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1. Introduction

Let p be a prime number and let E/Q be an elliptic curve of conductor p. It is known

that the Galois representation ρ̄p : Gal(Q(E[p])/Q) � GL2(Fp) is surjective. (We

will recall the classification of curve of prime conductor in Section 2.) Let ψ be an

isogeny E � E′ of degree p with kernel C ⊂ E[p]. The field Q(C) of definition

of ψ is a degree p+ 1 extension in Q(E[p]) fixed by a Borel subgroup in GL2(Fp).

We consider now the point xC = (E,C) on the modular curve X0(p). Its image

under the modular parametrisation ϕE : X0(p) � E will be denoted by PC . It is

a point on E defined over Q(C). Since the point represents the curve on itself, we
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will call this PC a self-point on E. Let K be the Galois closure of Q(C), it is the

PGL2(Fp)-extension inside Q(E[p]).

Theorem 1. The self-point PC is of infinite order in E(Q(C)). As C runs through

all cyclic subgroups of order p in E[p], the set {PC}C generates a subgroup of rank

p in E(K) on which PGL2(Fp) acts like the Steinberg representation.

The Steinberg representation is a p-dimensional irreducible representation of

PGL2(Fp) whose definition will be recalled in Lemma 5.

There is a possibility to construct higher self-points PD for all cyclic subgroups

D of order pn in E[pn]. If C is the unique order p subgroup in D, let Ĉ be its dual in

(E/C)[p]. Denote by C (D) the image of Ĉ under the natural map E/C � E/D.

Then PD is the image of (E/D,C (D)) under the modular parametrisation ϕE . We

will prove in Theorem 8 that all the points PD are of infinite order. The points PD

generate a group of rank pn + pn−1 − 1 in E(Kn) where Kn is the PGL2(Z/pnZ)-

extension in Q(E[pn]).

In Section 7, we will compute the parity of the p-Selmer group of E over Q(C)

and the root number of E over this field using methods and results of Shuter [Shu06],

Rohrlich [Roh06] and Dokchitser [Dok05]. These computations lead naturally to the

conjecture that the rank of E(Q(C)) is even if and only if p is congruent to 1 modulo

4. Interestingly our self-points do not behave like Heegner points with respect to

root numbers.

In Section 8, we will give some numerical examples. We compute explicitly the

self-points on the curves of conductor 11, 17 and 19. Eventhough they are fairly

simple to define and have rather small canonical height, their coordinates have

surprisingly complicated expressions. It seems plausible that the self-points are not

divisible by any integer in E(Q(C)).

These self-points have been considered earlier by Harris in [Har79] where he

obtained asymptotic formula for the rank of E(Kn) of the form mentioned above.

The investigation is tightly linked to non-commutative Iwasawa theory. Though

in the form presented here, it is concerned with the Iwasawa theory of the p-adic

Lie extension K∞/K for the prime p of multiplicative reduction. These are the

first known points of infinite order defined over the GL2(Zp)-extension Q(E[p∞])

naturally attached to E. Nevertheless the computations of Rohrlich on the root

numbers for the irreducible Artin representations of GL2(Zp) and the recent results

for the p-Selmer group in [CFKS06] suggest that the rank of E(Q(E[pn])) should

grows much faster than pn, at least when p ≡ 3 (mod 4).

In a forthcoming paper [Wut07], we will consider self-points on elliptic curves

whose conductors are not necessarily prime. In this general setting, the situation is

much more involved.
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2. Classification of curves of prime conductor

The first few examples of elliptic curves E/Q of prime conductor p are listed in

the following table. Only the strong Weil curves, i.e. optimal curves with respect to

the modular parametrisation ϕE : X0(p) � E are included. (“s” stands for split

multiplicative reduction at p and “n” for non-split multiplicative reduction.)

Curve 11a1 17a1 19a1 37a1 37b1 43a1 53a1 61a1 67a1 73a1

Torsion 5 4 3 1 3 1 1 1 1 2

Reduction s s s n s n n n s s

Rank 0 0 0 1 0 1 1 1 0 0

We summarise in the following proposition the facts known about curves of

prime conductor.

Proposition 2. Let E be an elliptic curve of prime conductor p and let E0 be the

strong Weil curve in its isogeny class. Then the Tamagawa number cp = − ordp(j)

of E0 at p is equal to the order of the torsion subgroup of E(Q) and its Manin

constant is trivial. We are in one of the following three cases

• The curve E0 has no torsion points defined over Q. Then the `-adic Galois

representations ρ` : Gal(Q̄/Q) � Aut(T`(E)) = GL2(Z`) is surjective

for all `, hence there are no isogenies on E0 = E defined over Q. The

Tamagawa number cp at p is 1.

• We have #E0(Q)tors = 2. Then the prime p is of the form u2 +64 for some

integer u ≡ 3 (mod 4). The curve E is one of the two isogenous curves.

E0 : y2 + xy = x3 − u+1
4 x2 + 4x − u

E1 : y2 + xy = x3 − u+1
4 x2 − x

For these curves we have that E(Q) = Z/2Z and X(E/Q)[2] = 0. All ρ`

for ` 6= 2 are surjective.

• We have #E0(Q)tors > 2. Then E0 will be among the curves of conductor

11, 17, 19 or 37 shown in the table above.

The curves in the second case are treated in [Set75] and [Neu71] and [Neu73].

They are called Neumann-Setzer curves in [SW04]. The first few primes for which

we are in this situation are 73, 89, 113, 233, 353, 593, . . .

Proof. According to [MO89], the curves of conductor p with a torsion point

have been classified by Miyawaki [Miy73] and Setzer in [Set75]. In Corollaire 5.2

in [MO89], it is shown that E(Q)tors is isomorphic to the group of connected com-

ponents of the Néron model of E at p. Furthermore, we know by Serre [Ser72] that

for a semi-stable curve either there is a curve with a rational non-trivial torsion

point in its isogeny class or the curve does not admit any isogeny defined over Q.

Moreover [Ser96] shows that the representation ρ` is surjective for all primes ` for
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a semi-stable curve unless the curve admits an isogeny of degree ` defined over

Q. The statement about the Manin constant is proved in [AU96]. It remains to

cite [SW04] for the result on the Mordell-Weil group and the 2-torsion part of the

Tate-Shafarevich group of the Neumann-Setzer curves.

Note that in particular the representation ρp is surjective. Given a cyclic sub-

group C of E[p], then the field Q(C) is the field fixed by a Borel subgroup and is

therefore a non-Galois degree p + 1 extension without any proper sub-extensions.

As C runs through all possible cyclic subgroups in E of degree p, we obtain p+ 1

such extensions and their compositum is the field K fixed by the centre of GL2(Fp).

The Galois group of K/Q is therefore G ∼= PGL2(Fp).

3. The main theorem

The aim of this section is to prove Theorem 1. The theorem is split up in two

propositions that we will prove separately.

Proposition 3. The self-points PC are of infinite order.

Proof. Recall that K was defined to be the Galois closure of Q(C). Note that the

points {PC}C form a single orbit under the action of Gal(K/Q) in E(K), because

G ∼= PGL2(Fp) acts transitively on the set of all C, which we will identify from

now on with P1(Fp). It is therefore enough to show that one of the self-points is of

infinite order.

First we fix an embedding of Q̄ into Q̄p. We consider the modular parametrisa-

tion over Qp. The modular curve X0(p) over Q̄p has a neighbourhood of the cusp ∞
consisting of couples (A,C) of a Tate curve of the form A = Q̄×

p /q
Z together with

its subgroup generated by the pth root of unity. The parameter q is a p-adic analytic

uniformiser at ∞, so that the Spf Qp[[q]] is the formal completion of X0(p)/Qp at

the cusp ∞, see [DR73].

Let fE =
∑
an q

n be the normalised newform associated to E and so fE/q ·dq is

the associated differential, and since we know that the Manin constant is trivial, it

coincides with ϕ∗
E(ωE) where ωE is the invariant differential on E. The rigid analytic

map induced by ϕE on the completion can now be characterised as

logE(ϕE(q)) =

∫ ϕE(q)

O

ωE =

∫ q

0

fE

dq

q
=

∑

n>1

an

n
· qn .

Here log
E

denotes the formal logarithm associated to E from the formal group

Ê(pZp) to Ĝa(pZp) = pZp.

Since E has multiplicative reduction at p, there is exactly one of the xC in this

neighbourhood, we call it x0. The other self-points are p-adically close to the second

cusp 0. Write P0 for ϕE(x0). Let qE be the p-adic Tate parameter associated to E.
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By the above characterisation of ϕE , we know now that

logE(P0) =
∑

n>1

an

n
· qn

E
= qE +

a2

2
q2

E
+ · · · .

Since the valuation of qE is equal to the Tamagawa number cp > 1, the sum on the

right converges and its value will be congruent to qE modulo p2·cp . In particular the

value is non zero and hence is a non torsion element in pcp Zp. Therefore P0 is a

non-torsion point in Ê(pcpZp).

This second proposition will now end the proof of Theorem 1.

Proposition 4. The points {PC}C generate a group of rank p in E(K). The only

relation is that the sum of all PC is equal to the image ϕE(0) of the cusp 0 on X0(p),

which is a torsion point in E(Q).

Proof. We prove first the relation between the self-points. By definition the sum∑
C PC is the image of the class of the divisor

D =
∑

C∈P1(Fp)

((xC) − (∞))

under the map J0(p) � E where J0(p) is the Jacobian of X0(p). We compare

this divisor to the divisor of the function j − j(E) on X0(p). We have

div(j − j(E)) = −p · (0) − (∞) +
∑

C∈P1(Fp)

(xC)

= D − p · ((0) − (∞)) .

Hence the sum of all PC is equal to p · ϕE(0). If p > 37, then ϕE(0) is a point of

order at most 2 and p is an odd prime, so we have p · ϕE(0) = ϕE(0). For p 6 37,

we also have p ≡ 1 modulo the order of E(Q)tors.

Further we need the following lemma defining the Steinberg representation.

Lemma 5. Let V be the Q[G]-module
⊕

C∈P1(Fp) Q · eC with the natural action of

G ∼= PGL2(Fp) on P1(Fp). It splits into the sum of two irreducible Q[G]-modules,

the first 1-dimensional generated by
∑

C eC and the second p-dimensional given by

St =
{∑

aC · eC

∣∣∣
∑

aC = 0
}
,

called the Steinberg representation of G.

Proof. It is clear that V splits as W0 ⊕ St with W0 generated by
∑

C eC . We start

to prove the irreducibility of St by showing that there are no one-dimensional sub-

modules. Let v =
∑
aC · eC be a fixed vector. By subtracting the obvious fixed

vector
∑
eC , we may assume that one of the coordinates in v is zero. But then v

can not be fixed by G since the action of G on P1(Fp) is transitive.
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Let now g be an element of order p in G. The eigenvalues of g acting on St

are exactly the p-th roots of unity. If now the Q[G]-module St splits into two sub-

modules, then necessarily one of them would have to be one-dimensional, which we

have just excluded above. Therefore St is irreducible.

Now we can end the proof of the proposition. There is a G-equivariant map from

V to E(K) ⊗ Q given by sending eC to PC . Since the sum of all PC is torsion, the

space W0 is in the kernel. The restricted map St � E(K) ⊗ Q is an injective

morphism of Q[G]-modules by Proposition 3. Hence the group generated by the

self-points {PC} is a full lattice in the image of this map which is a p-dimensional

vector space.

Corollary 6. The point PC is not divisible by pcp in E(Q(C)).

Proof. This can be deduced from the proof of Proposition 3. It is shown there that

the p-adic valuation of logE(PC) in Qp is equal to cp. Let p be the place of Q(C)

corresponding to the chosen embedding Q̄ in Q̄p, then Q(C)p = Qp. Since the order

of the group of components of E over Qp and the number of non-singular points in

the reduction E(Fp) are both prime to p, the question whether PC is divisible by

pcp in E(Qp) is the same as to ask whether it is divisible by it in the formal group

Ê(pZp). But now the statement about the valuation of logE(PC) shows that PC can

not be divided by pcp in E(Qp).

3.1. More on the Steinberg representation

The character χSt of the irreducible representation ρSt : G � Aut(St) of G ∼=
PGL2(Fp) can be explicitly described in the following manner. Of course χSt(1) = p.

There are three different types of non-trivial conjugacy classes in G. First the class

of elements of order p, where χSt takes the value 0. The second type consists of

conjugacy classes containing a diagonal matrix. For all such classes, the value of χSt

is +1. Finally χSt takes the value −1 on the remaining classes. This representation

and its twist by the only non-trivial representation of G of dimension 1 are called

Steinberg representations in [Lan02, page 712] and [Sil70].

4. The torsion subgroup of E over K

The group PGL2(Fp) admits only one non-trivial 1-dimensional representation χ

(over C). It is defined as

χ : PGL2(Fp)
det� F×

p /F
×
p

2 � {±1}

with kernel PSL2(Fp). Hence there is a unique quadratic subfield L inside K and it

has to be the unique quadratic extension that is only ramified at p, that is

L = Q(
√
p∗) with p∗ = (−1)

p−1
2 · p .
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Theorem 7. Let E be an elliptic curve of prime conductor p and let K, L and

Q(C) as before. Then we have E(K)tors = E(L)tors. Moreover, we have E(K)tors =

E(Q)tors except for the Neumann-Setzer curves E1 and the curves 17a2, 17a3 and

17a4. In particular E(Q(C))tors = E(Q)tors.

Proof. First let ` be a prime for which the mod ` representation

ρ̄` : Gal(Q̄/Q) � Aut(E[`]) is surjective. Suppose that E(K) contains an `-

torsion point. Then Q(E[`]) must be contained in K since K/Q is Galois. Since

Gal(K/L) = PSL2(Fp) is a simple group, either Q(E[`]) is equal to K or to L. But

since the degree [Q(E[`]) : Q] is ` · (` − 1)2 · (` + 1) it is certainly impossible that

Q(E[`]) = L. But it can not be equal to K either as the equation

` · (`− 1)2 · (`+ 1) = p · (p− 1) · (p+ 1)

implies that ` < p, unless ` = p = 2 which is impossible because p > 11. But if

` < p then the left hand side is not divisible by p unless ` = 2 and p = 3 which is

not possible either. Hence E(K) does not contain any `-torsion points. For the first

class of curves in Proposition 2 this means that E(K)tors = 0.

So we may suppose that E has a torsion point over Q. By the classification, we

know that there is a unique prime ` 6 5 dividing #E(Q)tors. The above guarantees

that E(K)tors is an `-primary group.

Suppose now that E(K) has a torsion point S which is not defined over L.

By taking a multiple of S, we may suppose that ` · S is defined over L. Hence

the Galois closure of L(S) is of degree at most `! 6 120 as the Galois group is a

permutation group of the set {T |` · T = ` · S}. This is a contradiction with the

fact that PSL2(Fp) is a simple group with at least # PSL2(F11) = 660 elements.

Therefore E(K)tors = E(L)tors.

Next we compute E(L)tors = E(K)tors for the four isogeny classes of curves with

#E(Q)tors > 2 this can be done directly and the result is given in the table below.

Curve 11a1 11a2 11a3 17a1 17a2 17a3 17a4 19a1 19a2 19a3 37b1 37b2 37b3

E(Q)tors 5 1 5 4 [2,2] 2 4 3 1 3 3 1 3

E(K)tors 5 1 5 4 [2,4] [2,2] [2,4] 3 1 3 3 1 3

Finally, we treat the Neumann-Setzer curves. We have to compute the 2-primary

torsion of E over L. For such curves we have L = Q(
√
p). For the curve E0, we find

that the 2-torsion points are generated by T = (u
4 ,−u

8 ) and (2 · i,−i) with i2 = −1.

So we have E(L)[2] = Z/2ZT . Trying to divide T by 2, we find that the S such

that 2 · S = T are the conjugates of

S =
(α2

2p
,
α

4
− α2

2p

)
with α4 − p uα2 + 16 p2 = 0 .

Note that α2 = p
2 · (u +

√
p) belongs to Q(

√
p), but its norm is equal to −16 · p2

and so it can never be the norm of a square in Q(
√
p). Therefore S is not defined
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over L and we conclude that

E0(K)tors = E0(L)tors = E0(Q)tors = Z/2ZT .

For E1 we find that a basis of the 2-torsion point can be given by

T1 = (0, 0) and T2 =
(u+

√
p

8
,−u+

√
p

16

)
.

So E[2] ⊂ E(L). The x-coordinates of 4-torsion points are defined over Q(i) or over

the field defined by β2 − 2x(T2)β − 1. The discriminant of this equation is equal

to 1
8 (p+ u

√
p) whose norm is p. So we conclude that there are no 4-torsion points

defined over L and that

E0(K)tors = E0(L)tors = Z/2ZT1 ⊕ Z/2ZT2 E0(Q)tors = Z/2ZT1 .

This end the proof of the proposition.

5. Curves with isogenies

Let E be an elliptic curve of conductor p who admits an isogeny defined over Q.

According to the Proposition 2, the prime p is either of the form u2 + 64 and there

are two curves in the isogeny class or p is in the set {11, 17, 19, 37} as shown in the

table in Section 2.

Let E′/Q be one of the elliptic curves isogenous to E. The image of a given cyclic

subgroup C of order p on E under the isogeny is a cyclic subgroup C ′ of order p in

E′, since the degree of the isogeny is prime to p. Similar to the self-points, we can

also consider the point x′
C

= (E′, C ′) on the modular curve X0(p) and its image P ′
C

in E. This point, just as the self-point PC is also defined over Q(C). The proof of

Proposition 3 applies just the same to show that the point P ′
C

is of infinite order in

E(Q(C)). The set of points {P ′
C
} as C runs through all cyclic subgroups C of order

p in E will be a copy of the Steinberg representation in E(K), hence of rank p.

The only way that this group generated by P ′
C could intersect the group generated

by PC is that, for every given C, the points PC and P ′
C are linearly dependant.

Unfortunately we are not able to show that PC and P ′
C are linearly independent,

but it might well be the case.

So it looks likely that we actually have rank(E(K)) > i ·p where i is the number

of curves in the isogeny class of E over Q. For the curves of conductor 11, 17 and 19

we will prove it later. Note that if all the 2-torsion points of E were defined over Q
– something which can never happen for optimal curves of prime conductor – then

we would have a relation between the points {P ′
C
}. For more details on these more

subtle questions, we refer to [Wut07].

6. Higher Self-points

Let E/Q be an elliptic curve of prime conductor p. We also fix a cyclic subgroup

C of order p on E. Applying the Atkin-Lehner involution wp to xC gives a point
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yC = (E/C, Ĉ) on X0(p) whose image in E(Q(C)) differs from ap ·PC by a rational

2-torsion point. Recall that ap = ±1 with the sign depending on whether E has

split or non-split multiplicative reduction at p. The cyclic group Ĉ of order p on

the isogenous curve E/C is the kernel of the dual isogeny.

Let n > 1 be an integer and let D be a cyclic subgroup of E of order pn which

contains C. The isogeny ψD of kernel D factors through

E
ψD � E/D

E/C
ψD

/C

�
ψ

�

We consider the point yD = (E/D,ψD/C(Ĉ)) onX0(p). Note that this is well-defined

since ψD/C(Ĉ), which we denoted by C (D) in the introduction, is indeed cyclic of

order p. We define PD to be the image of yD in E(Q(D)). The Galois closure of

Q(D) is denoted by Kn, it is a PGL2(Z/pnZ)-extension of Q inside Q(E[pn]).

Theorem 8. The group generated by the points PD in E(Kn) as D runs through

all the cyclic subgroups of order pk with k 6 n is of rank pn +pn−1−1. In particular

all of the points PD are of infinite order.

Proof. Let B be the subgroup of D of order pn−1 and let C be the subgroup of

order p. In fact, we will prove the following trace relation

trQ(D)/Q(B)(PD) = ap · PB . (6.1)

The Hecke operator Tp acts on the divisor (yB) − (∞) as

Tp

(
(yB) − (∞)

)
=

∑

A

((
(E/B)/A, (ψB/C(Ĉ) +A)/A

)
−(∞)

)

where A runs over all cyclic subgroups of order p in E/B with trivial intersection

with ψB/C(Ĉ). Let D′ be the preimage of A under ψB. It has order pn and the fact

that it intersects trivially with ψB/C(Ĉ) proves that D′ is a cyclic subgroup of E.

Moreover the cyclic subgroup (ψB/C(Ĉ) + A)/A of order p is equal to ψD′/C(Ĉ).

Hence

Tp

(
(yB) − (∞)

)
=

∑

D′

(
(E/D′, ψD′/C(Ĉ)) − (∞)

)
=

∑

D′

(
(yD′) − (∞)

)

with the sum this time running over all cyclic subgroupsD′ of E of order pn contain-

ing B. Now we consider the image of the above under the modular parametrisation

ϕE : J0(p) � E. The left hand side will map to ap ·PB and the right hand side to

ap · PB =
∑

D′

PD′ = trQ(D)/Q(B)(PD)

since the Galois conjugates of yD are exactly all of the yD′ .
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Having proved the formula (6.1), we know by induction on n that the points

PD are of infinite order. Let us look at the rational PGL2(Z/pnZ)-representation V

whose basis {eD} is in bijection with the set P1(Z/pnZ) of all cyclic subgroups D

in E of order pn. According to [Sil70], page 58, this representations decomposes as

V = W0 ⊕W1 ⊕W2 ⊕ · · · ⊕Wn

where Wi is an irreducible representation of dimension pi − pi−2 if i > 1, denoted

u1,i in [Sil70], and W1 = St is the Steinberg representation considered earlier. There

is a Gal(Kn/Q)-equivariant map from V to E(Kn)⊗Q sending eD to PD. We prove

by induction on n that the kernel of this map is the trivial subspace W0. For n = 1

this coincides with the statement of Theorem 1. To prove the statement it is now

enough to note that if the map from Wn to E(Kn) ⊗ Q were not injective then all

of the PD would have to be of finite order in contradiction with (6.1).

Hence rank(E(Kn)) > dimQ(V ) − dimQ(W0) = (p+ 1) · pn−1 − 1.

A little bit stronger, we can even claim that we have the following bound

rank(E(Kn)) > pn + pn−1 − 1 + rank(E(Q)) .

Such asymptotic lower bound were already found by Harris in [Har79]. It is

likely that one could obtain the formula i · (pn + pn−1 − 1) with i begin the number

of curves in the isogeny class of E over Q. On the other hand this bound is far

from the upper bounds coming from non-commutative Iwasawa theory. We find in

lemma 3.3 in [HS05] a lemma due to Howson giving an upper bound of the form

C · p3n for some constant C. Moreover the computations of root numbers (as in the

next section) suggests that the rank of E(Kn) should grow much faster than our

bound. See also the recent work of Coates, Fukaya, Kato and Sujatha [CFKS06].

But we wish to emphasise that the self-points are so far the only explicitly known

points of infinite order in the tower E(Kn).

Of course, one can more generally consider higher self-points. Let ` be any prime

different from p. Given a cyclic subgroup D of order ` in E[`], one can consider the

points ϕE(E/D, (C + D)/D) which are defined over Q(C,D). They satisfy trace-

relations like (6.1). These points live in the PGL2(Z`)-extension of Q(C). We will

investigate these points in more details and greater generality in [Wut07].

7. Root numbers and Parity of the Selmer Group

We return now to the first layer of the tower. Let E be an elliptic curve of conductor

p and let K and Q(C) be the fields as before. Since the point PC is of infinite

order the L-series of E over K and Q(C) should vanish at s = 1; at least if we

believe the conjecture of Birch and Swinnerton-Dyer. More precisely the L-function

L(E, ρSt, s) twisted by the Steinberg representation which appeared in the proof of

Propositions 4 should vanish at s = 1. Unfortunately, it is not even known whether

or not this L-series admits an analytic continuation to s = 1. One is often able to
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predict the vanishing of the L-series just by computing the associated root number,

i.e. the sign of the conjectured functional equation. But unlike in the case of Heegner

points, there will not be a link between the non-triviality of the self-point and some

root number.

We define the root number of a representation as the product of the local ε-

factors as in [Dok05]. It should coincide with the root number appearing in the

functional equation of the corresponding L-series. In particular, by the root number

w(E/F ) of E over a field F , we will mean the root number of E over F . Similarly

w(E, ρ) is the root number of E twisted by the Artin representation ρ.

Recall from section 4 that PGL2(Fp) admits a unique non-trivial 1-dimensional

representation χ corresponding to the quadratic subfield L = Q(
√
p∗) in K fixed

by PSL2(Fp).

Theorem 9. The root number w(E/Q(C)) of E over Q(C) is +1 if p ≡ 1 (mod 4)

and −1 if p ≡ 3 (mod 4). The root number of the twist by the twisted Steinberg

representation w(E,χ ⊗ ρSt) is equal to −1. Over Q(E[p]) and over K, the root

number is always +1.

Let s be (−1)
p−1
2 . So L is a real quadratic field if and only if s = +1. We list

the root numbers again in the following table.

w(E/Q) = ap w(E,χ) = −s
w(E/Q(C)) = s w(E, ρSt) = ap · s

w(E/K) = +1 w(E, ρSt ⊗ χ) = −1

We refer to Rohrlich’s article [Roh06] for the computation of the root number of E

twisted by representations of PGL2(Fp) in the case E has good reduction at p.

Proof. We simply apply the nice formula of Vladimir Dokchitser in [Dok05]. For

any number field F , his theorem 3 asserts that w(E/F ) = (−1)u+s where u is the

number of infinite primes in F and s is the number of places where E has split

multiplicative reduction. So we will need the following

Lemma 10. The prime p decomposes in Q(C) as p · qp for two prime ideals p and

q with residue field Fp. The reduction is split over these primes if and only if it is

split at p over Q.

Proof. We suppose first that E has split multiplicative reduction at p.

From the description of E as a Tate curve over Qp, we get a short exact sequence

of Gal(Q̄p/Qp)-modules

0 � µ[p] � E[p] � Z/pZ � 0 .

This sequence is not split. Hence there is only one cyclic subgroup C of order p

on E defined over Qp. The other subgroups C are defined over a field obtained by

adjoining a p-th root u of the Tate parameter qE to Qp. Since cp = ordp(qE) 6 5
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is not divisible by p, the extension Qp(u) is a totally ramified extension of degree

p. So there are at least two embeddings of Q(C) into Q̄p, i.e. there are at least two

places above p in Q(C) of which one, say p, is non-ramified and the other, say q

has ramification index eq = p. Since the degree of [Q(C) : Q] is equal to p+ 1, we

can not have any other places and the residue field degrees are fq = fp = 1. This

proves the claim for curves with split multiplicative reduction.

Suppose now that the reduction is non-split multiplicative. Then there is a

quadratic extension M of Q, inert at p, over which the curve acquires split multi-

plicative reduction. See [Sil94, Ex. V.11]. The only quadratic sub-extension in K is

the one fixed by PSL2(Fp) which must be the unique quadratic extension unramified

outside p and therefore ramified at p. Therefore K is linearly disjoint from M .

Hence, we can pass from Q to M over which E has split reduction at the unique

unramified prime above p. Then the decomposition in the claim holds for M ·
Q(C)/M . He can get down to Q(C)/Q afterwards.

In fact one can prove easily that Q(E[p]) has p2 − 1 places above p with e =

p · (p−1) and f = 1. Similarly for K, the PGL2(Fp)-extension, there are p+1 places

above p with e = p · (p − 1) and f = 1. Since f is always equal to 1, the type of

reduction at a place above p can never change from non-split to split multiplicative

reduction.

Since p is odd, we know that E(R)[p] = Z/pZ. Therefore we have that E(C)[p]

splits into Z/pZ ⊕ µ[p] as a Gal(C/R)-module. Therefore there are exactly two

embeddings of Q(C) into R, i.e. two real places in Q(C) and p−1
2 complex places.

Hence we can compute the various root numbers. For Q(C), this yields u =

2 + p−1
2 and s = 2, if the reduction is split, and s = 0, if the reduction is non-split.

Therefore we conclude that

w(E/Q(C)) = (−1)
p−1
2 = s .

For Q(E[p]) there are no real places, so u ≡ 0 (mod 2) and s = p2 − 1 or s = 0.

Finally for K, we have no real places either and p+ 1 prime ideals above p.

The part of St on which the action of the complex conjugation is −1 has di-

mension p−1
2 . The subspace of St fixed by the inertia group Ip at any place above

p, which can be represented as the group of matrices ( ∗ ∗
0 1 ), is 1-dimensional with

trivial action of Frobenius on it. Therefore theorem 1 in [Dok05] implies

w(E, ρSt) = w(E/Q)p · (−1)dim(ρ−) · (−ap)
dimρ−dim ρIp · det(Frobp |ρIp)

= ap
p · (−1)

p−1
2 · (−ap)

p−1 · 1 = (−1)
p−1
2 · ap = s · ap .

It is also possible to use the previous computations of w(E/Q(C)) and the fact

that Ind
Q(C)
Q

�
=

� ⊕ ρSt together with the Artin formalism. With the same sort of

computation one finds the versions twisted by χ.

From the above theorem and the parity conjecture, it is natural to expect that

the rank of the Mordell-Weil group E(Q(C)) is even if and only if p is congruent
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to 1 modulo 4. We can only prove a weaker result by replacing the rank of the

Mordell-Weil group by the corank of the Selmer group.

For any number field F , let X(E/F ) be the Tate-Shafarevich group of E over

F . We will denote by Selp∞(E/F ) the usual p-power Selmer group which fits into

the exact sequence

0 � E(F ) ⊗ Qp/Zp � Selp∞(E/F ) � X(E/F )(p) � 0 .

By the corank of the p-power Selmer, we mean the rank of the Pontryagin dual

of Selp∞(E/F ). Hence if the p-primary part X(E/F )(p) of the Tate-Shafarevich

group is finite, then this corank is nothing else but the rank of the Mordell-Weil

group E(F ).

Theorem 11. Let E be an elliptic curve of conductor p and let Q(C) be the field

obtained by adjoining a cyclic group of order p in E to Q. Then the corank of the

p-power Selmer group is even if p ≡ 1 (mod 4) and odd if p ≡ 3 (mod 4).

Proof. One way to state the parity conjecture is the say that the parity of the

p-power Selmer group is even if and only if the root number is +1. In our when case

E admits an isogeny of degree p over Q(C), the parity conjecture has been proved

in [DD06]. Hence the theorem follows from theorem 9.

Equally well one can also show the theorem directly. The proof of Shuter

in [Shu06] in the case of good reduction can be adapted to our situation. The

result actually does not differ from Shuter’s result.

7.1. Examples

In the following examples we will assume that all relevant Tate-Shafarevich groups

are finite. For the curves of conductor 11, the above theorem shows that the rank

over Q(C) must be odd. If we even believe that the points constructed via isogenies

in 5 are linearly independent of the self-points then the rank would have to be at

least 3.

On the other hand, the curve of conductor 17 must have even rank over Q(C).

Since the self-point PC is of infinite order, the rank has to be at least 2.

For the curve of conductor 43, the rank over Q(C) should be odd. The curve has

a point of infinite order in E(Q) and there is the self-point PC which is of infinite

order. Hence the rank of E(Q(C)) has to be at least 3.

In the following table, we summarise the situation. The first line contains the

root number w(E/Q) = ap, the second the value of s and the third the number of

isogenous curves of E over Q. Finally the last line gives a lower bound on the rank

of E(Q(C)) assuming that the Tate-Shafarevich groups are finite and that points

constructed via isogenous curves are linearly independent.



February 22, 2007 9:36 WSPC/INSTRUCTION FILE jsp

14 Christophe Delaunay, Christian Wuthrich

Curve 11a1 17a1 19a1 37a1 37b1 43a1 53a1 61a1 67a1 73a1

ap +1 +1 +1 −1 +1 −1 −1 −1 +1 +1

s −1 +1 −1 +1 +1 −1 +1 +1 −1 +1

i 3 4 3 1 3 1 1 1 1 2

r 3 4 3 2 4 3 2 2 1 2

8. Numerical examples

We use the analytic point of view of the modular parametrisation in order to give

an experimental and a computational study of our self-points. Let H denote the

upper half plane. The space X0(p) can be defined as the quotient of H ∪ P1(Q) by

the congruences subgroup Γ0(N). The modular parametrisation is then given by

the following diagram.

X0(p)
ϕE � E(C)

C/ΛE

℘

�
φ

E �

where ΛE = Zω1 ⊕ Zω2 is the period lattice attached to E with ω1 the real and ω2

the imaginary period of E. The map ℘ is the analytic isomorphism from C/ΛE to

E(C) given by the Weierstrass function and its derivative. For τ ∈ X0(N)\{cusps},
the value φE(τ) is given by the converging series

φE : X0(p) � C/Λ

τ �
∑

n>1

an

n
qn with q = exp(2iπτ) .

This is a rapidly converging series; bounding the coefficients an/n by 2 it is easy tho

control the error made by truncating the series. One can also compute efficiently

φE(0) since

φE(0) = L(E, 1) = 2
∑

n>1

an

n
e−2πn/

√
N ∈ C/Λ .

As above the error made by truncating the series of the right hand size can be easily

controlled. Since we know that ϕE(0) is a rational torsion point of order dividing

the numerator T of (p− 1)/12 in E(Q) we just have to recognise the number φE(0)

in the finite set {jω1/T, j = 0, 1, . . . , T − 1}. This can be done as soon as the error

term is smaller than ω1/2T .

The index of the congruences subgroup Γ0(p) in SL(2,Z) is p + 1 and as a set of

representative of SL2(Z) modulo Γ0(p) we choose the matrices

M0 = ( 1 0
0 1 )

Mj = ( 0 −1
1 j ) for j = 1, 2 . . . , p .
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With our analytic point of view, the self-points xC = (E,C) where C runs through

all cyclic subgroups of order p are the p+1 points τ0 = M0τ , τ1 = M1τ ,. . . ,τp = Mpτ

where τ = ω2/ω1. Our goal is to write down the points PC = ϕE(xC) as an algebraic

point in E(Q). For this, consider the polynomials

Ax(X) =
∏

06j6p

(X − x(ϕE(τj)))

Ay(X) =
∏

06j6p

(X − y(ϕE(τj)))

in Q[X ] where x(.) and y(.) are the x and the y-coordinate functions of the mini-

mal model of E. Since Q(C) is a primitive extension, the polynomials Ax and Ay

are irreducible over Q. In our numerical applications, those polynomials are given

by real approximation of their coefficients, in order to recognise them as rational

polynomials one need to bound their denominators.

Proposition 12. Let µ = cp if ϕE(0) 6= O and µ = (p+ 1)cp otherwise. Then the

polynomials p2µ ·Ax(X) and p3µ · Ay(X) have p-integral coefficients.

Proof. For a point P 6= O in the formal group Ê(m) with m the maximal ideal in

the integer ring of Q̄p, we call − 1
2 logp |x(P )|p ∈ Q the p-adic valuation of P where

logp is the logarithm in base p and | · |p is the normalized p-adic absolute value. All

points outside the formal group are said to have p-adic valuation 0.

If C̃ corresponds to the point x eC close to the cusp ∞, the exact denominator is

given in the proof of Proposition 3 as we know that ϕE(x eC) ∈ Ê(pcpZp). So P eC has

p-adic valuation cp. Each of the other p points xC is defined over a totally ramified

extensions of degree p of Qp. All the points xC are conjugate to each other, so they

have the same p-adic valuation say λ ∈ 1
pZ. Proposition 4 asserts that

∑

C 6= eC

ϕE(xC) = ϕE(0) + ϕE(x eC) .

The sum on the left hand side must have p-adic valuation greater or equal to λ. If

ϕE(0) 6= O then the right hand size of the equation above has p-adic valuation 0

and so λ = 0. Whenever ϕE(0) = O then the right hand size has p-adic valuation

cp and so λ 6 cp.

We believe that we always have λ = 0.

Proposition 13. Suppose that the genus of X0(p) is 1 or that E is an involutary

curve (i.e. E ' X0(p)/wp, where wp is the Fricke involution), then the polynomials

p2cp · Ax(X) and p3cp · Ay(X) have integral coefficients.

Proof. Suppose that we are in the first case, the curve is the strong Weil curve and

the genus is 1 hence the modular parametrisation is an isomorphism. We continue
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to write X0(p) for the minimal model over Z. Let υ be any place in Q(C) above

` 6= p. Since the curve E has good reduction at υ, the point xC can not belong to

the kernel of reduction

X0(Q(C)υ) � X̃0(p)(Fυ)

where Q(C)υ is the completion of Q(C) at υ and Fυ the reduction. Since E is

isomorphic to X0(p), we see that the denominator ideal of x(PC) must be prime to

υ. For the prime p, we are in the first case of proposition 12 since ϕE(0) is different

from O for all curves with X0(p) having genus 1.

If E is involutary then we are in one of the following nine cases:

E = 37a1, 43a1, 53a1, 61a1, 79a1, 83a1, 89a1, 101a1 or 131a1.

We can use the same argument for any place υ not above p in Q(C). Now, we have

ϕE(0) = O and we know that p2(p+1)cp · Ax(X) have integral coefficients hence we

can compute it exactly and since there are finitely many curves we can see that in

fact p2cp ·Ax(X) ∈ Q[X ] in all cases.

Whenever the genus of X0(p) is not 1 and E is not involutary, the proposition

above is false in general. Numerical experimentions show that other primes than p

could appear in the denominator of Ax(X) and Ay(X). Those “extra” primes can

be large and are not well understood. For example, we computed numerically the

polynomial Ax(X) for the curve E = 37b1. We obtain a polynomial in Q[X ] which

agrees with Ax(X) up to a large precision but we are not able to prove that it is

the correct one (nevertheless a finite number of tedious computations could do it).

We found that the denominator of Ax(X) should be

32 · 72 · 376 · 41371792 · 948438373827592 .

The factor 376 is explained by Proposition 12. The occurrence of the other factors

is rather surprising (especially for the large ones) and it would be interesting to

understand where they come from.

When the genus is 1 or the curve E is involutary, we make use of the Proposition

13 to write down the point PC = ϕE(xC) as an algebraic point. We explain this by

the following examples.

8.1. Example N = 11

Consider

E = 11a1 : y2 + y = x3 − x2 − 10x − 20

11a2 : y2 + y = x3 − x2 − 7820 − 263580

11a3 : y2 + y = x3 − x2

the three elliptic curves, up to isomorphism, with conductor N = 11 given in Cre-

mona’s table [Cre97]. The curve E =11a1 is the strong Weil curve. We use the
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system pari-gp [PAR06] to perform the following computations. We have L(E, 1) =

ω1/5 and then the corresponding point in E(C) is ϕE(0) = ℘(ω1/5) = (16,−61)

which is, of course, a rational point of order 5. We put τ = ω2/ω1 ≈ 1/2 + 1.1494ı

and obtain

Ax(X) = (X − ϕE(τ))
10∏

j=0

(
X − ϕE

( −1

τ + j

))

≈ X12 − 1858429.3660X11 + · · · + 1027552848072306586730.7357

By the proposition above, we easily recognise

Ax(X) = 11−10(25937424601 X12−48202871557476252 X11−627575688471844224310 X10

−4586587322380883649178756 X9+189861110415625174383936023 X8

−9450307537215069858510760088 X7−13176917774298176001346511796 X6

+558725269921007151668021541368 X5+4102246055136279443069069843703 X4

+12745046520678761793965586279924 X3+25688385347866823866818727620042 X2

+32963462539585829067954484001996 X+26652074520418260289484123648825)

This polynomial defines the primitive number field Q(C) of degree 12. The following

polynomial A(X) defines an isomorphic number field

X12−4X11+55X9−165X8+264X7−341X6+330X5−165X4−55X3+99X2−41X−111

One can show that the class group of Q(C) is trivial. One can perform the same

computations for the y-coordinate function. We find the following algebraic point

P1 = PC = (x1, y1) with

x1 = 2−1·5−3·11−10·19−1·(133792802077952089 θ11−312848945005283368 θ10−502878903201648831 θ9

+6475439902255323868 θ8−11358894741986615604 θ7+17292758289068725628 θ6

−18719462641364369973 θ5+16016249446153991254 θ4+982764516960529358 θ3

−2408156353187544234 θ2+8344249326459947483 θ+7914557261562811262)

y1 = 2−1·5−3·11−15·19−1·(28765696339563795386130989 θ11−65657747550440506261377918 θ10

−112696985861148667470565931 θ9+1388431928553041563545929168 θ8−2362133632267562166352755504 θ7

+3540644107632326208066046428 θ6−3732014744849429143581644773 θ5+3085273426989748502235208404 θ4

+556569952015915009535873158 θ3−638947781627567488171165884 θ2+1776899022233271387870124783 θ

+1848199666743612190587863962)

where θ is a root of A(X). Note that the numerator of these numbers are actually

divisible in the ring of integers of Q(C) by the integers different from 11 appearing

in the denominator above; just as predicted by the proof of Proposition 13. As θ is

running through the roots of A(X) in a fixed Galois closure of Q, the points given

by the above formula describe the conjugates of the image by ϕE of our self-point.

In other words we obtain all the points PC as C runs through the cyclic subgroups
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of order p in E[p]. Then, one can explicitly compute the point
∑

C PC and we find

the 5-torsion point (16,−61) as predicted by Proposition 4.

In fact, one has the easier expression for P1 since we have P1 = (x′1, y
′
1) +

(16,−61) with

x′1 = 2−1·5−3·11−2·19−1·(−1669θ11+33828θ10−81349θ9−183828θ8+1717484θ7−3471788θ6+4165033θ5

−4576634θ4+2336882θ3+3088214θ2−4748743θ+4861598) ,

y′1 = 2−1·5−3·11−3·19−1·(−233091θ11+1788042θ10−2346611θ9−16073792θ8+82949376θ7−148123732θ6

+181279787θ5−175063476θ4+56212398θ3+138667596θ2−195077977θ+186910572) .

We can also compute with the same method the algebraic points on E coming from

the self-points of the isogenous curves 11a2 and 11a3. We find the following points

P2 = (x2, y2) + (16,−61) and P3 = (x3, y3) with

x2 = 2−1·5−3·11−2·19−1·(1594026θ11−6388637θ10+702246θ9+86307137θ8−265102036θ7+450584852θ6

−609415332θ5+678510761θ4−389518078θ3−208816706θ2+158121422θ−162620467) ,

y2 = 2−1·5−3·11−2·19−1·(−16692116θ11+95324467θ10−78704636θ9−1037899217θ8+4171219776θ7

−7057412532θ6+8919208962θ5−12272284751θ4+9718545598θ3−6416053004θ2+8604323348θ−356847003)

and

x3 = 2−1·5−3·11−2·(11θ11+40293θ10−485694θ9+1502457θ8−2828496θ7+4716822θ6−5419227θ5+2855721θ4

+1781967θ3−2734116θ2+1252592θ+1304413) ,

y3 = 2−1·5−3·11−2·(−9727989θ11+90416293θ10−386035694θ9+853672457θ8−1247148496θ7+1474894322θ6

−1275534227θ5+521439721θ4+268493467θ3−363165616θ2+55053592θ+386303413) .

Using the system magma [BCP97], we can compute the canonical Néron-Tate height

of these points.

ĥ(P1) = 3.733 ĥ(P2) = 6.420 ĥ(P3) = 2.117

The determinant of the height matrix is equal to 1301.155. This proves the assertion

that the the three selfpoints P1, P2 and P3 generate a group of rank 3 in E(Q(C)).

From the proof of Theorem 8, we can now deduce that the rank of the group

generated by higher self-points in E(Kn) is at least

rankE(Kn) > 3 · pn + 3 · pn−1 − 3 .

8.2. Conductor 17 and 19

Let E be the curve 17a1; its isogeny class contains four elliptic curves. The field

Q(C) is defined by the polynomial

X18−7X17+17X16+17X15−935X14+799X13+9231X12−41463X11+192780X10+291686X9−390014X8

+6132223X7−3955645X6+2916112X5+45030739X4−94452714X3+184016925X2−141466230X+113422599 .



February 22, 2007 9:36 WSPC/INSTRUCTION FILE jsp

Self-points on elliptic curves of prime conductor 19

The four selfpoints P1, P2, P3 and P4 coming from the four isogenous elliptic curves

have rather complicated coordinates but can be computed with the same method

as for p = 11. The canonical Néron-Tate height of these points are as follows.

ĥ(P1) = 2.707 ĥ(P2) = 2.271 ĥ(P3) = 2.896 ĥ(P4) = 1.786

The determinant of the height matrix is equal to 4594.647. This proves the assertion

that the four selfpoints P1, P2, P3 and P4 generate a group of rank 4 in E(Q(C)).

From the proof of Theorem 8, we can now deduce that that the rank of the group

generated by higher self-points in E(Kn) is at least

rankE(Kn) > 4 · pn + 4 · pn−1 − 4 .

Let E be the curve 19a1; there are three elliptic curves in its isogeny classes. The

field Q(C) is defined by the polynomial

X20−5X19+76X18−247X17+1197X16−8474X15+15561X14−112347X13+325793X12−787322X11

+3851661X10−5756183X9+20865344X8−48001353X7+45895165X6−245996344X5

+8889264X4−588303992X3−54940704X2−538817408X+31141888 .

In this case, the canonical Néron-Tate height of the points P1, P2 and P3 are

ĥ(P1) = 2.257 ĥ(P2) = 3.207 ĥ(P3) = 1.576

The determinant of the height matrix is equal to 469.791. This proves that

rankE(Kn) > 3 · pn + 3 · pn−1 − 3 .

8.3. Example of the involutary curve E=37a1

Let E be the involutary curve 37a1; there is just E in its isogeny classes. The field

Q(C) is defined by

X38−12X37+6845X34−4107X33+611943X32+6419241X31−23619357X30−1139989573X29−7189689558X28

+15195444123X27+421676681701X26+1049261700469X25−24717066801390X24−348296732228468X23

−2419574069703120X22−8165136099970176X21+14475033463029762X20+268023003210734612X19

+329661477773764104X18−11420015354801245670X17−94568058590056572726X16−270708469237425691308X15

+701411470253839139591X14+8568002617280552745928X13+22563667968332689606038X12

−66882215649968841310916X11−706898153127401380189661X10−2172210500846597000641917X9

−93155470637659787671857X8+25476395590222338315403899X7+115054283689855001616765285X6

+297976894378693703291782499X5+526572254394503227631311356X4+665351270233256888369987865X3

+573638845689345417051088091X2+357303812435373401026408215X+585578575222824132475605000 .

In this case, the curve E has rank one over Q and hence

rankE(Kn) > pn + pn−1 .
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