mZ

)× is,
by definition, equal to ϕ(m), but the group need not be cyclic as the example m = 12 shows :(Z/12Z

)× = {1̄, 5̄, 7̄, 11}; since 12 ≡ 72 ≡ 52 ≡ 112 ≡ 1 (mod 12), this group is not cyclic of order 4,
but rather of the form Z/2Z × Z/2Z.

Proposition 4.12 (Properties of Dirichlet characters). (i). χ(1) = 1.

(ii). If a is coprime to m, then χ(a) is a ϕ(m)th root of unity in C.

(iii). If a is coprime to m, then |χ(a)| = 1.

Proof. χ(1) = χ(1 · 1) = χ(1)2, but χ(1) 6= 0. Then by Euler’s theorem χ(a)ϕ(m) = χ(aϕ(m)) =
χ(1) = 1. So χ(a) is of the form e2πit/ϕ(m) for some t.

Examples of Dirichlet characters.

• The trivial Dirichlet character. If m > 1 is any integer, then the function

χ◦(a) =

{
0 if gcd(a,m) > 1 and
1 if gcd(a,m) = 1

is a Dirichlet charachter.

• For m = 4 then χ1 used in the previous section is a Dirichlet character.

• For any odd prime p, the map χ(a) = (a
p ) is a Dirichlet character.

• Let p be a prime and let 0 6 t < p − 1. Choose a primitive root g modulo p. Put ω =
e2πi/(p−1). We define a Dirichlet character χt as follows. If p | a, then χt(a) = 0. If p - a,
then a ≡ gk (mod p) for some 0 6 k < p− 1. Define χt(a) = ωtk.

Lemma 4.13. (i). For m = 4 there are only two Dirichlet characters modulo 4. Namely χ◦ and
χ1.

(ii). If m = p is prime, then the p− 1 Dirichlet charachter χt for 0 6 t < p− 1 are all Dirichlet
characters modulo p.

Proof. A Dirichlet character is determined by its values on the integers 1 6 a < m that are prime
to m. For m = 4, a Dirichlet character χ must satisfy χ(1) = 1 and χ(3) ∈ {±1}.
Let χ be a Dirichlet character modulo a prime m = p. Then χ(g), for a primitive element g, must
be a power of ω, say ωt. But then χ(gk) = ωtk for all u, so χ = χt.

Lemma 4.14. Let m > 1 be an integer. Then

∑
all χ

χ(a) =

{
ϕ(m) if a ≡ 1 (mod m)
0 otherwise,

where the sum runs over all distinct Dirichlet characters modulo m.



Further Number Theory G13FNT cw ’11

Proof only when m = p is prime. First, if a is not coprime to p, then the sum is obviously 0. Then
if a ≡ 1 (mod p), then we are summing ϕ(p) terms of value χ(a) = χ(1) = 1.
Suppose now that a is coprime to p and that a 6≡ 1 (mod p). Then there exists 1 6 k < p− 1 such
that a ≡ gk (mod p) where g is a primitive root modulo m. Now we have

∑
all χ

χ(a) =
p−2∑
t=0

χt(a) =
p−2∑
t=0

χt(gk) =
p−2∑
t=0

ωtk =
(ωk)(p−1) − 1

ωk − 1
=

1− 1
ωk − 1

= 0 .

4.6 Dirichlet’s L-functions

Let m > 1 be an integer. For each character χ modulo m, we form the L-function

L(s, χ) =
∑
n>1

χ(n)
ns

.

Since |χ(n) n−s| 6 n−s, this converges absolutely for s > 1. Note that it is now a function with
values in C. It still admits an Euler product

L(s, χ) =
∏
p∈P

1

1− χ(p)
ps

since χ is strictly multiplicative (see problem sheet).
For the trivial charachter χ◦, we find the following

L(s, χ◦) =
∏
p∈P

1

1− χ◦(p)
ps

=
∏
p-m

1
1− 1

ps

= ζ(s) ·
∏
p|m

(
1− 1

ps

)
So the behaviour of L(s, χ◦) as s ↘ 1 is the same as the behaviour of ζ(s). But for all other
charachters the situation is different.

Proposition 4.15. If χ is a non-trivial Dirichlet character modulo m, then L(s, χ) stays bounded
as s ↘ 1 and L(1, χ) 6= 0.

The proof is omitted as it uses the theory of complex functions.
We saw that for m = 4, we have L(1, χ1) = π/4. For m = 3 and the unique non-trivial character
χ1, we have L(1, χ1) = π

3
√

3
. For m = 5, we find

L(1, χ1) = L(1, χ3) =
π

5
√

5
·
(√

5 + 2
√

5+i

√
5− 2

√
5
)

and L(1, χ2) =
1√
5
·log

(3 +
√

5
2

)
.

4.7 Dirichlet’s theorem on primes in arithmetic progressions

Theorem 4.16 (Dirichlet’s Theorem on Primes in Arithmetic Progressions).
If gcd(a,m) = 1 then

dens(P(a,m)) =
1

ϕ(m)
.

In particular, there are infinitely many primes p ≡ a (mod m).

Remark. For fixed m, all primes except for the finitely many prime divisors of m lie in exactly one
of the ϕ(m) disjoint sets P(a,m) with 1 6 a < m and gcd(a,m) = 1. Dirichlet’s theorem says that
these sets all have the same density.
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Very sketchy proof. Let a be an integer prime to m. Let b be an integer such that ab ≡ 1 (mod m).
For each character χ, we find that ∣∣∣∣log L(s, χ)−

∑
p∈P

χ(p)
ps

∣∣∣∣ < bχ

for some bound bχ valid for s > 1 by a result similar to lemma 4.9. (Here I omit the discussion of
what “log” we take.) So on the one hand we have that∣∣∣∣∑

all χ

χ(b) · log L(s, χ)−
∑
all χ

χ(b) ·
∑
p∈P

χ(p)
ps

∣∣∣∣ <
∑
all χ

|χ(b)| · bχ = B

On the other hand, note that the expression log L(s, χ) is bounded itself by proposition 4.15, except
if χ = χ◦. Hence ∑

all χ

χ(b) · log L(s, χ)

differs from χ◦(b) · log ζ(s) = log ζ(s) by a quantity that remains smaller than a certain bound B′

as s ↘ 1. Now we can compute∑
all χ

χ(b) ·
∑
p∈P

χ(p)
ps

=
∑
p∈P

∑
all χ

χ(b) · χ(p)
ps

=
∑
p∈P

∑
χ χ(b · p)

ps

Now we use lemma 4.14

=
∑

bp≡1 (mod m)

ϕ(m)
ps

= ϕ(m) ·
∑

p∈P(a,m)

1
ps

since bp ≡ 1 (mod m) if and only if p ≡ a (mod m). Dividing through by log 1
s−1 and letting

s ↘ 1, we obtain

1 = lim
s↘1

log ζ(s)
log 1

s−1

= ϕ(m) · lim
s↘1

∑
p∈P(a,m)

1
ps

log 1
s−1

= ϕ(m) · dens(P(a,m)) .


