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1 Definitions and examples

A group is a non-empty set with a binary operation such that for all g, h, k ∈ G

• gh ∈ G;

• (gh)k = g(hk);

• there is a neutral element 1 ∈ G such that 1 g = g 1 = g;

• there is a g−1 ∈ G such that g g−1 = g−1g = 1.

If the group is abelian, i.e. when gh = hg for all g and h in G, we sometimes
write the law as + and the neutral element as 0.

This module on group theory is the continuation of the study of groups
started in G11MSS and G12ALN. So many notions and definitions will be
assumed as prerequisites. See the additional hand-out which recalls the defin-
itions and basic properties of the following notions: Subgroup, coset, index,
normal subgroup, quotient group, conjugate of elements and groups, homo-
morphism, isomorphism, kernel, image, generating set and subgroup generated
by a set, etc.

Notations: We will write H < G for a subgroup different from G; if H is
allowed to be equal to G, we write H 6 G. When writing N C G we mean
that N < G is a normal subgroup of G. The number of elements of a set X
is denoted by #X. However if G is a group then we also write |G| = #G and
call it the order of G.

By cosets of H 6 G, we will always mean left cosets gH with g ∈ G. Similar
the conjugation of g on h is ghg−1. Also all our actions (see section 2) are on
the left. You will find that some books do everything on the right instead, for
instance their conjugation is g−1hg and so on.

The integers modulo n, will be denoted by Z/nZ. If p is a prime number,
then Z/pZ is sometimes also denoted by Fp when we think of it as a field.

1.1 Examples

The symmetric groups SX and Sn

If X is a set, then the set SX of all bijections X → X is a group under
composition. If X = {1, 2, . . . , n}, then we write Sn and we call it the sym-
metric group of degree n. See section 3 for much more on this group and
it interesting subgroup An.
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The cyclic group Cn

For any integer n > 1, the cyclic group of order n defined to be the set
{1, g, g2, g3, . . . , gn−1} with the operation

gi gj =

{
gi+j if i+ j < n and

gi+j−n otherwise.

The element g is called a generator.

Integers modulo n

For any integer n > 1, the set of “integers modulo n”, denoted by Z/nZ, is the
quotient group of Z by its subgroup nZ. Its law is written + and the neutral
element is 0. It is isomorphic to the cyclic group Cn.

The units R×

For any ring R, the set of units R× is a group under multiplication. Here an
element r of R is a unit (or invertible element) if there is a s ∈ R such that
rs = 1. If R is a field, like when R = Fp is the field of p elements for some
prime p, then R× = R \ {0}. You have seen that F×p is isomorphic to a cyclic
group of order p− 1 in G12ALN.

The general linear group GLn(R)

Let R be a ring and let n > 1. Then the set of all n × n matrices with
coefficients in R such that their determinant is a unit in R is a group under
matrix multiplication, called the general linear group GLn(R). If R is a
field, this is all matrices with non-zero determinants; if R = Z this is the
set of all matrices with determinant ±1. The subgroup of all matrices with
determinant 1 is called the special linear group SLn(R).

The dihedral group Dn

For any n > 1, the dihedral group Dn is the set of all isometries, i.e. distance
preserving maps, of the plane that map a regular n-gon to itself. The neutral
element is the identity map and the operation is composition. There are 2n
elements in Dn, more precisely Dn is composed of n rotations (including id)
and n reflections. (In some books this group is denoted by D2n.)

Let us describe this group in more details. We image the regular polygon
centred at the origin and one corner lies at (1, 0). The other corners are
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(
cos(2πk

n ), sin(2πk
n )
)

for k = 1, 2, . . . , n−1. If we view the plane as C, then the

corners are just the n-th roots of unity e2πik/n. Let g ∈ Dn be the rotation by
2π/n degrees. Then gn = 1 and 1, g, g2, . . . , gn−1 are all n distinct rotations
fixing the polygon. First, if n is odd, like in figure 1, the reflections in Dh are
along lines that connect a corner to the centre. They will meet the polygon

Figure 1: The dihedral group D9

again in the middle of an edge on the other side. Instead if n is even, as in
figure 2, then half the reflections connect the centre to two opposite corners and
the other n/2 reflection connect the centre to two middle-points of opposite
edges. While it is not hard to see that these elements are all distinct isometries
fixing the polygon, we omit the proof that there are no further. (In the complex
plane, one would start by showing that all isometries fixing the origin are of
the form z 7→ az or z 7→ az̄ with a ∈ C and |a| = 1.)
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Figure 2: The dihedral group D8

Isometry groups

If X is any subset of Rn for some n > 1, we can look at the set of all isometries
Isom(X) that preserves X. The subset of all orientation-preserving isometries
is a normal subgroup. We will see more of those in section 4.

The automorphism group

Let G be a group. Then the set of all isomorphisms G → G is called the
automorphism group Aut(G) of G. The identity id : G→ G is the neutral
element.

1.2 Isomorphism theorems

Let us recall the basic theorems on groups from G12ALN. Throughout this
section, G is a group.
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Theorem 1.1 (First isomorphism theorem). Let ϕ : G → H a homomorph-
ism. Then there is an isomorphism G/ kerϕ→ imϕ.

This is Theorem 1.5.1 in G12ALN. If K = ker(ϕ), then the isomorphism
ψ : G/K → imϕ is given by the formula ψ(gK) = ϕ(g).

If A and B are two subsets of G, then AB denotes the set of all elements ab
where a is in A and b in B. Even if A and B are subgroups, AB need not be
a subgroup. Instead, we have

Lemma 1.2. Let N P G and H 6 G. Then NH = HN is a subgroup of G.
Also N ∩H P H.

Proof. Let n ∈ N and h ∈ H. Then hn = hnh−1 h ∈ NH hence HN ⊂ NH.
Also nh = hh−1nh ∈ HN therefore NH ⊂ HN .

Now (nh)−1 = h−1n−1 ∈ HN = NH and nhn′h′ = nhn′h−1 hh′ ∈ NH for
all n′ ∈ N and h′ ∈ H. Thus HN is a subgroup. The last bit is easy.

Theorem 1.3 (Second isomorphism theorem). Let H 6 G and N P G. Then

H /
N ∩H ∼=

HN /
N.

This is proven in G12ALN as Theorem 1.5.2. It is the map H → HN/N
given by h 7→ hN that induces this isomorphism.

Theorem 1.4 (Correspondence Theorem). Let N CG. There is a bijection{
H

∣∣∣∣ H 6 G such that N 6 H

}
Φ //

{
K

∣∣∣∣ K 6 G/N

}
Ψ

oo

The normal subgroups H P G with N 6 H correspond bijectively to normal
subgroups K P G/N .

Proof. If H 6 G such that N 6 H, we define Φ(H) = H/N = {hN |h ∈ H}.
We claim that Φ(H) is a subgroup of G/N : If h, h′ ∈ H, then hN h′N = hh′N
belongs to Φ(H) because hh′ ∈ H and (hN)−1 = h−1N ∈ Φ(H).

If K is a subgroup in G/H, then we set Ψ(K) = {g ∈ G|gN ∈ K}. We
claim that Ψ(K) is a subgroup of G: If g, g′ ∈ Ψ(K). Then gg′N = gN g′N
belongs to K as gN and g′N do and, similarly, g−1N = (gN)−1 ∈ K shows
that g−1 ∈ Ψ(K). Furthermore N 6 Ψ(K) as the identity element N in G/N
belongs to K.
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The two maps are inverses to each other: Φ ◦Ψ(K) = {hN |hN ∈ K} = K
and Ψ ◦ Φ(H) = {g ∈ G|gN = hN for some h ∈ H} = H.

If H P G, then Φ(H) P G/N : If gN ∈ G/N and h ∈ H, then the element
gN hN (gN)−1 = ghg−1N belongs to Φ(H) because ghg−1 ∈ H. If K P G/N ,
then Ψ(K) P G: If g ∈ G and k ∈ K, then gkg−1N = gN kN (gN)−1 ∈ K
and hence gkg−1 ∈ Ψ(K).

Theorem 1.5 (Third isomorphism theorem). Let N and H be two normal
subgroups of G with N 6 H. Then the quotient group of G/N by H/N is
isomorphic to G/H, better written as

(G/N)/
(H/N)

∼= G/
H.

This was shown in Theorem 1.5.3 in G12ALN. One can view this as a further
step in the correspondence theorem. It says that the quotient by corresponding
subgroups are equal.

1.3 Direct and semi-direct products

Let G and H be two groups. The direct product G×H is the set
{

(g, h)
∣∣

g ∈ G, h ∈ H
}

with the operation (g, h)(g′, h′) = (gg′, hh′) for all g, g′ ∈ G
and h, h′ ∈ H.

For instance, Cn×Cm ∼= Cnm if n and m are coprime. If G and H are finite
then |G×H| = |G| · |H|.

Theorem 1.6. Let H and K be two subgroups of a group G. Suppose that

(a). hk = kh for all h ∈ H and k ∈ K and

(b). each element g ∈ G can be written uniquely as g = hk for some h ∈ H
and k ∈ K.

Then G is isomorphic to H ×K.

Proof. Let g ∈ G. By (b) there is a h ∈ H and a k ∈ K such that g = hk.
Define a map ϕ(g) = (h, k) from G to (H,K). By assumption (b) this is a
well-defined bijection. If g = hk and g′ = h′k′ for h, h′ ∈ H and k, k′ ∈ K,
then gg′ = hkh′k′ = hh′kk′ by (a) and so ϕ(gg′) = ϕ(g)ϕ(g′) shows that ϕ is
a homomorphism.
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Generalisations of this theorem to multiple products H1×H2×· · ·×Hk are
immediate. The condition (b) can also be rephrased by asking that G = HK
and H ∩K = {1}; see the lemma 1.8 below.

Example. Let G be the dihedral group D6 of order 12. Inside the regular
hexagon, we find the regular triangle. Hence we can view K = D3 as a natural
subgroup of G. Let h ∈ D6 be the rotation by π and let H 6 G be the cyclic
group of order 2 generated by h. We claim that G = H ×K, in other words
D6 is isomorphic to C2 ×D3. To verify this we have to show that h commute
with all elements k ∈ K, which is not hard to check on the six elements
directly. Now let g ∈ G be any element. If g fixes the triangle then g ∈ K and
g = 1g ∈ HK. Otherwise hg will fix the triangle and hence g = h(hg) ∈ HK.
Since H ∩K = {1}, we have shown that G = H ×K.

Proposition 1.7. Let {1} 6= G be a finite group such that g2 = 1 for all g in
G. Then G = C2 × C2 × · · · × C2.

Proof by induction on |G|. If |G| = 2, then G = C2 and we are done. Suppose
|G| > 2. For any g, h ∈ G, we have (gh)2 = 1 and therefore gh = ghgg =
ghghhg = 1hg = hg shows that G is abelian. Let {g1, g2, . . . , gk} be a minimal
set of generators of G. Set g = g1 and H = 〈g2, g3, . . . , gk〉. By minimality g
can not belong to H. Now every element of G can be expressed as words in
gi and by grouping together those in H, remembering that G is abelian, we
see that every element of G can be written as hgn with n ∈ {0, 1} and h ∈ H.
This representation is unique since hg = h′g implies h = h′ for h, h′ ∈ H
and hg = h′ implies that g ∈ H which is impossible. Hence by the previous
theorem, G ∼= H × 〈g〉 ∼= H × C2. By induction H is a product of a finite
number of copies of C2 and hence so is G.

Let G be a group. Suppose N CG and H < G such that every element in G
can be uniquely written as g = nh with n ∈ N and h ∈ H. Then G is called
a semi-direct product of N and H, written as N oH.

Lemma 1.8. Let NCG and H < G. Then G = NoH if and only if G = NH
and N ∩H = {1}.

The proof is an exercise on the problem sheet. We will see later in section 2.4
how given two groups H and N and some extra data, we can form a group
that is a semi-direct product of N and H.
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Proposition 1.9. Let n > 3. The dihedral group Dn is the semi-direct product
N oH with N ∼= Cn being the subgroup of rotations and H ∼= C2 is generated
by any choice of a reflection h ∈ Dn.

Proof. Since N has index 2, it is normal. It is also clear that N ∩H = {1}.
Therefore we only have to show that Dn = NH.

Figure 3: The composition of two reflections is a rotation

Let g ∈ Dn. If g ∈ N , then we are done. So we may assume that g is a
reflection. Consider gh. If the angle between the two axes of reflection is θ,
then the picture in figure 3 should show that composition of the two reflections
gh is the rotation by 2θ. In particular gh ∈ N and hence g = (gh)h ∈ NH.
Therefore Dn = N oH.

1.4 Small groups

Recall that if n is prime number then there is only one isomorphism class of
groups of order n, namely Cn.

10
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Groups of order 4

There are exactly two groups of order 4, namely C4 and C2 × C2, and both
are abelian. To see this, note that if a group G of order four has an element
of order 4, then it is C4, otherwise proposition 1.7 applies.

Groups of order 6

There are two non-isomorphic groups of order 6, namely C6 and S3
∼= D3.

Let us prove this: Let G be a group of order 6. Elements have order 1, 2, 3
or 6 in G by Lagrange’s theorem. Not all elements have order 1 and 2, because
of proposition 1.7 and the fact that 6 is not a power of two. Even if there is
an element of order 6, there must be an element g of order 3. It generates
a subgroup of index 2, hence it is normal. Let h be an element not in this
subgroup. Then h2 must lie in 〈g〉, but if h2 is of order 3 then h is of order 6
and G = C6. Otherwise h2 = 1 and we have found that G = 〈g〉o 〈h〉 is D3.

Groups of order 8

There are 5 groups of order 8. Three of them, namely C8, C4 × C2 and
C2 × C2 × C2 are abelian. Then there is the non-abelian D4 and a fifth non-
abelian group Q8.

The quaternion group Q8 can be generated by the two elements g =(
i 0
0 −i

)
and h =

(
0 1
−1 0

)
as a subgroup of GL2(C) where i2 = −1. In the

problem sheet you will show that every subgroup of Q8 is normal and that it
is not a semi-direct product of any its subgroups. It can also be described as
the unit group of a non-commutative ring H called the Hurwitz quaternions.

Groups of order 9

All groups of order 9 are abelian, either isomorphic to C9 or C3 × C3.

Groups of order 10

There are two groups of order 10, namely C10 and D5.

Groups of order 12

There are 5 groups of order 12. First there are two abelian groups C12 and
C2 × C6. Then there are three non-abelian groups: D6 and A4 as well as a
non-abelian group which is a semi-direct product which we will construct in
section 2.4. We have D6

∼= C2×S3 and D6 is also isomorphic to the subgroup

11
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of upper triangular matrices in GL2(F3). We will show later that A4 is a
semi-direct product of a normal subgroup N isomorphic to C2 × C2 and a
non-normal subgroup H, which is cyclic of order 3.

List of small groups

The number of groups (up to isomorphism of course) of a given order n is listed
as the first sequence in the online encyclopedia of integer sequences. Here are
the first few values:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

# 1 1 1 2 1 2 1 5 2 2 1 5 1 2 1 14 1

n 18 19 . . . 60 . . . 64 . . . 512 . . . 1024

# 5 1 . . . 13 . . . 267 . . . 10494213 . . . 49487365422

On the The Group Properties Wiki you will find plenty of examples of groups
with their properties. For instance there is the list of groups of order 12.

12
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2 Group actions

Most groups that we encounter in mathematics arise as “groups of transform-
ations” on some set X. For instance the dihedral group Dn is a group of
transformations of the plane. Galois groups, as you may see in G13NGA, are
transformations of solutions of polynomial equations, etc.

We now define the notion of a group G acting on a set X. To give such an
action is to view each element g ∈ G as a map Tg : X → X such that

Th
(
Tg(x)

)
= Thg(x) and T1(x) = x for all g, h ∈ G and x ∈ X.

(2.1)
It is more convenient to write Tg(x) as g ·x. The group action is then a map
G×X → X such that

h · (g · x) = (hg) · x and 1 · x = x for all g, h ∈ G and x ∈ X. (2.2)

We defined a left action here, in some books you will find right actions instead.
Note that Tg−1 ◦ Tg = T1 = idX is the identity on X and hence Tg and Tg−1

are inverse to each other. In particular, Tg is an element of SX for all g. The
condition (2.1) can be rephrased yet again, by saying that

ρ : G→ SX g 7→ Tg

is a group homomorphism. Conversely any such homomorphism ρ gives an
action by setting g · x = ρ(g)(x).

Examples. • The cyclic group G = Cn acts on X = C. Choose a gen-
erator g of Cn and define for each 0 6 k < n and z ∈ C the action
by

gk · z = e2πi k
n z.

• The dihedral group G = Dn acts on X = R2 by rotations and reflections.

• Let X be a set. Any subgroup G 6 SX acts naturally on X.

• Let k be a field and n > 1. Any subgroup G 6 GLn(k) acts naturally
on kn as matrices multiply vectors.

Lemma 2.1. Let G act on X. For x, y ∈ X, define the relation x ∼ y if and
only if there is a g ∈ G such that g · x = y. Then ∼ is an equivalence relation
on X.

13
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The proof is an exercise. It follows that the action of G partitions the set X
into equivalence classes for ∼, which are called orbits of G on X, or G-orbits
on X. We set for each x ∈ X

OrbG(x) =
{
g · x

∣∣ g ∈ G} ⊂ X
which is the orbit containing x. Often it is simply denoted by Gx.

The stabiliser of x ∈ X is

StabG(x) =
{
g ∈ G

∣∣ g · x = x
}
⊂ G.

Sometimes it is denoted by Gx.

Lemma 2.2. The stabiliser StabG(x) is a subgroup of G.

Proof. Since 1·x = x, we have 1 ∈ StabG(x). Then for any g and h ∈ StabG(x),
we obtain (gh) · x = g · h · x = g · x = x and g−1 · x = g−1 · g · x = (g−1g) · x =
1 · x = x. Hence gh ∈ StabG(x) and g−1 ∈ StabG(x).

Examples. As an example, we return to the action of Dn on R2. We choose
the regular n-gon such that it is centred at (0, 0) and (1, 0) is a corner of it.

• The point x = (0, 0) ∈ R2 is never moved by an element of G. So
OrbG(x) = {x} and StabG(x) = G.

• The point x = (1, 0) is fixed only by the reflection through the x-axis.
So the stabiliser is a subgroup of order 2. The orbit of x is a regular
n-gon.

• A random point, like x =
(√

5, π/24
)
∈ R2, is not fixed by any element

of G other than 1. So the stabiliser is the trivial group and the orbit has
2n elements as in the picture.

14
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As a second example, we consider the cyclic group C6 acting on the set X =
{1, 2, 3, 4, 5, 6, 7}, where the generator g acts as the permutation (1 2 3)(4 5).
The orbits are {1, 2, 3}, {4, 5}, {6}, and {7}. The stabiliser of any of the
first three is the subgroup {1, g3} of order 2, the stabiliser of 4 and 5 is the
subgroup {1, g2, g4} of order 3 and the stabiliser of 6 or 7 is the full group G.

Theorem 2.3 (Orbit-stabiliser theorem). Let G act on X and let x ∈ X. The
number of elements in the orbit of x is equal to the index of the stabiliser of
x, i.e.

# OrbG(x) =
∣∣G : StabG(x)

∣∣.
Another way to write the equality is

∣∣StabG(x)
∣∣ ·# OrbG(x) = |G|. Check

this in all the examples above.

Proof. Let Y be the set of left cosets of H = StabG(x) in G. Hence #Y =
|G : H|. Let g and g′ be in G. Then

g′ · x = g · x ⇐⇒ g−1g′ · x = x ⇐⇒ g−1g′ ∈ H ⇐⇒ g′H = gH. (2.3)

Therefore, we can define the map

Φ: OrbG(x)→ Y g · x 7→ gH

By the above it is well-defined and injective. As it is also surjective, it is a
bijection.

Definitions. An action is called transitive on X if there is only one orbit.
The action is called faithful if no two elements act the same way on X. It is
not hard to see that the action is faithful if and only if ρ : G→ SX is injective.
The action is called free if all stabilisers are trivial. Finally an action is called
regular if it is transitive and free. See the problem sheets for more properties
of these notions.

Theorem 2.4 (Cayley’s theorem). Every finite group is isomorphic to a sub-
group of a symmetric group Sn.

Proof. Let G act transitively on itself by left multiplication. This action is
clearly faithful. So there is an injective homomorphism ρ : G→ S|G|.

15
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2.1 Action on cosets

We generalise the action used in the previous proof. Let H 6 G. We define
an action of G on the set X of all left cosets of H by left multiplication: If
g ∈ G and kH ∈ X then g · (kH) := (gk)H is in X.

Lemma 2.5. This action is transitive and the stabiliser of the coset kH is the
conjugate kHk−1 of H.

Proof. Transitivity is clear. For g, k ∈ G we have

g ∈ StabG(kH) ⇐⇒ gkH = kH ⇐⇒ k−1gk ∈ H ⇐⇒ g ∈ kHk−1.

Hence StabG(kH) = kHk−1.

Now to the converse, which says that in order to understand all possible
actions of a group, one only needs to understand the action on cosets for
various subgroups:

Proposition 2.6. Suppose G acts transitively on a set X. Let x ∈ X and set
H = StabG(x). Then there is a bijection Φ from X to the cosets Y = G/H
such that g · Φ(y) = Φ

(
g · y

)
for all y ∈ X and g ∈ G.

Proof. Since the action is surjective, we have OrbG(x) = X. Now take Φ to be
the map in the Orbit-stabiliser theorem 2.3, which maps y to gH if g · x = y.
We have seen that this is a bijection. Finally, let y ∈ X and g ∈ G. Choose a
g′ ∈ G such that g′ ·x = y. Then g ·Φ(y) = g · g′H = gg′H. Now gg′ ·x = g ·y,
hence Φ(g · y) = gg′H, too.

Definition. The core Core(H) of a subgroup H 6 G is defined to be the
largest normal subgroup in G contained in H. More precisely, first Core(H) P
G and Core(H) 6 H and, secondly, if N P G and N 6 H, then N 6 Core(H).

Lemma 2.7. The core of H is equal to the kernel of the homomorphism
ρ : G → SX for the above action of G on the set X of left cosets of H. It
is also the intersection of all conjugates of H:

Core(H) =
⋂
g∈G

gHg−1.
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Proof. Let K = ker(ρ). It is clear that K P G. Let k ∈ K. It then acts
trivially on X and in particular it fixes 1H. Hence kH = H, which implies
k ∈ H and hence K 6 H.

Now let N P G with N 6 H. Let n ∈ N and g ∈ G. Since N is normal
g−1ng belongs to N and hence to H. Therefore n · gH = ngH = g g−1ngH =
gH shows that n acts trivially on X. Therefore N 6 ker(ρ). This shows that
ker(ρ) = Core(H).

Finally

ker(ρ) =
⋂
x∈X

StabG(x) =
⋂

gH∈X
gHg−1 =

⋂
g∈G

gHg−1

finishes the proof.

We can refine Cayley’s theorem.

Theorem 2.8. Let G be a group and H a subgroup of finite index n. There
is an injection of G/Core(H) into the finite symmetric group Sn.

Proof. Just the first isomorphism theorem on the map ρ above.

Example. Let n > 3. Let G = Dn and H be a cyclic subgroup of order 2
generated by a reflection. Then Core(H) = {1} as H is not normal. So we
find that G injects into Sn. (Cayley’s theorem would have given S2n.)

The theorem implies an important fact about infinite groups: Every finite
index subgroup H < G contains a normal subgroup N CG of finite index.

2.2 Action by conjugation

We define the conjugation action of G on itself by g · x = gxg−1. Check that
this is indeed an action. It is clear from the definition that the orbit of x ∈ G
is its conjugacy class {gxg−1|g ∈ G}. The stabiliser of x ∈ X = G is the
centraliser of x:

StabG(x) = CG(x) =
{
g ∈ G

∣∣ gxg−1 = x
}

=
{
g ∈ G

∣∣ gx = xg
}
.

Finally, the kernel of ρ : G→ SG is the centre Z(G) of G.

Proposition 2.9. The number of elements in the conjugacy class of x is equal
to the index of the centraliser of x. In particular it divides |G|.
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Proof. This is just the Orbit-stabiliser theorem 2.3 together with the fact that
the order of a subgroup divides the group order.

Theorem 2.10 (Class equation). Let G be a finite group. Pick in each of the
k conjugacy classes an element gi for 1 6 i 6 k. Then

∣∣G∣∣ =

k∑
i=1

∣∣G : CG(gi)
∣∣.

Sometimes it is convenient to separate this. The only conjugacy classes that
contain only one element are those containing an element in the centre. So if
we pick an element gi for 1 6 i 6 l in all conjugacy classes with more than
one element, then ∣∣G∣∣ =

∣∣Z(G)
∣∣+

l∑
i=1

∣∣G : CG(gi)
∣∣. (2.4)

Proof. The space X = G splits into conjugacy classes; giving

|G| = #

k⊔
i=1

OrbG(gi) =

k∑
i=1

# OrbG(gi).

But we know that # OrbG(gi) = |G : CG(gi)| by the Orbit-stabiliser the-
orem 2.3.

Here is a variant of this action: G act on the set X of all its subgroups
by conjugation g · H = gHg−1. The orbit of a subgroup H is the set of all
conjugates of H and the stabiliser is the normaliser of H

NG(H) =
{
g ∈ G

∣∣ gHg−1 = H
}
.

Lemma 2.11. The normaliser NG(H) of H is the largest subgroup of G such
that H P NG(H).

Proof. Let g ∈ NG(H), then gHg−1 = H and therefore H P NG(H).
Now let N be a subgroup of G with H P N . Then for g ∈ N we have that

gHg−1 = H which shows that g ∈ NG(H). Hence N 6 NG(H).

The orbit-stabiliser theorem implies that the number of conjugates of H is
equal to the index of the normaliser NG(H) in G. This number is one if and
only if H is normal in G.

18
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2.3 Linear actions

Definition. A linear representation of a group G over a field k is a vector
space V over k with a linear action of G on it; this means that G acts on V
such that

g ·
(
λ~v + ~w

)
= λ g · ~v + g · ~w

for all g ∈ G, λ ∈ k and ~v, ~w ∈ V . The dimension (or degree) of the
representation is the dimension of V .

The action is linear if and only if Tg : V → V is a linear transformation for
every g ∈ G. Suppose dimV = n. If we choose a basis of V , we can write Tg
as an invertible n×n matrix with entries in k; in other words there is a group
homomorphism ρ : G→ GLn(k). Conversely every such homomorphism gives
rise to a linear action on kn.

Now to some examples.

• The example of Cn acting on C discussed before is a 1-dimensional linear
representation over C.

• Another example is Q8 acting linearly on a 2-dimensional vector space
over C by the matrices that defined the group in section 1.4.

• As an more detailed example, we will look at the action of Dn acting on
the 2-dimensional vector space R2 again. Let σ be an element of order
n, say the rotation by 2π

n and let τ be the reflection along the x-axis.
Then with respect to the standard basis, these correspond to the linear
transformations

Tσ =

(
cos(2π

n ) − sin(2π
n )

sin(2π
n ) cos(2π

n )

)
Tτ =

(
1 0
0 −1

)
Let k be any field and G a finite group. We take a |G|-dimensional vector

space V over k and we label the basis elements by eg where g runs (in some
order) through all the elements of G. We define a linear action on V by
setting g · eh = egh for all g, h ∈ G. So this is just a permutation of the basis;
then we extend the action linearly on all of V . This is called the regular
representation and is denoted by k[G].

For instance, we can look at G = C3 and the field k = R. Let g be a
generator of C3. So V = R[C3] has a basis {e1, eg, eg2}. The action by the
three elements in G on V is given by

T1 =

1 0 0
0 1 0
0 0 1

 , Tg =

0 0 1
1 0 0
0 1 0

 , and Tg2 =

0 1 0
0 0 1
1 0 0

 .

19



Group Theory G13GTH cw ’16

A slight variation of the regular representation: Suppose H < G is a sub-
group of a finite group G and let k be a field. Take a vector space of dimension
|G : H| with a basis ex as x = gH runs through all coset once. Define the
action through the left multiplication on cosets by g · ex = egx. This is called
a permutation representation and is denoted by k[G/H].

Theorem 2.12. Let k be a field. Every finite group is isomorphic to a sub-
group of GLn(k) for some n.

Proof. No element of g 6= 1 acts trivially on the regular representation k[G] of
dimension n = |G|. Hence the associated ρ : G→ GLn(k) is injective.

For many groups G one can find n smaller than |G|. For instance G = S4

has a faithful 3-dimension representation given by

ρ
(
(12)

)
=

1 0 0
0 0 −1
0 −1 0

, ρ
(
(23)

)
=

0 1 0
1 0 0
0 0 1

, ρ
(
(34)

)
=

1 0 0
0 0 1
0 1 0

.
This action realises S4 as the group of symmetries of the tetrahedron (1, 1, 1),
(1,−1,−1), (−1, 1,−1), and (−1,−1, 1).

The theory of linear representations only starts here. One can show that all
such are direct sums of so-called irreducible representations. All these irredu-
cible representations appear in C[G] and hence they can be totally classified.
If one only looks at the traces χ(g) = Tr(Tg) of the transformation one get
the so-called characters of G. A good introduction to this subject is given in
the book “Representations and characters of groups” by James and Liebeck,
QA171 JAM.

2.4 A second look at semi-direct products

Definition. Let N and H be two groups. We say that H acts on N by auto-
morphisms if there is an action of H on N such that each Th : N → N is a
group homomorphism. In other words if h · (nn′) = (h ·n)(h ·n′) for all h ∈ H
and n, n′ ∈ N .

Suppose H acts by automorphisms on a group N . Then we define a new
group G as follows: As a set it is just the set of all pairs (n, h) with n ∈ N
and h ∈ H, but the multiplication is given by (n, h)(n′, h′) =

(
n (h · n′), hh′

)
.

Lemma 2.13. G is a group.
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Proof. It is one of the exercises to show that the operation is associative. The
neutral element is obviously (1, 1) and the inverse of (n, h) is (h−1 · n−1, h−1),
because

(n, h)(h−1 · n−1, h−1) =
(
n (h · h−1 · n−1), hh−1

)
= (nn−1, 1) = (1, 1).

Example. As a first example, we can take for any N and H with the trivial
action: h · n = n for all h ∈ H and n ∈ N . Then G is nothing but the direct
product N ×H.

If we take N any group and H = C2 = 〈h〉, we can define an action by
h · g = g−1 for all g ∈ N . Then this action is by automorphism if and only
if N is abelian. The theorem below can be used to prove that the if N = Cn
then G ∼= Dn.

Theorem 2.14. (a). Let H act on N by automorphisms. Then the group G
constructed above is the semi-direct product N oH.

(b). Conversely every G which is a semi-direct product of N CG and H < G
can be obtained in this way.

Proof. (a): We view N =
{

(n, 1)
∣∣ n ∈ N} and H =

{
(1, h)

∣∣ h ∈ H} as a
subgroups of G. Let g = (n, h) ∈ G and t = (n′, 1) ∈ N . It is shown in a
exercise that gtg−1 =

(
n (h · n′)n−1, 1

)
∈ N . Hence N C G. It is clear that

G = NH and that N ∩H = {1}. So G = N oH by lemma 1.8.
(b): Suppose G = N oH. Because N CG, we can define an action of H on

N by conjugation h · n = hnh−1 ∈ N in G. This action is by automorphisms
because

h · (nn′) = hnn′h−1 = hnh−1hn′h−1 = (h · n)(h · n′).

Let G∗ be the group constructed as above with this action by automorphisms.
Then there is a map ϕ : G∗ → G sending (n, h) to nh. By definition every
element in G can be written uniquely as the image of a pair (n, h) under ϕ,
meaning that ϕ is a bijection. Now

ϕ
(

(n, h)(n′, h′)
)

= ϕ
((
n(h · n′), hh′

))
= n(h · n′)hh′ =

= nhn′h−1hh′ = nhn′h′ = ϕ(n, h)ϕ(n′, h′)

proves that ϕ is a group isomorphism.
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Example. Let N be a cyclic group of order 3 and let H be a cyclic group of
order 4 generated by h. We define an action of H onto N by setting h∗n = n−1

for all n ∈ N . This extends to an action with h2 acting trivially and h3 acting
just as h. As N is abelian, this is an action by automorphisms. Hence we can
form the semi-direct product G = N ×H. This is a group of order 12. It is
non-abelian. As is cannot be isomorphic to D6 or A4, since none of them have
an element of order 4, it is the fifth group of order 12 listed in section 1.4.

More generally, a group is called metacyclic if it is a semi-direct product
of two cyclic groups. If H ∼= Cm and N ∼= Cn, then there are non-trivial
semi-direct products unless m is coprime to ϕ(n), which is the order of the

group Aut(N) ∼=
(Z/nZ)×.
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3 The symmetric group

For any set X, let SX be the set of all bijections X → X. If X = {1, 2, . . . , n},
we write Sn for SX . They form a group under the composition g : X → X
and h : X → X gives gh = g ◦ h : X → X. Elements g in Sn can be written as(

1 2 3 · · · n
g(1) g(2) g(3) · · · g(n)

)
.

If 1 < k 6 n, then a k-cycle g = (x1 x2 . . . xk) is the element such that
g(x1) = x2, g(x2) = x3, . . . , g(xn) = x1. Two cycles (x1 x2 . . . xk) and
(y1 y2 . . . yl) are disjoint if {x1, . . . xk} ∩ {y1, . . . , yl} = ∅. Note that two
disjoint cycles commute.

Lemma 3.1. Every element g ∈ Sn can be written as a product of disjoint
cycles. Up to reordering the factors, this is unique.

Proof. Consider the action of the group G = 〈g〉 generated by g on X. By
lemma 2.1, X splits into orbits under this action. Let Y be an orbit of length k,
say. Pick y ∈ Y . If gi(y) = gj(y) with j > i, then gj−i(y) = y. If 0 < j−i < k,
then the orbit of y would not contain all k element of Y . So y, g(y), g2(y),
. . . , gk−1(y) are all distinct. Set hY =

(
y g(y) g2(y) . . . gk−1(y)

)
∈ Sn. As

we multiply the disjoint cycles hY as Y runs through all orbits of G, we get g.
If g is the product of disjoint cycles, then the action of 〈g〉 on X splits up

into orbits containing exactly all elements of one of those cycle. It follows that
the product is unique up to the order of multiplication.

Note that we think of Sn as acting on the left. Therefore we multiply cycles
as we compose maps, that is reading from right to left. For instance

(1 2 3)(3 4 5) = (1 2 3 4 5)

as 3 is sent by (3 4 5) to 4 and then by (1 2 3) to 4, etc. A 2-cycle is also called
a transposition.

Lemma 3.2. Any element of Sn can be written as a product of transpositions.

Proof. By the previous lemma it is enough to show it for cycles. This is done
by

(x1 x2 . . . xk) = (x1 x2)(x2 x3) · · · (xk−1 xk).
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Note however that this is in no way unique, not even the number of trans-
position is unique.

Proposition 3.3. Two elements of Sn are conjugate if and only if they have
the same cycle structure.

Proof. ⇒: Let h = (x1 x2 . . . xk)(y1 . . . yl) · · · be an element of Sn written as
a product of disjoint cycles. For any g ∈ Sn, the permutation ghg−1 sends
g(x1) to g(x2) as

g(x1) �
g−1

//x1
� h //x2

� g //g(x2) .

We see that

ghg−1 =
(
g(x1) g(x2) . . . g(xk)

)(
g(y1) g(y2) . . . g(yl)

)
· · ·

has the same cycle structure. In fact, we see that conjugation by g, just means
applying g to the elements in the cycles.
⇐: Suppose we have two elements h = (x1 x2 . . . xk)(y1 . . . yl) · · · and h′ =

(x′1 x
′
2 . . . x

′
k)(y

′
1 . . . y

′
l) · · · with the same cycle structure. Choose an element

g ∈ Sn that sends x1 7→ x′1, x2 → x′2, . . .xk 7→ x′k, y1 7→ y′1, . . . Then ghg−1 =
h′ by the computations in the first part of the proof.

Example. Let n > 3 and let g ∈ Sn be a cycle of length k, say g =
(x1 x2 . . . xk). Suppose h belongs to the centraliser CSn(g), so hgh−1 = g.
Equivalently, we may ask that the cycle (h(x1) h(x2) . . . h(xk)) is equal to
g. If so, then there is a 0 6 j < k such that h(x1) = xj+1, h(x2) = xj+2, . . . ,
h(xk) = xj , where the indices are taken modulo k. Hence the decomposition of
h into disjoint cycles will contain the cycle (x1 xj+1 x2j+1 x3j+1 . . . x1−j) = gj .
Hence h = gjh′ for some 0 6 j < k and some h′ ∈ Sn with h′(xi) = xi for all
0 6 i < k. Therefore we have shown that

CSn(g) = 〈g〉 × SX\{x1,...,xk} ∼= Ck × Sn−k.

By the orbit-stabiliser theorem, we know that the size of the conjugacy class
of g is equal to the index of the centraliser. For the k-cycle g, we find that
there are n!/(k ·(n−k)!) = n(n−1) · · · (n−k+1)/k elements in the conjugacy
class consisting of all k-cycles in Sn. This can be confirmed easily by counting.
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3.1 The sign of permutations

Let g ∈ Sn and write kg for the number of orbits of the action of 〈g〉 on X.
We say g is even and write sign(g) = +1 if n− kg is even, otherwise g is odd
and sign(g) = −1.

For example when n = 7 and g = (1 2 3)(4 5), then kg = 4 and so g is odd.
If g = 1 then it has n orbits and so 1 ∈ Sn is even for all n. Any transposition
is odd. More generally

Lemma 3.4. A k-cycle is even if and only if k is odd.

Proof. There is one orbit of size k and n − k orbits of size 1. So it is even if
and only if n− (1 + n− k) = k − 1 is even.

Lemma 3.5. Let g ∈ Sn and let h ∈ Sn be a transposition. Then sign(gh) =
− sign(g).

Proof. Write h = (x y). Suppose first that x and y are in the same 〈g〉-orbit.
From the following picture (the action of g on the left and gh on the right
hand side), we see that there is exactly one 〈g〉-orbit that breaks into two
〈gh〉-orbits; all others remain the same. Hence the sign changes.

Next, we suppose that x and y are not in the same 〈g〉-orbit. Again, we draw
the action of g on the left and the one of gh on the right:

Therefore there are exactly two 〈g〉-orbits that glue together to become a single
〈gh〉-orbit. Again the sign changes.
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Proposition 3.6. If g ∈ Sn is written as a product of k transposition, then g
is even if and only if k is.

Proof. As seen before 1 is even. Then each time we multiply by a transposition,
the sign changes as shown in the previous lemma.

Theorem 3.7. The map sign: Sn → {1,−1} is a homomorphism.

Proof. Let g, h ∈ Sn. We can write g as a product of k transpositions and
h as a product of l transpositions. Then gh can be written as a product
of k + l transpositions we if just multiply them. Hence sign(g) · sign(h) =
(−1)k · (−1)l = (−1)k+l = sign(gh).

3.2 The alternating group

The kernel of the homomorphism sign: Sn → {±1} is called the alternating
group An. It is the set of all even permutations. It is a normal subgroup of
index 2 in Sn.

Example. Of course A2 = {1} and A3 is cyclic of order 3. Let’s look at A4.
Let N be the subgroup {1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}, usually denoted
by V and called the Klein 4-group. Since N is formed of two conjugacy classes
of S4, we see that N C S4 and hence N CA4. Let H be a subgroup generated
by a 3-cycle, like h = (1 2 3). Then H ∩N = {1}. We conclude that there are
|H| · |N | = 12 elements in NH 6 A4. Hence NH = A4. We have shown that
A4 = N oH is a semi-direct of the form (C2 × C2) o C3.

Example. We consider conjugacy classes in A5. Recall that there are four
S5-conjugacy classes containing elements in A5, namely the trivial element,
3-cycles, 5-cycles and products of two transpositions. Clearly {1} is still a
A5-conjugacy class. Consider a 3-cycle like g = (1 2 3). Then the centraliser
CA5(g) = CS5(g) ∩ A5 is equal to {1, g, g2}. By the orbit-stabiliser theorem,
we see that the A5-conjugacy class of g must have 60/2 = 20 elements, which
must all be among the 3-cycles. Since there are twenty 3-cycles in total, we
find that the set of all 3-cycles is a conjugacy class in A5.

Now let us consider the centralisers of g = (1 2 3 4 5). This time CA5(g) =
CS5(g) are both the subgroup generated by g. We see that there must be
60/5 = 12 elements in the A5-conjugacy class of g, while there were 120/5 = 24
in the S5-conjugacy class of g. Therefore there will be two A5-conjugacy classes
each containing twelve 5-cycles. For instance (1 2 3 5 4) is not conjugate to
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g in A5 as all the elements in S5 that conjugate g to it are (4 5), (1 2 3 5),
(1 3 4)(2 5), (1 5 3)(2 4) and (1 4 3 2), none of which belongs to A5.

Finally the A5-conjugacy class of g = (1 2)(3 4) is again the full set of
elements with this cycle structure since the centraliser CA5(g) = {1, g} while
CS5(g) = {1, (1 2), (3 4), g}.

In summary, here is the table of the five conjugacy classes in A5.

One element 1 (1 2)(3 4) (1 2 3) (1 2 3 4 5) (1 2 3 5 4)
Order of element 1 2 3 5 5
Size of class 1 15 20 12 12

Theorem 3.8. The group A5 is simple.

Proof. Let N be a non-trivial subgroup of A5 that is normal in A5. Then N
is a union of conjugacy classes including the conjugacy class {1}. Also |N |
divides |A5| = 60. However from the list of conjugacy classes in the example
above, we see that the size of all possible unions of conjugacy classes that
include {1} are 13, 16, 21, 25, 28, 33, 36, 40, 45, 48 or 60. Among these only
60 divides 60. Hence N = A5.

Lemma 3.9. If n > 3 then An is generated by 3-cycles.

Proof. Any element of An can be written as an even number of transpositions.
Then (w x)(y z) = (w z y)(w xy) and (x y)(x z) = (x z y) does the trick.

Lemma 3.10. If n > 5, then all 3-cycles are conjugate in An.

Proof. By proposition 3.3, for any two 3-cycles g and g′ there is an element
h in Sn such that hgh−1 = g′. The lemma says there is a h′ in An such that
h′gh′−1 = g′. So suppose h 6∈ An. Write g = (x y z). Since n > 5, there are v
and w not in {x, y, z}. Set k = (v w). Then kgk−1 = g gives (hk)g(hk)−1 = g′

with h′ = hk ∈ An.

Lemma 3.10 is wrong for n = 4. Check this!

Theorem 3.11. If n 6= 4, then An is a simple group.

Recall that a group G is simple if it has no normal subgroup other than G
and {1}.
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Proof. We have A1 = A2 = {1} and A3 = C3, so they are clearly cyclic of
prime order and hence simple. We now prove the simplicity of An by induction
on n. We know by theorem 3.8 that A5 is simple.

Now assume by induction that n > 6 and that An−1 is simple. Let {1} 6=
N P An be a normal subgroup. Pick 1 6= g ∈ N . We will now prove that
the conjugacy class of g contains at least n elements. If the cycle structure
of g contains a cycle of length k > 3. The number of k-cycles in Sn is n(n −
1)(n−2) · · · (n−k)/k and this class could split into two An-conjugacy classes,
but they would both contain more than (n − 1)(n − 2)/2 elements, which is
more than n if n > 6. Otherwise g is a product of an even number of disjoint
transpositions. The number of pairs of disjoint transpositions is n(n− 1)(n−
2)(n− 3)/8, which is bigger than n if n > 6. Here we use that n 6= 4.

Since N contains 1 and a conjugacy class of at least n elements we have
|N | > n. Using this, we find that

|An| > |An−1N | =
|An−1| · |N |
|An−1 ∩N |

>
|An−1| · n
|An−1 ∩N |

=
|An|

|An−1 ∩N |

and hence An−1 ∩N is a non-trivial normal subgroup of An−1. By induction,
we must have An−1 ∩N = An−1. Therefore the 3-cycle (1 2 3) is contained in
N . Since N is normal, all 3-cycles are in N by lemma 3.10. Since all elements
in An can be written as a product of 3-cycles by lemma 3.9, we find that
N = An.
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4 Finite reflection groups

Let n > 2. We will work in Rn and write ~e1, ~e2, . . . , ~en for its standard basis.

Definition. The orthogonal group is defined as the subgroup of GLn(R) of
all orthogonal matrices.

By definition an orthogonal matrix is one whose inverse is equal to its trans-
pose, or equivalently it is a linear map that preserves the standard scalar
product:

On =
{
g ∈ GLn(R)

∣∣∣ ggt = 1
}

=
{
g ∈ GLn(R)

∣∣∣ (g · ~v).(g · ~w) = ~v.~w ∀~v, ~w ∈ Rn
}

=
{
g ∈ GLn(R)

∣∣∣ ‖g · ~v‖ = ‖~v‖ ∀~v ∈ Rn
}

(You should recall from linear algebra why the above sets are equal.)
The last description explains that it is the group of linear isometries of Rn

that fix the origin. In geometry one can show that all isometries fixing the
origin are linear.

Since det(ggt) = det(g)2, we see that det(g) ∈ {±1} for all g ∈ On. Hence
On contains a normal subgroup of index 2, namely SOn consisting of all
matrices in On with determinant 1. It is called the special orthogonal group.
Viewed as isometries, these are the orientation-reserving (also called direct)
isometries.

Definition. A reflection is an element g of order 2 in On having a hyperplane
W , i.e. a subspace of dimension n−1, such that g fixes W point-wise and acts
as multiplication by −1 on the orthogonal line to W . The fixed hyperplane
W will be called the mirror of g.

When written in a basis formed of one vector orthogonal to W and all others
in W , the reflection g becomes a diagonal matrix with entries −1, 1, 1, . . . , 1.
In particular det(g) = −1, so g 6∈ SOn.

Example. The matrix

g =


1
3 −2

3 −2
3

−2
3

1
3 −2

3

−2
3 −2

3
1
3


is the reflection where the mirror W is the plane given by x+ y + z = 0.
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Our aim is to describe all finite subgroups of On which are generated by
reflections.

Note first the following. Let G 6 On and consider H = G ∩ SOn. Then

G/H = G/(G ∩ SOn) ∼= (G SOn)/SOn 6 On / SOn
∼= C2

shows that either G = H of [G : H] = 2. In any case H P G.

4.1 Two-dimensional case

We start by explaining what SO2 is.

Lemma 4.1. The group SO2 consists of all the rotations
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
for

θ ∈ R/2πZ.

Proof. Let g =
(
a b
c d

)
be an element of SO2. Then ~v = g(~e1) =

(
a
c

)
must be a

vector of length 1, since g preserves distances. So we can find θ ∈ [0, 2π) such
that a = cos(θ) and c = sin(θ). Now ~w = g(~e2) =

(
b
d

)
must be orthogonal to

~v. Hence there is λ ∈ R such that ~w = λ
(− sin(θ)

cos(θ)

)
. But since g has determinant

1, we must have λ = 1. Therefore g is the rotation by θ.

Recall that we have defined the cyclic group Cm and the dihedral group Dm

as finite groups of isometries. We are going to show that there are no others
in dimension 2.

Lemma 4.2. Let H be a finite subgroup of SO2. Then H = Cm for some
m > 1.

Proof. Let m = |H|. The order of h ∈ H must divide m, therefore it is a
rotation of angle 2πk/m for some k by the above lemma. There are exactly
m of those; so H contains all of them. This is exactly the group Cm of direct
isometries of the regular m-gon.

Lemma 4.3. The set of reflection for m = 2 is exactly the set of elements in
O2 that do not belong to SO2.

Proof. Since
[
O2 : SO2

]
= 2, any g not in SO2 can be written as g = hg0

where g0 is the reflection through the x-axis and h is a rotation. But then g
is the reflection through the axis bisecting the x-axis and its image under h.
Compare with figure 3.
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Proposition 4.4. Any finite subgroup G of O2 generated by two or more
reflections is a dihedral group Dn for some integer m > 2.

Proof. Let H = G∩SO2. Since there are at least two reflections, their product
is a non-trivial element in H. So H = Cm for some m > 2. Because [G :
H] = 2, we must have 2m elements in G. By the previous lemma, all other
element in G that are not in H are reflections. Conjugating a reflection by an
rotation in G, rotates its axis by the angle of the rotation. So the line fixed
by the m reflections in G must go through the corners of a regular m-gon. So
G = Dm.

Let g1 any reflections in Dm, say whose axis passes through the vertex P of
the m-gon. Let g2 be the reflection whose axis passes through the centre of a
edge ending at P . Then g1g2 is a rotation by 2π

m , so it has order m. Together

Figure 4: The dihedral group is generated by 2 reflections

g1 and g2 generate all of Dm. We summarise this in a Coxeter diagram as

I2(m) : • m−2 • (4.1)

where there should be m− 2 edges between the two points. The two vertices
of the graph represent the two generators g1 and g2.

4.2 Coxeter graphs

Let G be a finite subgroup of On generated by reflections g1, g2, . . . , gm. Then
we represent this as a graph. There are m vertices corresponding to the m
generators. We connect any two vertices, say corresponding to gi and gj , by
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kij edges if the order of gigj is kij +2. In particular if gi and gj commute, then
gigjgigj = 1 and hence the order of gigj is 2, and hence we do not connect the
two vertices.

More generally, let g and h be two distinct reflections in that finite group
G. Let k be the order of gh and let Wg and Wh be the hyperplanes fixed by g
and h respectively. Then gh fixes Wg ∩Wh, which is a subspace of dimension
n − 2 in Rn. Let Z be the 2-dimensional plane perpendicular to Wg ∩Wh.
Now g acts on Z as the reflection through the line Z ∩ Wg and h as the
reflection through Z ∩Wh. Therefore gh acts as the rotation on Z by twice
the angle between Z ∩ Wg and Z ∩ Wh. Therefore: The element gh is the
rotation around Wg ∩Wh by 2π/k and the angle between Wg and Wh is π/k.
Hence the Coxeter graph contains the information about the angles between
the hyperplanes fixed by the reflections. Two such hyperplanes are orthogonal
if and only if the reflections commute.

4.3 Three-dimensional examples

We start with three examples of finite reflection groups in R3 given by the
platonic solids.

4.3.1 The group of isometries of the cube

Theorem 4.5. Let G be the subgroup of elements in O3 that fix1 a cube centred
at the origin. Then G ∩ SO3

∼= S4 and G ∼= S4 × C2.

Proof. We start by computing the order of G by looking at a new action. The
group G acts on the set X̃ of triples (V,E, F ) where V is a vertex of the cube,
E is an edge of the cube ending on one side at V and F is a face of the cube
having E as one of its sides. Such (V,E, F ) are called flags.

The claim that the action of G on X̃ is transitive: Fix one flag, say F0 being
the face of the cube facing us, E0 the edge on the right of F0 and V0 the top
end of E0. Now let (V,E, F ) be any other flag. First if the face F is not
F0, then we can find a rotation g1 with axis going through the centre of two
opposing faces that bring F to F0. Otherwise if F = F0 take g1 = 1. Having
done that the edge g1(E) may not yet be E0, but with a rotation g2 with axis
going through the middle of g1(F ) = F0, we can bring g1(E) to E0 without
changing the face F0. Finally if g2g1(V ) is not V0, we can set g3 to be the
reflection with W perpendicular ro E0 to bring it to V0 otherwise take g3 = 1.

1We say a set of isometries fixes a set X if f(x) ∈ X for all x ∈ X
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Now g = g3g2g1 will map (V,E, F ) to (V0, E0, F0). This shows that the action
is transitive.

Let x = (V,E, F ) be a flag. Let ~v1 be the vector from the origin to the
centre of the face F . Let ~v2 be the vector from the origin to the centre of the
edge E and let ~v3 be the vector from the origin to V . Then {~v1, ~v2, ~v3} is a
basis of R3. Let g ∈ StabG(x). Then g(~vi) = ~vi and hence g = 1. Therefore
StabG(x) = {1} for all x ∈ X̃.

Since the action is transitive and the stabiliser of any x ∈ X̃ is trivial, the
action is regular. We have shown in an exercise this implies that G has as
many elements as X̃. There are 6 choices for the face F , there are 4 choices
for the edge on the border of F and there are 2 choices for V . Therefore
|G| = 6 · 4 · 2 = 48 elements.

Also G acts on the set Y consisting of the four body diagonals of the cube.
This action is almost faithful, the only non-trivial element that acts trivially
on Y is j : (x, y, z) 7→ (−x,−y,−z). Hence there is a map G/〈j〉 → S4 which
is injective. But both groups are of order 24, so this is an isomorphism.
Moreover the subgroup G ∩ SO3 maps isomorphically to S4 under this map
because j 6∈ SO3. Finally we have G ∼= C2×S4 because j and any h ∈ G∩SO3

commute.

Proposition 4.6. The isometry group of the cube in R3 given by the vertices
(±1,±1,±1) is generated by three reflections:

g1 : (x, y, z) 7→ (x, y,−z)
g2 : (x, y, z) 7→ (x, z, y)

g3 : (x, y, z) 7→ (y, x, z)

which satisfy (g1g2)4 = (g2g3)3 = (g1g3)2 = 1

Proof. Labelling the four body diagonals going through (1, 1, 1), (−1, 1, 1),
(1,−1, 1), and (1, 1,−1) by 1, 2, 3, and 4 respectively. The three reflections g1,
g2, and g3 correspond to (1 4)(2 3), (3 4) and (2 3), respectively in G/〈j〉 ∼= S4.
Since they are reflections, the products gigj are in G ∩ SO3

∼= S4.

Again we summarise this in the corresponding Coxeter graph

B3 : • • •

Next, we consider the group of the octahedron. Because the centre of the
faces of an octahedron form a cube and the centre of the faces of a cube form
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an octahedron, we say that the two regular polyhedrons are dual to each other.
See figure 5. It is clear that they have the same group of isometries.

Figure 5: The cube and the octahedron are dual

4.3.2 The group of the tetrahedron

Let G be the group of isometries of a tetrahedron centred at the origin. See
figure 6.

Figure 6: The tetrahedron

Theorem 4.7. Let G be the subgroup of elements in O3 that fix a tetrahedron
centred at the origin. Then G ∼= S4 and G ∩ SO3

∼= A4.

Proof. We consider the action of G on the four corners of the tetrahedron. The
action is faithful because no non-trivial isometry can fix all corners; hence this
gives an injective map of ρ : G→ S4. We can further see that any element of S4

appears in G. First if a 3-cycle leaving the fourth corner fixed can be obtained
as a rotation by ±2π/3 around the axis going through the fixed corner. An
element like (1 2)(3 4) is obtained by a rotation by π around an axis parallel
to one of the edges mapped to itself. Finally a transposition is obtained as
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a reflection with W perpendicular to the two exchanged corners. This shows
that ρ is surjective and that even permutations correspond to rotations so they
belong to SO3.

Taking the three reflections corresponding to (1 2), (2 3), and (3 4) as
generators g1, g2, and g3 respectively, we find the Coxeter graph

A3 : • • • (4.2)

4.3.3 The group of the icosahedron

The dodecahedron and the icosahedron are dual to each other.

Theorem 4.8. Let G be the subgroup of O3 that fix an icosahedron centred at
the origin. Then G ∼= C2 ×A5 and G ∩ SO3

∼= A5.

Partial sketch of a proof. The proof is similar to the case of the cube. First
one acts with G on the flags to determine the order of G. It is again a regular
action and one finds |G| = 20 ·3 ·2 = 120. Then one needs an action on a set of
five elements with only j acting trivially. In fact, the faces of the icosahedron
can be coloured with 5 colours in such a way that the group G acts on the set
of colours, see figure 7. The centres of the faces with the same colour form a

Figure 7: The icosahedron and its colouring with 5 colours

regular tetrahedron.

One can show that G is generated by 3 elements g1, g2, g3 with the relations
(g1g2)5 = (g2g3)3 = (g1g3)2 = 1, so the corresponding Coxeter graph is

H3 : • • • (4.3)

By the way, this is also the isometry group of the football, which can be
obtained by cutting off bits at each vertex from a icosahedron. This group is
the starting point of Klein’s classical book “Lectures on the Icosahedron”.
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4.4 Infinite families

There are three families of finite groups of reflections in n-space Rn.
First, the group Sn can be viewed as acting by permutations on the standard

basis of Rn. This group is generated by the n − 1 transpositions g1 = (1 2),
g2 = (2 3), . . . , gn−1 = (n− 1 n) and the Coxeter graph is

An−1 : • • • · · · • • (4.4)

as we have (gigj)
2 = 1 if j > i + 1 and (gigj)

3 = 1 if j = i + 1. This group
is the group of isometries of the so-called (n− 1)-simplex, whose vertices are
the n end-points of the basis vectors. It is a regular polytope in the (n − 1)-
dimensional affine subspace x1 + x2 + · · ·+ xn = 1. It generalises the triangle
and the tetrahedron.

Next, we have the group Cn2 o Sn where the action of Sn on Cn2
∼= Fn2 is by

permutation of the basis. We can view this as the group of permutations of
the standard basis in Rn together with all possible changes of signs. So G is
generated by g0 : (x1, . . . , xn) 7→ (−x1, x2, . . . , xn) and the transpositions g1,
. . . , gn−1 in the previous example. The resulting Coxeter graph is

Bn : • • • · · · • • (4.5)

It is the group of isometries of the n-dimensional hypercube which is formed
by the points (±1,±1, . . . ,±1). It is also the group of the dual polytope,
the n-dimensional version of the octahedron, called a cross polytope. It is
formed by the 2n+1 vertices ±~ei.

Finally, we can take the permutations of the basis together with the elements
that change only an even number of signs. Now G is generated by the reflection
g0 : (x1, . . . , xn) 7→ (−x1,−x2, x3, . . . , xn) together with g1 up to gn−1. The
Coxeter graph is

•

Dn : • • · · · • •

•

(4.6)

This fixes a so-called hyper-demicube, which is not a regular polytope if
n > 3. Its vertices is the set of all vectors of the form (±1,±1, · · · ± 1) such
that there is an even number of −1 in it.
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4.5 Coxeter’s theorem

The regular polytopes in all dimensions were classified by Schläfli in the middle
of the 19-th century. There are 6 of them in dimension 4, they have 5, 8, 16, 24,
120, and 600 regular polyhedron as 3-dimensional faces. However in dimension
n > 4, there are always just the three regular polytopes discussed in the first
two families above: The simplex, the hypercube and the cross polytope.

Coxeter gave in 1935 a full classification of all finite reflection groups.

Theorem 4.9 (Coxeter). Let G be a finite group of On for some n generated
by reflections. Suppose G is not the direct product of two such groups. Then
it belongs to the following list

Label Graph |G| Regular polytopes

An with n > 1 see (4.4) (n+ 1)! n-simplex
Bn with n > 2 see (4.5) 2n · n! n-hypercube, n-hyper-

octahedron
Dn with n > 4 see (4.6) 2n−1 · n!

E6 see below 72 · 6!
E7 see below 72 · 8!
E8 see below 192 · 10!
F4 see below 1152 24-cell

G2 = I2(6) see (4.1) 12 hexagon
H2 = I2(5) see (4.1) 10 pentagon

H3 see (4.3) 120 icosahedron, dodeca-
hedron

H4 see below 14400 120-cell/600-cell
I2(p) with p > 5 prime see (4.1) 2 · p p-gon

The missing Coxeter graphs are

E6 : • • • • • F4 : • • • •

•

E7 : • • • • • • H4 : • • • •

•

E8 : • • • • • • •

•
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5 Sylow’s theorems

Let G be a finite group. For every subgroup H, the order |H| divides |G|.
Conversely: For what divisors of |G| is there a subgroup of this order? For
instance there is no subgroup of order 6 in A4. However for some divisors we
can answer the question.

Throughout this chapter p will be a fixed prime number. A finite group is
called a p-group if its order is a power of p.

Theorem 5.1. A non-trivial p-group has a non-trivial centre.

Proof. The index of a centraliser CG(g) is either a power of p or 1; where the
latter only happens when g ∈ Z(G). The class equation in (2.4) shows that p
divides |Z(G)| as it divides |G| and all non-trivial indices of centralisers.

Theorem 5.2. Let G be a p-group of order pm. Then there are subgroup
1 = H0 < H1 < · · · < Hm = G with |Hj | = pj for all 0 6 j 6 m.

Proof by induction on m. If m = 1, the theorem is clear. Assume m > 1. By
theorem 5.1, there is 1 6= g ∈ Z(G). Say g has order pk. Then h = gp

k−1

has order p. Set H1 = 〈h〉, which is a normal subgroup in G as it is in the
centre. Set Ḡ = G/H1, which has order pm−1. By induction hypothesis, there
are subgroups H̄1 = 1 < H̄2 < · · · < H̄m = Ḡ with |H̄j | = pj−1. By the
correspondence theorem 1.4, there are subgroups Hj containing H1 such that
H̄j = Hj/H1. These groups satisfy the requirements of the theorem.

We will refine this theorem a lot in theorem 7.14 in section 7.3.
Let G be a finite group of order pm · r with p not dividing r for some m > 0.

A subgroup P 6 G is called a p-Sylow (or Sylow p-subgroup) of G if it is a
p-group whose index in G is coprime to p. In other words, it is a subgroup
of order pm. If G is a p-group then G is a p-Sylow. If p does not divide |G|
then {1} is a p-Sylow. Otherwise it is not immediately clear that there exists
a p-Sylow in every group.

Lemma 5.3. Let p be a prime and n > 1. Then the group GLn(Fp) has a
p-Sylow.

Recall that Fp denotes the field Z/pZ with p elements.
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Proof. We claim that the set P of all upper triangular matrices with only 1s
on the diagonal

P =




1 ∗ · · · ∗
0 1 ∗
...

. . . ∗
0 0 · · · 1




is a p-Sylow. It is not difficult to show that P is a subgroup2. Now we just
need to find the order of P and G = GLn(Fp). For P , this is easy, because

there are n(n−1)
2 spaces in the matrix that we can fill with any value in Fp.

This gives |P | = pn(n−1)/2.
For the full group G, we have to find how many matrices are invertible.

Looking at the columns of the matrix, this is the same as to ask how many
bases there are for Fnp . We do this column by column. For the first column, we
can choose any vector in Fnp except the zero vector; there are pn − 1 choices.
For the second column, having already chosen the first, we can pick any vector
except the ones linearly dependent on the first vector; there are pn−p choices.
And so on, for the i-th column, we have all vectors but those linearly dependent
on the i−1 columns before, that is the full space Fnp minus an i−1-dimensional
subspace; hence there are pn − pi−1 choices. We get

|G| = (pn − 1) · (pn − p) · (pn − p2) · · · (pn − pn−1)

= (pn − 1) · p (pn−1 − 1) · p2 (pn−2 − 1) · · · pn−1 (p− 1)

= p1+2+···+(n−1) · (pn − 1)(pn−1 − 1) · · · (p− 1)

= pn(n−1)/2 · (pn − 1)(pn−1 − 1) · · · (p− 1).

We see that |P | is the highest power of p that divides the order of the full
group.

We already see in this example that there can be more than one p-Sylow
in a group, because the subgroup of lower triangular matrices with 1s on the
diagonal is also a p-Sylow of GLn(Fp).

If G is any group with a p-Sylow P and g ∈ G, then gPg−1 is also a p-Sylow,
because |gPg−1| = |P |.

Lemma 5.4. Let G be a finite group with a p-Sylow P and let H < G. Then
there is a g ∈ G and a p-Sylow Q of H such that Q 6 gPg−1.

2 This is linear algebra. It is easy that multplying two such matric is still of that form. To
convince you that the inverse of such a matrix is still of that form, the Gaussian elimination
procedure to compute the inverse is convenient.
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Proof. Let the group H act on the set X of left cosets for P in G by left
multiplication. First, p can not divide #X = |G : P |. So there is at least
one H-orbit whose size is coprime to p. Pick an element gP ∈ X in such an
orbit and set Q = StabH(gP ). By the orbit-stabiliser theorem 2.3, |H : Q| =
# OrbH(gP ) is coprime to p. Then

Q =
{
h ∈ H

∣∣ hgP = gP
}

=
{
h ∈ H

∣∣ g−1hg ∈ P
}

=
{
h ∈ H

∣∣ h ∈ gPg−1
}

= H ∩ gPg−1

implies that Q is contained in the p-group gPg−1. Hence it is a p-group and
so it is a p-Sylow of H.

Theorem 5.5 (First theorem of Sylow). Every finite group has a p-Sylow.

Proof. By theorem 2.12, we can view the finite group G as a subgroup of
GLn(Fp) for some n. We know by lemma 5.3 that GLn(Fp) has a p-Sylow.
The previous lemma 5.4 applies now and shows that there is a p-Sylow for G,
too.

Combining theorems 5.2 and 5.5, we obtain the following.

Corollary 5.6. If pj divides |G|, then G has a subgroup of order pj.

In particular for j = 1, this proves a theorem of Cauchy.

Corollary 5.7 (Cauchy’s theorem 1844). If p divides |G|, then G contains an
element of order p.

Now to a refinement of theorem 5.5

Theorem 5.8 (Sylow’s theorems). Let G be a finite group.

(a). Every subgroup in G which is a p-group is contained in a p-Sylow of G.

(b). All p-Sylows of G are conjugate.

(c). Let sp be the number of p-Sylows of G. Then sp ≡ 1 (mod p) and sp
divides the index of the p-Sylows.
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Proof. Lemma 5.4 proves (a) directly. To prove (b), we apply lemma 5.4 with
H and P being two distinct p-Sylows of G. Then H 6 gPg−1 and because
they have the same size, we have H = gPg−1.

Finally, we prove (c). We may suppose that sp > 1. Let G act on the set X
of all its p-Sylows by conjugation. The action is transitive by (b). Let P be a
p-Sylow. Its stabiliser is StabG(P ) = NG(P ) =: H. The fact that P 6 NG(P )
implies that sp = #X = |G : H| = |G : P |/|H : P | divides |G : P |.

Note that P is normal in H = NG(P ) and hence it is the unique p-Sylow of
H by (b).

We now consider the action of H by conjugation on X. The action is no
longer transitive, for instance OrbH(P ) = {P} contains only one element.
Let Q be another p-Sylow of G and consider StabH(Q). Since StabH(Q) 6
StabG(Q) = NG(Q) and the latter has a unique p-Sylow, StabH(Q) can not
contain P . Therefore # OrbH(Q) =

∣∣H : StabH(Q)
∣∣ is divisible by p for all

Q 6= P . We conclude that the action of H partitions X into one orbit {P}
of size 1 and all other orbits of size divisible by p. Hence sp = #X ≡ 1
(mod p).

For example
{(

1 ∗
0 1

)}
and

{(
1 0
∗ 1

)}
are two p-Sylows of GL2(Fp). They are

indeed conjugate by
(

1 1
−1 0

)
. How many p-Sylows are there in GL2(Fp) ?

5.1 Applications

Theorem 5.9. Let p > q be two distinct prime number and let G be a group
of order pq. Then G is not simple. In fact G = P oQ for a p-Sylow P and a
q-Sylow Q. If furthermore p 6≡ 1 (mod q), then G is cyclic.

Proof. Let sp be the number of p-Sylows of G. We have that sp must divide
q, which means that sp is either 1 or q. Since we also have sp ≡ 1 (mod p),
we conclude that sp = 1 because q < p can not be congruent to 1 modulo p.
Let P be this unique p-Sylow of G. It is normal and hence G is not simple.

Let Q be any q-Sylow. Then P is a cyclic group of order p and Q is a cyclic
group of order q. If g belongs to P ∩ Q then its order must divide |P | = p
and |Q| = q. This shows that P ∩ Q = {1}. Now the subgroup PQ has
order |P | · |Q| = pq = |G|. Therefore PQ = G which concludes the proof that
G = P oQ by Lemma 1.8.

Assume now that p 6≡ 1 (mod q). Let sq be the number of q-Sylows. Then
sq divides p and it is congruent to 1 modulo q. Hence sq = 1. So there is
a unique q-Sylow Q and it is normal. We have seen in an exercise in the
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first chapter that this shows that G = P × Q. Hence G ∼= Cp × Cq ∼= Cpq is
cyclic.

Theorem 5.10. Let p and q be two distinct primes and suppose G is a group
of order p2q. Then G is not simple.

Proof. Let sp and sq denote the number of p-Sylows and q-Sylows in G. As-
sume that G is simple, so sp 6= 1 and sq 6= 1. We conclude as before that
sp = q ≡ 1 (mod p), which also implies that p < q. This in turn exclude the
possibility that sq = p. Now sq must divide p2, which leave only sq = p2 as a
possibility. Now we reach a contradiction if we estimate the number of elements
contained in p-Sylows and q-Sylows: Each q-Sylow is cyclic of order q and two
distinct such intersect in 1 only. So there are sq(q − 1) = p2q − p2 = |G| − p2

non-trivial elements in them, none of which could appear as an element in a p-
Sylow. There are at least two p-Sylows of order p2, so the number of elements
in them must be larger than p2, which is impossible.

With similar sort of techniques, it is possible to show that no group whose
order is a product of three distinct primes is simple. With much more work of
the same kind one can give the list of all simple groups of order less than 100:
Namely, there are only the cyclic groups Cp for primes p and the alternating
group A5 of order 60.
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6 Finitely generated abelian groups

In this section all groups are abelian and we write the operation as + and the
neutral element as 0.

Recall that an abelian group A is finitely generated if there is a set
{a1, a2, . . . , an} such that every element a ∈ A can be written as a Z-linear
combination a = x1 a1 + x2 a2 + · · · + xn an for some x1, . . . , xn ∈ Z. If the
integers xi are unique, then A is said to be free on {a1, . . . , an}.

The change of the generating set is a bit like a change of basis in linear
algebra. Suppose

b1 = p11 a1 + p12 a2 + · · ·+ p1n an

b2 = p21 a1 + p22 a2 + · · ·+ p2n an
...

...

bn = pn1 a1 + pn2 a2 + · · ·+ pnn an

for some pij ∈ Z.

Lemma 6.1. If the matrix P = (pij) has determinant ±1, then {b1, b2, . . . , bn}
is also a generating set for A. Moreover if A was free on {a1, a2, . . . , an}, then
so it is on {b1, b2, . . . , bn}.

Proof. If det(P ) = ±1, then P−1 has also integer coefficients. Hence each ai
can be expressed uniquely as a Z-linear combination of the bj . Therefore any
a ∈ A can be written as a combination of the bj ; and this expression is unique
if A were free on {a1, . . . , an}.

Recall that the group of all integer matrices with determinant ±1 is denoted
by GLn(Z).

6.1 Free abelian groups

Another way of saying that A is free on {a1, . . . , an} is to say that the map
A→ Zn sending a = x1 a1 + · · ·+ xn an to (x1, . . . , xn) is an isomorphism.

Lemma 6.2. If A is free on {a1, a2, . . . , ar} and free on {b1, b2, . . . , bs}, then
r = s.

The number r is then called the rank of A.

Proof. A/2A is isomorphic to
(Z/2Z)r and isomorphic to

(Z/2Z)s. Comparing
the size gives r = s.
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Theorem 6.3. Any subgroup B of a finitely generated abelian group A of rank
r is free of rank at most r.

Proof by induction on r. If r = 1, then the only subgroups of A = Z are {0},
which is free of rank 0, and mZ for some m > 0 and they are free of rank 1.

Say A is free on {a1, . . . , ar} with r > 1. Consider the map ϕ : A→ Z that
sends x = x1 a1 + · · ·+ xr ar to x1. Then kerϕ is a free abelian group of rank
r− 1. By induction, its subgroup B′ = B ∩ kerϕ is free of rank at most r− 1.
Now, if ϕ(B) = {0}, then B′ = B and we are done. So suppose ϕ(B) = mZ
for some m > 0. Pick a c ∈ B such that ϕ(c) = m. For every b ∈ B, there is
a k ∈ Z such that ϕ(b) = km. Therefore the element b′ = b − k c belongs to
B′ = B ∩ kerϕ. Hence any element b ∈ B can be written in a unique way as a
sum b = b′ + k c with k ∈ Z and b′ ∈ B′. So if we add c to the generating set
of B′, we find a generating set for B on which it is free of rank at most r.

6.2 Smith normal form

Theorem 6.4. Let M be an m × n matrix with integer coefficients. Then
there are matrices P ∈ GLm(Z) and Q ∈ GLn(Z) and a sequence of integers
d1, d2, . . . , dt such that di divides di+1 for all 1 6 i < t and such that

P M Q =



d1

d2 0
d3 0

0
. . .

dt

0 0


is a matrix with its only non-zero coefficients on the diagonal.

Proof. Among the elements in GLn(Z) and in GLm(Z) there are those giving
us permission to do certain row and column operations:

• We may multiply a row (or a column) by −1.

• We may swap two rows (or two columns).

• We may add an integer multiple of one row (or column) to another.
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For instance the last is done by multiplying with the matrix P having 1s on the
diagonal and a single non-zero integer values off the diagonal. It is important
to remember that we are never allowed to divide.

Our aim is to bring M into the requested form by applying these three
operations on row and columns. First we may swap rows and columns (and
the sign if needed) to have a positive (preferably small) value a in the top left
hand corner. If this were not possible then the matrix is the zero-matrix and
we are done.

If there is a row, say the i-th row, such that its first entry is not divisible
by a, then we can add a multiple of the first row to the i-th row to make sure
that the first entry of the i-th row is now an integer between 0 and a. Then we
swap it with the first row. In this manner using rows, but in a similar fashion
by using columns, we make the top left entry a > 0 smaller. We will only
be able to do this a finite number of times and then we will have reached the
situation where all entries in the first row and in the first column are divisible
by a.

Now we can obtain 0 in all the entries of the first row except the top entry
by adding multiples of the first row to the other rows and similar for the first
column. We have now reached a matrix of the form

a 0 · · · 0

0
... M ′

0


for some matrix M ′. We repeat the process with M ′ and so forth. Eventually
we reach a zero matrix. Therefore, we will arrive at a matrix of the form

a
b 0

. . .

0 0


and all that remains to do is to make sure the divisibility holds. This can be
done with lemma 6.5 below.

First an example for the process so far with

M =

 3 7
−2 6
5 −11

 . (6.1)

45



Group Theory G13GTH cw ’16

Our first step is to bring the 2 in the top left corner (the so-called “pivot”) by
swapping the first two rows and by changing afterwards the sign of the first
row. 2 −6

3 7
5 −11


Next, we see that the second row has a first entry that is not divisible by 2,
so we subtract the first row from it and then swap the two first rows.1 13

2 −6
5 −11


Now, we have reached the stage where all the first entries in the columns and
rows are divisible by the top left entry a = 1. We may subtract 13 times
the first column from the second, twice the first row from the second and 5
times the first row from the last row. I will also switch the signs of the second
column at the end. 1 0

0 32
0 76


So we reduced the problem to the smaller matrix M ′ =

(
32
76

)
. The pivot is

already there, we we start by subtracting twice the first row from the second
and then swap the two to obtain

(
12
32

)
. We do exactly the same again and

have
(

8
12

)
. Again we subtract the first row from the second and swap them to

obtain
(

4
8

)
. This time all the entries in the (top) row are divisible by b = 4.

We can get a 0 by subtracting twice the first row from the second. Finally, we
reached 1 0

0 4
0 0


which is by chance already in the desired Smith normal form. Note that
the operations done to get from

(
32
76

)
to
(

4
0

)
is just the Euclidean algorithm

computing the greatest common divisor gcd(32, 76) = 4.

Lemma 6.5. The matrix
(
a 0
0 b

)
can be transformed to

(
g 0
0 l

)
with g = gcd(a, b)

and l = lcm(a, b).

Proof. First we may suppose b > a > 0. We start by adding the bottom row
to the top row to obtain

(
a b
0 b

)
. Now we subtract the first column from the
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second as often as to reduce the top right entry to 0 6 b′ < a. Now we subtract
the second from the first column to get the top left entry a′ to be smaller than
b′. Now the matrix looks like

(
a′ b′
−kb b

)
for some k ∈ Z. And so forth, we see

that we are just doing a Euclidean algorithm with the top row.
It will reach (after a column swap if necessary) a matrix where the top row

is (g 0) with g = gcd(a, b). Both entries in the bottom rows are multiples
of b. Since g divides b, we can subtract a multiple of the first row from the
second to achieve a zero in the bottom left entry. Now the matrix looks like(
g 0
0 l

)
. Since the determinant never changed, we must have gl = ab and hence

l = lcm(a, b).

We can also illustrate the lemma with an example.(
2 0
0 3

)
r1→r2+r1 //

(
2 3
0 3

)
c2→c2−c1 //

(
2 1
0 3

)
c1↔c2 //

(
1 2
3 0

)
c2→c2−2c1 //

(
1 0
3 −6

)
r2→r2−3r1 //

(
1 0
0 −6

)
c2→−c2 //

(
1 0
0 6

)
Theorem 6.6. Let ϕ : A → B be a homomorphism between two finitely gen-
erated free abelian groups. Then there are generating sets {e1, . . . , en} of A
and {f1, . . . , fm} of B and integers d1, d2,. . . , dt such that ϕ(ei) = di fi if
1 6 i 6 t and ϕ(ei) = 0 if t < i 6 n and such that di divides di+1 for all
1 6 i < t.

This is just a reformulation of the Smith normal form. Take any generating
sets for A and B on which they are free. Then write the the matrix for ϕ with
respect to these generating sets (as we do for linear maps in linear algebra)
by writing as columns the coefficients (in terms of the generating set of B) of
the images of the generating set of A. The operations described in the proof
of the Smith normal form are just changes of generating sets.

By carefully watching the generating set as we do the changes, it is possible
to find P and Q, too. In the above example (6.1), the matrix M represents
a homomorphism ϕ : Z2 → Z3. Let {e1, e2} and {f1, f2, f3} be the standard
generating set for the source and target space of ϕ. A lengthy computation
gives that the new generating set {f ′1, f ′2, f ′3} for the target space of ϕ is

f ′1 = 3 f1 − 2 f2 + 5f3

f ′2 = −8 f1 + 8 f2 − 19 f3 (6.2)

f ′3 = −3 f1 + 3 f2 − 7 f3
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and for the source space it is

e′1 = e1 and e′2 = e2 − 13e1.

In these new generating sets the map is just ϕ(e′1) = f ′1 and ϕ(e′2) = 4f ′2. This
yields for the matrices

P =

 3 −8 −3
−2 8 3
5 −19 −7

−1

=

 1 1 0
1 −6 −3
−2 17 8

 and Q =

(
1 −13
0 1

)
.

Note that unlike the Smith normal form, the matrices P and Q are not unique
for a given M .

6.3 The fundamental theorem on finitely generated abelian
groups

Theorem 6.7. Let A be a finitely generated abelian group. Then there exists
a unique r > 0 and integers 1 < d1 6 d2 6 · · · 6 dt such that di divides di+1

for all 1 6 i < t and such that

A ∼= Z/d1Z × Z/d2Z × · · · × Z/dtZ × Zr.

Proof. Choose a generating set {a1, . . . , am} for A. Let F be a free abelian
group of rank m generated by {f1, . . . , fm}. Consider the map ψ : F → A
sending fi to ai for all 1 6 i 6 m. This map is surjective, because any a ∈ A
can be written (non-uniquely) as a = x1 a1 + · · ·+ xm am with xi ∈ Z and so
x1 f1 + · · ·+ xm fm ∈ F is mapped to a under ψ.

Let R be the kernel of ψ. By theorem 6.3, R is a free abelian group of rank
n 6 m. Now apply theorem 6.6 to the inclusion map ϕ : R→ F . So there are
integers c1, c2, . . . , cs, a generating set {f ′1, . . . , f ′m} of F and a generating set
{e1, . . . , en} for R such that ϕ(ei) = ci fi and ci divides ci+1 for all 1 6 i 6 s
and ϕ(ei) = 0 for s < i 6 m. Now R, which is the image of ϕ, is equal to
c1Z f ′1 × c2Z f ′2 × · · · × csZ f ′s. Since A ∼= F/ kerψ = F/R = F/ imϕ, we find

A ∼=
Zf ′1 × Zf ′2 × · · · × Zf ′s × Zf ′s+1 × · · · × Zf ′m

c1Zf ′1 × c2Zf ′2 × · · · × csZf ′s
∼= Z/c1Z × Z/c2Z × · · · × Z/csZ × Zm−s.

So we set r = m − s. We can delete in the above product the terms with
ci = 1, say c1 = c2 = · · · = cu = 1, then set 1 < d1 = cu+1, d2 = cu+2, . . . ,
dt = cs with t = s− u.

48



Group Theory G13GTH cw ’16

In practice the group A could be given by generators and relations. For
instance, suppose A is generated by three elements {a1, a2, a3} subject to the
relations 3 a1 − 2 a2 + 5 a3 = 0 and 7 a1 + 6 a2 − 11 a3 = 0. Then the matrix
for ϕ, called the relation matrix, in this example is

M =

 3 7
−2 6
5 −11

 .

Note that we have simply put the equations in the columns of M . Here is
why: The free abelian group F in this case is Z3 and we write f1, f2, f3 for
its basis. Then we set e1 = 3 f1 − 2f2 + 5 f3 and e2 = 7 f1 + 6 f2 − 11 f3 such
that ψ(e1) = ψ(e2) = 0 shows that they belong to R = kerψ. In fact {e1, e2}
is a generating set and R is free over it. So ϕ(e1) = 3 f1 − 2f2 + 5 f3 shows
that the first column of the matrix expressing ϕ in these generating sets is the
first column of the above M .

We have computed the Smith normal form for this matrix (6.1) before and
found d1 = 1 and d2 = 4 and r = 1. We conclude that

A ∼= Z/4Z × Z.

In general, let M be the relation matrix of A with respect to some generating
set of A and a set of equations satisfied by them. We compute the Smith
normal form of M to find the integers d1, d2, . . . , dt on the diagonal, remem-
bering that we can ignore the terms that are equal to 1. The number of rows of
zeroes below them is the number r in the above theorem. Instead the columns
of zeroes at the end, if there are any, just show that we had taken too many
equation and that fewer would have done.

By following the changes to the generating sets, it is possibly to give ex-
plicitly which elements generate the cyclic subgroups. For instance in the
example above, we had ϕ(e′1) = f ′1 and ϕ(e′2) = 4f ′2 with the new gener-
ating sets {f ′1, f ′2, f ′3} for F and {e′1, e′2} for R given in (6.2). So let b2 =
ψ(f ′2) = −8a1 + 8a2 − 19a3. Then 4b2 = ψ(4f ′2) = 0 as 4f ′2 = ϕ(e′2) ∈ R. Let
b3 = ψ(f ′3) = −3a1 + 3a2 − 7a3. Then b2 generates a group of order 4 in A
and b3 an infinite cyclic group: A = Z/4Z b2 × Z b3.

The example transforming
(

2 0
0 3

)
to
(

1 0
0 6

)
can now be viewed as another

proof that Z/2Z × Z/3Z ∼= Z/6Z.
Here is another way to express the theorem.

Corollary 6.8. Let A be a finitely generated abelian group. Then there are
(not necessary distinct) prime numbers p1, p2, . . . , ps and integers n1, n2,
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. . . , ns > 1 such that

A ∼= Z/pn1
1 Z ×

Z/pn2
2 Z × · · · ×

Z/pns
s Z × Zr
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7 Series

Let G be a group. A series for G is a finite sequence of subgroups

1 < H1 < H2 < · · · < Hn = G.

The left hand 1 is a short hand notation for the trivial subgroup {1} < G.
The natural number n is called the length of the series. If Hi CHi+1, then
Hi+1/Hi is called a factor of the series.

7.1 Composition series

A series is called a composition series if HiCHi+1 for all 1 6 i < n and the
factors Hi+1/Hi are simple group. In other words Hi CHi+1 and there is no
larger normal subgroup Hi < N CHi+1. We write

1 CH1 CH2 C · · ·CHn = G

but recall that this does not mean that H1 CG if n > 2.

Lemma 7.1. Every finite group has a composition series.

Proof. If G is simple then 1 < G is a composition series. Otherwise take a
normal subgroup H C G of maximal order. Then take a normal subgroup of
maximal order in H etc. Because G is finite, this will eventually stop.

Here a few examples of composition series that also show that there is not
a unique such.

1 C C2 =
〈
(1 2)(3 4)

〉
C C2 × C2 =

〈
(1 2)(3 4), (1 3)(2 4)

〉
C A4 C S4

1 C Cp C Dp if p is prime,

1 C Cp C Cp × Cp C · · · C Cp × Cp × · · · × Cp if p is prime

1 C C2 C C4 C C12

1 C C2 C C6 C C12

1 C C3 C C6 C C12

Proposition 7.2. If G has a composition series of length n and N CG, then
N has a composition series of length at most n.
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Proof. Let 1CH1 C · · ·CHn = G be a composition series of G. Now consider

1 P (H1 ∩N) P (H2 ∩N) P · · · P (Hn ∩N) = N

which is a sequence of subgroups of N . We will show that at each step we have
either equality or a simple quotient; hence by deleting repetition, we have a
composition series of length at most n.

By the second isomorphism theorem 1.3, we have

Hi+1 ∩N /
Hi ∩N = Hi+1 ∩N /

Hi ∩ (Hi+1 ∩N)
∼= Hi (Hi+1 ∩N)/

Hi
.

This is a normal subgroup of Hi+1/Hi as both Hi and Hi+1∩N are normal in
Hi+1. Hence it is either trivial or all of Hi+1/Hi because this factor is simple.
If it is trivial, then Hi+1 ∩ N = Hi ∩ N . Otherwise (Hi+1 ∩ N)/(Hi ∩ N) is
simple.

Theorem 7.3 (Jordan-Hölder). Any two composition series for a group G
have the same length and equal set of factors (up to permutation).

Proof by induction on the length n of the shortest composition series. If this
length is n = 1, then G is simple and there is only one composition series.
Assume the G has two decomposition series

1 CH1 CH2 C · · ·CHn−1 CHn = G (7.1)

1 C J1 C J2 C · · ·C Jm−1 C Jm = G (7.2)

of lengths m > n > 1 respectively. Set H = Hn−1 and J = Jm−1. First, if
H = J , then the two series are composition series of length n− 1 of H and so
by induction the theorem holds.

G

J H

J = Jm−1 H = Hn−1

K = H ∩ J

Jm−2 Hn−2

Kr−1

Therefore we may assume that H 6= J . Since
H < H J is normal in G but G/H is simple, we
have H J = G. Set K = H ∩ J . By the second
isomorphism theorem 1.3, we have

H /
K
∼= HJ /

J = G/
J

and
J /

K
∼= G/

H

and they are both simple. By proposition 7.2,
the subgroup K < H has a composition series
of length at most n− 1, say

1 CK1 CK2 C · · ·CKr = K
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with r < n. By the above argument,

1 CK1 CK2 C · · ·CKr−1 CK CH CG (7.3)

1 CK1 CK2 C · · ·CKr−1 CK C J CG (7.4)

are both composition series of G. In particular, we have now two composition
series (7.1) and (7.3) of H. By induction they have the same length, i.e.
n− 1 = r+ 1. Now J has a second composition series (7.4) of length less than
n; by induction, we have m− 1 = r + 1. Therefore n = m.

Finally the factors of (7.3) and (7.4) are the same apart from the swapping
of the last two. Comparing (7.1) and (7.3) for H, we know by induction that
the factors for H are K1, K2/K1, . . . , K/Kr−1, H/K = G/H. Therefore the
set of factors for G in (7.1) and (7.2) is {K1,K2/K1, . . . ,K/Kr−1, G/H,G/J}
for both composition series.

This theorem shows that the simple finite groups are the building blocks of
finite groups. However a finite group G is not determined by the set of simple
composition factors. For instance 1 C C2 C C6 and 1 C C2 C S3 have both
the factors {C2, C3}. The question of classifying all finite group amounts to
classify all finite simple groups and to understand completely all ways of how
they can be put together (extension problem).

7.2 Soluble groups

A group G is soluble if it has a series

1 CH1 CH2 C · · ·CHn = G

such that Hi+1/Hi is abelian for all 0 6 i < n.

Proposition 7.4. Every subgroup and every quotient of a soluble group is
soluble. Conversely, if N C G is such that N is soluble and G/N is soluble,
then G is soluble.

Proof. Let G be a soluble group and let 1 C H1 C · · · C Hn = G be a series
with abelian factors. If J < G, consider

1 P H1 ∩ J P H2 ∩ J P · · · P Hn ∩ J = J

whose factors are abelian because

Hi+1 ∩ J /
Hi ∩ J

∼= Hi (Hi+1 ∩ J)/
Hi

6 Hi+1
/
Hi
.
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Therefore by deleting repetition, we show that J is also soluble.
Now assume N CG. Set H̄i = (HiN)/N . Then

1 P H̄1 P H̄2 P · · · P H̄n = G/N.

We consider the group homomorphism

Ψ: Hi+1
/
Hi
→ H̄i+1

/
H̄i

gHi 7→ (gN)H̄i

By construction this is surjective. Since Hi+1/Hi is abelian the image of Ψ is
also abelian. Therefore G/N is soluble.

Finally let G be a group and suppose N C G is soluble with G/N soluble,
too. We have series with abelian factors for both of them

1 CN1 CN2 C · · ·CNn = N

1 C N̄1 C N̄2 C · · ·C N̄m = G/N

By the correspondence theorem 1.4, there is a subgroup Nn+i < G such that
N CNn+1 and Nn+i/N = N̄i. It is easy to check that

1 CN1 CN2 C · · ·CNn CNn+1 C · · ·CNn+m = G

is a series with abelian factors. Therefore G is soluble.

Corollary 7.5. Every finite p-group is soluble.

Proof by induction on its order. It is clear if G has order p. Otherwise the
centre Z(G) is non-trivial by theorem 5.1. Then Z(G) is soluble and G/Z(G)
is soluble by induction. The previous proposition shows that G is soluble.

The terminology comes from Galois theory. Galois was also the first to use
the term “group” for a permutation group. His main theorem says that a
polynomial has a soluble Galois group if and only if it is solvable by radical.
(See G13GNF)

Let G be a group. We define the derived subgroup G′ = [G,G] as the
subgroup of G generated by the commutators [g, h] = ghg−1h−1 for g, h ∈
G. Because g[h, h′]g−1 =

[
ghg−1, gh′g−1

]
, the derived group is normal in G.

Recall the following lemma whose proof is an exercise.

Lemma 7.6. Let N CG. Then G/N is abelian if and only if G′ 6 N .

54

http://en.wikipedia.org/wiki/%C3%89variste_Galois


Group Theory G13GTH cw ’16

Inductively we define a sequence of subgroups

· · · 6 G(3) 6 G(2) 6 G(1) = G′ 6 G (7.5)

by setting G(i+1) =
[
G(i), G(i)

]
. In particular G(i) = {1} if and only if G(i−1)

is abelian.
For example the derived subgroup of Sn is An and the derived subgroup of

An is itself if n > 4. So this example shows that the sequence (7.5) need not
terminate.

Theorem 7.7. A group G is soluble if and only if there is an r > 1 such that
G(r) = {1}.

Proof. ⇐: Using lemma 7.6, we can show that

1 = G(r) 6 G(r−1) 6 · · · 6 G′ 6 G

becomes a series with abelian factors by deleting repetitions.
⇒: Let 1 C H1 C · · · C Hn = G be a series with abelian factors. We will

show that G(i) 6 Hn−i by induction on i. This will show that G(n) = {1}.
First, if i = 0, then G(0) = G = Hn. Next, G(i+1) =

(
G(i)

)′
6
(
Hn−i

)′
by induction. Since Hn−i/Hn−i−1 is abelian,

(
Hn−i

)′
6 Hn−i−1 again using

lemma 7.6. Therefore G(i+1) 6 Hn−(i+1).

Moreover, the proof shows that for a soluble group G,

1 CG(r−1) C · · ·CG(2) CG′ CG

is the shortest series with abelian factors.

7.3 Nilpotent groups

A group G is called nilpotent if it admits a series

1 CN1 CN2 C · · ·CNn = G (7.6)

such that Ni CG and Ni+1/Ni 6 Z
(
G/Ni

)
. Such a series is called a central

series.
For any subgroups H and J of a group G, we define [H,J ] to be the subgroup

generated by [h, j] with h ∈ H and j ∈ J .

Lemma 7.8. Let N CG and N 6 H 6 G. Then H/N 6 Z
(
G/N

)
if and only

if [H,G] 6 N .
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Proof. To say that H/N 6 Z
(
G/N

)
is equivalent to ask that hgN = ghN for

all h ∈ H and g ∈ G. This is also the same as to ask that hgh−1g−1 ∈ N for
all h ∈ H and g ∈ G, which is exactly the right hand side.

We define the higher commutator subgroups Di(G) by D0(G) = G and
Di+1(G) = [Di(G), G]. The lower central sequence of G is3

· · · P D3(G) P D2(G) P D1(G) P D0(G) = G. (7.7)

Of course we have D1(G) = G′. But in general G(i) 6 Di(G) may be a strict
inclusion.

Proposition 7.9. A group G is nilpotent if and only if there is an r > 1 such
that Dr(G) = {1}.

Proof. ⇐: Note first that Di(G) P G for all i. Then by lemma 7.8, and the
fact thatDi(G) = [Di−1(G), G] gives thatDi−1(G)/Di(G) lies in Z

(
G/Di(G)

)
.

Hence the lower central sequence is a series as in (7.6).
⇒: Let 1 C N1 C · · · C Nn = G be a series as in (7.6). We will prove by

induction that Di(G) 6 Nn−i. First for i = 0, we have D0(G) = G = Nn.
Next, we have Di+1(G) = [Di(G), G] 6 [Nn−i, G] 6 Nn−i−1 by the induction
hypothesis and lemma 7.8.

The higher centre Z i(G) is defined by Z0(G) = {1} and Z i+1(G) is the
unique subgroup in G such that

Z i+1(G)/
Z i(G) = Z

(
G/
Z i(G)

)
. (7.8)

The existence and uniqueness of this subgroup is guaranteed by the corres-
pondence theorem 1.4. For instance Z1(G) = Z(G). This leads to an increas-
ing sequence of groups

1 6 Z1(G) 6 Z2(G) 6 · · ·

called the upper central sequence.

Theorem 7.10. A group G is nilpotent if and only if there is an r > 1 such
that Zr(G) = G. If so, then the length of the upper and lower central series
are equal.

3I changed the notation by shifting the index by one. Books will always take D1(G) = G.
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The common length of the upper and lower central series are called the
nilpotency class.

Proof. ⇐: If Zr(G) = G, then the upper central series is a central series as
in (7.6).
⇒: Let 1 CN1 C · · · CNn = G be a central series. We prove by induction

that Ni 6 Z i(G). First for i = 1, we have N0 = {1} = Z0(G). Next, by the
definition of a central series together with lemma 7.8, we have

[
Ni+1, G

]
6 Ni,

which is contained in Z i(G) by induction hypothesis. So again by lemma 7.8,
Ni+1/Z i(G) is contained in the centre of G/Z i(G). This means that Ni+1 6
Z i+1(G).

Suppose now that G is nilpotent. Let r be the length of the lower central
series and s be the length of the upper central series. Then the above proof of
⇒ shows that Dr−i(G) 6 Z i(G). Hence Zr(G) = G implies s 6 r. The proof
of⇒ in proposition 7.9 shows that Di(G) 6 Zs−i(G) and hence Ds(G) = {1},
which implies r 6 s. Therefore r = s.

The proofs of ⇒ in this theorem 7.10 and in proposition 7.9 shows that for
every nilpotent group of class r and any central series 1 CN1 C · · · CNn, we
have Dn−i(G) 6 Ni 6 Z i(G). In other words Z i(G) is the fastest increasing
and Dr−i(G) the fastest decreasing central series of G.

Lemma 7.11. If ϕ : G→ H is a surjective homomorphism, then ϕ
(
Di(G)

)
=

Di(H).

The proof is an exercise.

Proposition 7.12. Let G be a nilpotent group of class r and H 6 G and
N CG. Then H and G/N are both nilpotent of class at most r.

Proof. Because Di(H) 6 Di(G), it is clear that Dr(H) = {1}. The Di(G/N)
is the image of Di(G) under G → G/N by lemma 7.11. Hence Dr(G/N) =
{1}.

It is important to remark that the converse is not true (unlike for solubility
in proposition 7.4). For instance C2 and C3 are both nilpotent (of class 1),
but S3 is not nilpotent.

Lemma 7.13. Let G be a group such that G/Z(G) is nilpotent, then G is
nilpotent.
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Proof. By assumption G/Z(G) has a central series, say

1 CN2/Z(G) CN3/Z(G) C · · ·CNn/Z(G) = G/Z(G).

Here we used the correspondence theorem to write each subgroup as a quotient
by a corresponding subgroup Z(G) 6 Ni 6 G. Then we claim that

1 CN1 = Z(G) CN2 C · · ·CNn = G

is a central series for G: Indeed, first note that normality is preserved in the
correspondence theorem, so Ni P G and Z(G) P G. By the third isomorphism
theorem

Ni+1
/
Ni
∼=
(
Ni+1/Z(G)

)/(
Ni/Z(G)

),
which is a subgroup of

Z
((
G/Z(G)

)/(
Ni/Z(G)

)) = Z
(
G/

Ni

)
.

The following is a refinement of corollary 7.5 and theorem 5.2.

Theorem 7.14. Every finite p-group is nilpotent.

Proof by induction on the order. If G is of order p then it is cyclic and hence it
is nilpotent of class 1. Otherwise, we know that the centre Z(G) is non-trivial
by theorem 5.1. By induction G/Z(G) is nilpotent and then the previous
lemma implies that G is nilpotent, too.

Lemma 7.15. If G and H are nilpotent groups then G×H is nilpotent, too.

Yet again, the proof is an exercise.

Theorem 7.16. Let G be a finite group. Then the following are equivalent.

(a). G is nilpotent.

(b). If H < G then H 6= NG(H).

(c). All maximal subgroups of G are normal.

(d). All Sylows of G are normal.

(e). ab = ba for all a, b ∈ G whose orders are coprime.

(f). G is the direct product of its Sylows.
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Proof. (a)⇒(b) : Let H < G. Let n be the largest such that Zn(G) 6 H,
which exists by theorem 7.10 because G is nilpotent. So there is a g ∈ Zn+1(G)
which does not belong to H. Now for all h ∈ H, we have that ghg−1 = [g, h]h
belongs to Zn(G)H = H as

[
Zn+1(G), G

]
= Zn(G). Hence g ∈ NG(H) but

g 6∈ H.
(b)⇒(c) : If H is a maximal subgroup, then H < NG(H) 6 G by (b). Hence

NG(H) = G and H is normal.
(c)⇒(d) : Let P be a p-Sylow for some prime p dividing the order of G.

If NG(P ) = G, then P is normal. We will assume now that NG(P ) 6= G.
Then there is a maximal subgroup H containing NG(P ). By (c), H C G.
Take a g ∈ G which does not belong to H. Because H is normal gPg−1 is
still contained in H. Therefore P and gPg−1 are both p-Sylows of H. By
theorem 5.8(b), there is a h ∈ H such that h(gPg−1)h−1 = P . In other words
hg ∈ NG(P ) 6 H. This implies that g ∈ H which is a contradiction.

(d)⇒(f) : We prove this by induction on the number of primes dividing the
order of G. First, if G is a p-group, then (f) is true. Now let p be a prime
dividing the order of G and let P be the unique p-Sylow of G. Let H be the
subgroup in G generated by all q-Sylows with q 6= p. By induction H is the
direct product of all of them and we find that |H| is the product of the orders
of them, which gives |H| = |G|/|P |. No element other than 1 can have order
dividing p in H, so H ∩ P = {1}. Therefore |HP | = |H| |P | = |G| shows that
HP = G. For all h ∈ H and g ∈ P , the commutator [h, g] is in P as it is
(hgh−1)g−1 and P is normal. It also belongs to H because H is normal and
[h, g] = h(gh−1g−1). Therefore [h, g] ∈ P ∩ H = {1} shows that elements in
H and P commute. We conclude by theorem 1.6 that G = H × P . So G is
the direct product of all its Sylows.

(f)⇒(a) : This is simply the combination of theorem 7.14 and lemma 7.15.
(f)⇒(e) : Write G ∼= P1 × P2 × · · · × Pn where Pi are the non-trivial Sylow

groups of G. Write a as (a1, a2, . . . , an) with ai ∈ Pi and similarly for b =
(b1, b2, . . . , bn) under this isomorphism. If p is a prime dividing |G| and Pi the
p-Sylow of G, then at most one of a and b can have order divisible by p. This
means that ai = 1 or bi = 1. Hence aibi = biai and so a and b commute.

(e)⇒(d) : Let p be a prime dividing |G| and let P be a p-Sylow of G. For any
element g ∈ G of order coprime to p, the conjugate gPg−1 = P by (e). Hence
NG(P ) contains all q-Sylow of G with q 6= p and it contains P , too. Since
the Sylows for different primes intersect in {1}, we obtain that |NG(P )| > |G|
showing that NG(P ) = G and hence that P is normal.

In fact the equivalence of (a), (b) and (c) does not need the assumption that
G is finite.
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