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Abstract

Let E be an elliptic curve over Q and let p be a prime number. Based on numerical
evidence, we formulate a conjecture on the height of rational points on E whose coordinates
have high powers of p in the denominator. On one hand, this conjecture is linked to a p-adic
elliptic analogue of a conjecture of Lang-Waldschmidt on linear forms of logarithms. On the
other hand, we reformulate the conjecture in terms of p-adic approximation lattices; namely
the lattice type of a certain point on P1(Qp) should be maximal. We show that the average
lattice type of points on P1(Qp) is indeed maximal.

1 Introduction

Let E be an elliptic curve defined over the field of rational numbers Q given by a fixed
Weierstrass equation

y2 + a1 xy + a3 y = x3 + a2 x2 + a4 x + a6.

We suppose that the rank r of the Mordell-Weil group E(Q) is positive. Let p be a prime
number. For each k > 1 we define the following subgroup of E(Q) :

Bp(k) = {P ∈ E(Q) | ordp(x(P )) 6 −2k}

If the equation is minimal at p, we may also characterise Bp(k) as E(Q)∩ bE(pkZp) where bE is
the formal group associated to E/Qp. The index of Bp(k) in E(Q) divides cp ·#Ẽns(Fp) ·pk−1

with cp being the Tamagawa number and Ẽns(Fp) the group of non-singular points on the
reduction of E at p.

Furthermore, we define m̂k to be

m̂p(k) = min

q
ĥ(P )

˛̨
˛̨ 0 6= P ∈ Bp(k)

ff

Here ĥ(P ) denotes the canonical height of P .

Conjecture 1. There exists constants C > c depending on E and p such that for all k, we
have

1

r
· log(p) · k + C > log

`
m̂p(k)

´
>

1

r
· log(p) · k + c

where r is the rank of E.

We may also announce a weaker form of the conjecture :

Conjecture 2. For any p, there exists constants D > d such that for all k

D >
log(m̂k)

log(p) · k > d > 0.
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This paper is about different reformulations of these conjectures and evidence in their
favour. Here is a first easy result in this direction.

Proposition 1. The conjecture 1 holds if the rank r is equal to 1.

Proof. Let P1 be a point of minimal height in Bp(1). By the quadraticity of the canonical
height, we know that Pk = pk · P1 is a point of minimal height in Bp(k). Now we compute

log
`
m̂p(k)

´
= log

q
ĥ(Pk) = 1

2
log
`
p2k · ĥ(P1)

´
= log(p) · k + 1

2
log ĥ(P1).

Using the convex body theorem of Minkowski we will show in section 2 the upper bound
in the stronger conjecture, namely

Proposition 2. There exists a constant C, depending on E and p, such that

1

r
· log(p) · k + C > log

`
mp(k)

´
.

In section 3, we will present numerical evidence in favour of the conjectures. The values
obtained are in good agreement with both conjectures and not surprisingly the error terms C
and c in conjecture 1 seem to be related to the regulator of the curve.

There are links between these conjectures and linear forms in p-adic elliptic logarithms.
Unfortunately the results in this field known to the author do not permit to prove any of the
two conjectures. The stronger of the two conjectures is similar to a well-known conjecture of
Lang and Waldschmidt. We present a version of it in section 4.

Since the growth of the formula is linear in conjecture 1, we may create a generating func-
tion and the statement of the conjectures becomes a question about the domain of convergence
of this analytic function.

The most important reformulation is concerned with so-called p-adic approximation lat-
tices. Let k be an integer. Given a point z = (z1, : z2 : . . . : zr) in the projective space
Pr−1(Qp) over the p-adic numbers, one may consider the lattice

L(z, k) = {(x1, x2, . . . xr) ∈ Zr | x1 · z1 + · · · + xr · zr ≡ 0 (mod pk)}.

The conjectures can now be reformulated as a formula for the growth of the length of the
minimal vector

minL(z, k) = min{‖x‖ | 0 6= x ∈ L(z, k)}
in the lattice L(z, k) when z is formed by the values of the p-adic elliptic logarithm evaluated
on a certain set of r linearly independent points in E(Q).

For the sake of simplicity, the theory is only developed in the case r = 2. We say that
z ∈ P1(Qp) is of lattice type α if the length of the minimal vector satisfies

log(minL(z, k)) = α · k + O(1) as k � ∞.

The notion is independent on the choice of the norm ‖·‖ on Z2⊗R. The main result is concerned
with the average value of the lattice type on P1(Qp). In theorem 10 and theorem 11, we prove
the following precise statement. If z̄ is an element of P1(Z/pkZ) write simply L(z̄) for L(z, k)
where z is any lift of z̄ to P1(Zp).

Theorem 3.

Let µ(pk) be the average of the logarithms of the length of the minimal vectors in all the lattices
L(z̄) where z̄ runs over all elements in P1(Z/pkZ). Then

1

2
log(p) · k − 0.428079 + O(k · p−k/2) > µ(pk) >

1

2
log(p) · k − 0.725791 + O(k2 · p−k/2).
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Numerical computation of a large amount of exact values of µ(n) (here n may be any
integer and the definition of µ(n) is similar to µ(pk)) suggests that the value µ(n) − 1

2
log(m)

converges to a certain value close to −0.485. This is contained in conjecture 4.
The theorem can be interpreted loosely by saying that the average lattice type of a p-adic

number is 1
2

log(p), which is also the maximal possible lattice type. Hence if we believe that
the p-adic elliptic logarithms of elements in E(Q) are in some sense random numbers, or say
not too particular, we must believe in the conjectures to be true. Though a proof of them
seems not within the reach of the presented methods.

2 Other norms

It is well-known (see [Sil92]) that for all k (expect when k = 1 and p = 2, which we may
exclude), the group Bp(k) is free of rank r. We choose a basis {P1, . . . Pr} of the free part
of E(Q) and consider it as a lattice with the bilinear form provided by the canonical height
pairing. The subgroups Bp(k) form then a sequence of sublattices and we investigate the
length m̂p(k) of the minimal vector of the Bp(k). The function

‖P‖h =

q
ĥ(P )

induces a norm on E(Q) ⊗ R. Let ‖ · ‖ be any other norm on E(Q) ⊗ R. Define mp(k) to be
the length of the minimal vector of Bp(k) with respect to this norm, i.e.

mp(k) = min{‖P‖ | 0 6= P ∈ Bp(k)} .

There exists two constants c1 and c2 such that

c1 ·
q

ĥ(P ) > ‖P‖ > c2 ·
q

ĥ(P ) .

Hence we deduce the inequalities

log c1 + log
`
m̂p(k)

´
> log

`
mp(k)

´
6 log c2 + log

`
m̂p(k)

´

and we may therefore replace in both conjectures m̂p(k) by mp(k), if we allow the constants
C and c to depend on the chosen norm. This proves the following lemma.

Lemma 4. The conjecture 1 is equivalent to the statement that, for any norm on E(Q) ⊗ R,
there exists constants C and c with

1

r
· log(p) · k + C > log

`
mp(k)

´
>

1

r
· log(p) · k + c

for all k.

In what follows we will mainly consider the usual norm with respect to a chosen basis
{P1, . . . Pr} of the free part of E(Q) :

‖α1P1 + · · ·αrPr‖ =
q

α2
1 + · · ·α2

r

This interpretation gives us easily the following

Proposition 5. There exists a constant C such that

1

r
· log(p) · k + C > log

`
mp(k)

´
.

In particular, the first half of the conjecture 1 is true.
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Proof. By the convex body theorem of Minkowski (see for instance [Cas97], Theroem 3.II),
there exists a constant γ such that

γ · det(Bp(k))
1
r > mp(k).

Since we know that the index of Bp(k) is of the form c · pk for some constant c ∈ Q, which is
depending on p, we have

log(γ) +
1

r
log(c · pk) > log

`
mp(k)

´
.

Note that the constant C is effectively computable.

3 Numerical results supporting the conjectures

Even though the conjectures may appear too daring at first, the numerical evidence in favour
of them is overwhelming.

First, we stick to a single curve

E : y2 + y = x3 + x2 − 2 · x,

labelled 389a1 in the tables of Cremona. The points P1 = (0, 0) and P2 = (1, 0) form a basis
of E(Q) of minimal canonical height.

If for instance p = 3, we may explicitly compute the the subgroup B3(1): the points
Q1 = P1 + 2 P2 = ( 1

9
,− 19

27
) and Q2 = 2 · P1 − 2 · P2 = ( 10

9
, 8

27
) form a Z-basis.

As we noticed in lemma 4, we may as well work with the minima of the ‖ · ‖2-norm with
respect to the given basis {Q1, Q2}. Moreover, we may skip the computations of the minimal
vectors of Bp(k). In fact the first vector of an LLL-reduced basis of Bp(k) will do as the
following lemma shows

Lemma 6. Let Rk be the first vector of an LLL-reduced basis of Bp(k), then mp(k) > A·‖Rk‖2

with A = 2−(r−1)/2.

This is Lemma 3.4 in [dW89]. In particular, the growth of log ‖Rk‖2 as k � ∞ is the
same as for log(m̂p(k)).

The figure 1 shows the values of log(m̂p(k)) for the primes p between 2 and 30 and for k
up to 100. The lines represent the predicted slopes 1

2
· log(p) · k. Conjecture 1 states that for

every given p the dots do not differ from the line by more than a fixed constant.
Next, we provide evidence for the consistency by varying the curve but fixing the prime

p = 3. We use five curves of rank 2 and five curves of rank 3. Namely they are

389a1, 433a1, 446d1, 563a1, 571b1 and
5077a1, 11197a1, 11642a1, 13766a1.

Figure 2 shows the values of log(m̂3(k)) for all of these curves. one sees immediately that
the values of the curves of rank 2 (corresponding to the darker points) are close to the line
1
2

log(3) · k, while the curves of rank 3 stay near the line of slope 1
3

log(3).
In order to refine this statement, we give a list here of the maximum of the difference

δk = | log(m̂3(k)) − 1
r

log(p) · k|

for the curves listed above and k 6 100.
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Figure 1: The values of log(m̂p(k)) for the curve 389a1

Curve max(δk)

389a1 1.5278
433a1 0.9759
446d1 1.5396
563a1 2.1167
571b1 1.7373

5077a1 1.9941
11197a1 1.1494
11642a1 1.3730
13766a1 0.9662

4 Linear forms in p-adic elliptic logarithms

Let Lp : bE(pZp) � pZp be the formal p-adic elliptic logarithm on E. Write ui = Lp(Qi)
where {Q1, . . . , Qr} is a basis (of the free part) of Bp(1). Let Λ = α1u1 + · · · + αrur with αi

integers not all equal to zero. We write ‖~α‖∞ = max{|αi| | 1 6 i 6 r} for the sup-norm on
Bp(1) ⊗ R.

To say that |Λ|p = p−k is the same as to say that Q = α1Q1 + · · ·αrQr belongs to Bp(k).
According to the strong conjecture 1, there should exist a constant c such that

log ‖~α‖∞ > log
`
mp(k)

´
>

1

r
· log(p) · k + c

where mp(k) is with respect to the norm ‖ · ‖∞. We may rewrite this as

log |Λ|p = − log p · k > −r log ‖~α‖∞ + rc

and conclude that the conjecture implies the existence of a constant c1 such that

log |Λ|p > −r log
`
max{|αi|}

´
+ c1.

The constant c1 would depend on the curve E, the base field (which we fixed anyway to Q),
the prime p and the chosen ui. The proposition 5 shows that this is the strongest possible
conjecture in this direction.
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Figure 2: The values of log(m̂3(k)) for some curves of rank 2 and 3

This conjecture is far away from the known bounds for linear forms in p-adic elliptic
logarithms. In [Ber78], Bertrand proves (under the assumption that the curve has complex
multiplication) that

log |Λ|p > d1 · log
`
max{|αi|}

´16
.

In the more recent article [RU96], the authors restrict themselves to the case of rank r = 2.
They show that

log |Λ|p > d2 ·
`
log max{|αi|}

´
·
`
log log max{|αi|}

´3
. (1)

with a explicit and astronomic constant d2 < 0. If the last factor were not there we could
prove conjecture 2. The best we can do is

Proposition 7. Let E/Q be an elliptic curve of rank 2. For any prime p, there exists a
constant d′ > 0 such that for all k we have

log
`
m̂p(k)

´

log(p) · k >
d′

log(k)3
.

Proof. Defining the left hand side of (1) to be − log(p) · k, we obtain the estimate

log
`
m̂p(k)

´

log(p) · k >
|d2|

log log
`
mp(k)

´3 .

Now we may use the proposition 5 to get the bound

log
`
m̂p(k)

´

log(p) · k >
|d2|

log
`

1
2

log(p) · k + C
´3 .

which is of the desired form.

We hope that a forthcoming paper of Noriko Hirata-Kohno will actually proof better
bounds that should imply conjecture 2.
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The conjecture 1 is a actually slight modification of the conjecture of Lang-Waldschmidt
(see page 212 in [Lan78]). We refer to the “conjecture optimiste” of Pilippon in [Phi99] which
concerns the ordinary p-adic logarithm rather than the elliptic p-adic logarithm. His conjecture
gives a more precise form of the constant c but a slightly weaker growth coefficient. We state
here a reformulated and weakened form of this conjecture :

Conjecture 3. (Version of Lang-Waldschmidt) Let a1, . . . ar be fixed positive integers and p
a fixed prime. Given any ε > 0, there exists a constant cε with the following property: if the
integers b1, . . . br are such that

0 6= b1 · logp(a1) + · · · + br · logp(ar) ∈ pk Zp

then, writing ‖b‖∞ for the maximum of |bi| as 1 6 i 6 r, we have

log(‖b‖∞) >
1

(1 + ε) · r · log(p) · k + cε.

Needless to say that this conjecture seems to be out of reach by the current methods of
linear forms of logarithms.

5 Siegel’s theorem

Of course, there is a close link to the following theorem of Siegel (see [Sil92, Theorem IX.3.1])
on integral points in E(Q). Define the logarithmic p-adic distance on E(Qp) to be

δp(P − Q) = log(p) · k if and only if P − Q ∈ bE(pkZp) \ bE(pk+1Zp)

Let Q be a point in E(Q) and let Pn be a sequence of points in E(Q) approaching Q in the
p-adic topology. Siegel’s theorem asserts that, if the naive height of Pn tends to infinity as
n � ∞ then

lim
n→∞

δp(Pn − Q)

hnaive(Pn)
= 0

In fact the weak conjecture 2 implies that the quotient

θp(Pn) =
δp(Pn − Q)

log(ĥ(Pn))

is bounded from above and the strong conjecture 1 would claim that the lim sup of these
quotients is less or equal to r

2
.

It is plausible that a proof of either one of the conjectures would give rise to a better way
of computing S-integral points in E(Q).

6 Generating function

There is an obvious way of encoding the conjectures into an analytic function. Given an elliptic
curve E/Q and a prime p, we may write

ζp(T ) =
X

k>0

m̂p(k) · T k ∈ Z[[T ]]

where m̂p(0) is simply the minimum of the canonical height for all points in E(Q) of infinite
order. Obviously ζp(T ) = 0 if the rank of the curve is zero.

Proposition 8. Let p > 2 be a prime. If the curve E has rank 1, then

ζp(T ) = R ·
“
1 +

bp T

1 − pT

”

where R =
p

Reg(E/Q) is the square root of the regulator of E(Q) and bp is the index of Bp(1)
in E(Q) modulo its torsion subgroup.
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Proof. Let P0 be a generator of the free part of E(Q). We may take P0 of minimal height.
The points bp · pk−1 · P0 are points of minimal height in Bp(k). Hence

ζp(T ) =

q
ĥ(P0) +

X

k>1

q
ĥ(bp pk−1 P0) · T k

=

q
ĥ(P0) ·

“
1 +

bp

p

X

k>1

(pT )k
”

= R ·
“
1 +

bp

p

pT

1 − p T

”

In particular, for a curve of rank 1, the generating function ζp(T ) is a rational function
with a single simple pole at T = 1

p
of residue −R bp/p2.

Theorem 9.

Let E/Q be a curve of rank r > 0 and let p be a prime.

• ζp(T ) is an analytic function on the disc centred at T = 0 of radius ρ = p−1/r.

• Conjecture 2 would imply that the radius of convergence of ζp(T ) is less than 1.

• Conjecture 1 is equivalent to the statement that ζp(T ) has a simple pole at T = p−1/r.

Proof. The first part is a consequence of Proposition 5. We know that there exists a constant
C and conjecture 2 claims that there are constants d and c such that

1

r
log(p)k + C > log mp(k) > d log(p)k + c

Moreover the stronger conjecture 1 is equivalent to d = 1
r
. We compute

eC · p k

r > mp(k) > ec · pd k

and deduce from it that

mp(0) + eC · p
1
r T

1 − p
1
r T

> ζp(T ) > mp(0) + ec · pd T

1 − pd T

and the theorem follows.

The results in [RU96] as formulated in 7 only give that the radius of convergence of ζp(T )
is less or equal to 1, which is obvious anyway for a series with integer coefficients.

7 p-adic approximation lattices

For the following considerations, we will stick to the situation when E(Q) has rank 2. We fix
a basis {Q1, Q2} of Bp(1). Let z1 = Lp(Q1) and z2 = Lp(Q2). Note that we can describe
Bp(k) by the following formula

Bp(k) = {a1Q1 + a2Q2 | a1z1 + a2z2 ≡ 0 (mod pk)}.

This follows from the fact that P = a1Q1+a2Q2 is in Bp(k) if and only if Lp(P ) = a1z1 +a2z2

belongs to pk.
Write z for the point (z1 : z2) in P1(Qp). Since {Q1, Q2} is a basis of Bp(1), we know

that z1 or z2 is of valuation 1. So we may reduce the point ( z1

p
: z2

p
) to obtain a point z̄k of

P1(Z/pkZ). The point z̄k defines a line in Z/pkZ × Z/pkZ passing through (0, 0) and Bp(k) is
the preimage of this line under the map Bp(1) ≈ Z × Z � Z/pkZ × Z/pkZ.
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This motivates the following definition. Let n > 1 be an integer. Given a point z̄ in
P1(Z/nZ), we define a sublattice

L(z̄) = {(a1, a2) ∈ Z2 | a1z1 + a2z2 ≡ 0 (mod n)}

of Z2 of index n. If n is a power of p, a sublattice of this form will be called a p-adic
approximation lattice in Z2, following [dW89]. See also [Sma98] for a more recent treatment
of the topic. The minimum of this lattice with respect to the usual bilinear form is denoted
by

minL(z̄) = min
nq

a2
1 + a2

2

˛̨
˛̨ 0 6= (a1, a2) ∈ L(z̄)

o

Note that there is are some easy relations, like minL(z1 : z2) = minL(z1 : −z2) = minL(z2 :
z1) = minL(z2 : −z1). By Minkowski’s bound, there is an inequality

log
`
minL(z̄)

´
6 log

`
γ ·

√
n
´

=
1

2
log(n) + log(γ)

with γ =
√

2/ 4
√

3 = 1.07457 . . . . The value of this lattice constant can be found in the
appendix to [Cas97].

We are interested in the following mean

µ(n) =
1

#P1(Z/nZ)
·

X

z̄∈P1(Z/nZ)

log
`
minL(z̄)

´
.

Conjecture 4. There exists a constant γ̂ such that

µ(n) ∼ 1

2
· log(n) + γ̂ as n � ∞.

In order to illustrate the above conjecture we include in figure 3 here a graphic of the first
few values of µ(n)− 1

2
log(n)− log(γ) + 1

2
. The darker points correspond to values of n which

are prime. The numerical experience would suggest that the value of γ̂ is around −0.485. The

1000 2000 3000 4000 5000 6000 7000 8000
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Figure 3: The difference between µ(n) and 1

2
log(n) + log(γ) − 1

2

following theorem shows that γ̂, if it exists, is smaller than log(γ) − 1
2

= −0.428079.
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Theorem 10.

We have
1

2
log(n) + log(γ) − 1

2
+ O(log(n) · n−1/2) > µ(n).

We do not claim that the error term in the theorem is optimal. The bounds on the numbers
of integral points inside discs used in the proof are the easy and obvious bounds rather than
the best known bounds in [Hux03].

Proof. For any r > 0, we denote by D(r) the closed disc of radius r centred at 0. Let
B(r) = Z2 ∩D(r) denote the set of integral points (x, y) ∈ Z2 inside D(r). Let R = γ ·√n. By
Minkowski’s convex body theorem, we know that every lattice L(z̄) has at least one point in
B(R), but not every point in B(R) figures among the smallest vectors; hence µ(n) is smaller
than the mean of 1

2
log(x2 + y2) on B(R), i.e.

µ(n) 6
1

#B(R)
·

X

(x,y)∈B(R)

log
p

x2 + y2 .

0 0
���
���
���
���

(x ,y )

D(R)
T(R)

D(R+2)

(0,0)

For each (x0, y0) ∈ B(R) with x0, y0 6= 0, we let
Q(x0, y0) denote the unit square containing (x0, y0)
such that log(x2 + y2) has its minimum on Q(x0, y0)
exactly at (x0, y0). For instance if x0, y0 > 0, then
Q(x0, y0) = [x0, x0 +1]× [y0, y0 +1]. For the remaining
points (x0, y0) in B(R) situated on the axes, we define
Q(x0, y0) to be the reunion of all such unit squares,
e.g. if x0 > 0, then Q(x0, 0) = [x0, x0 + 1] × [−1, 1].
Let

T (R) =
[

(x,y)∈B(R)

Q(x, y),

which is represented by the grey surface in the picture.
Note that D(R + 2) ⊃ T (R) ⊃ D(R). We have

µ(n) 6
1

#B(R)
·
Z

T (R)

log
p

x2 + y2 dx dy

6
1

#B(R)
·
Z

D(R+2)

log
p

x2 + y2 dxdy

=
1

#B(R)
· 2π ·

Z R+2

0

log(r) · r dr

=
1

#B(R)
· π

2
· (R + 2)2 · (2 log(R + 2) − 1)

On the other hand, it is easy to see that #B(R) is larger than the area of D(R − 2). Hence,
we get

µ(n) 6
π · (R + 2)2

π · (R − 2)2
· 1

2
· (2 log(R + 2) − 1)

=
`
1 + O( 1

R
)
´2 ·

„
log(R) − 1

2
+ O( 1

R
)

«

= log(R) − 1

2
+ O

„
log(R)

R

«

In the next theorem, we prove a lower bound for µ(n). We only treat the case when n is
a prime power as we are mainly interested in such lattices. If the constant γ̂ exists, then this
theorem shows that it is larger than −0.725791.
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Theorem 11.

Let p be a prime. Then

µ(pk) >
1

2
log(p) · k +

1

2
log

„
2

π

«
− 1

2
+ O(k2 · p−k/2)

Proof. The proof is far more complicated than the upper bound in theorem 10. We will need
several lemmas of which the first is the following.

Lemma 12. Let k > 1 and (x, y) ∈ Z2. Suppose pd is the highest power of p dividing the
greatest common divisor of x and y. If k > d, then (x, y) belongs to L(z̄) for exactly pd

different elements z̄ in P1(Z/pkZ).

Proof. Write x = pd x′ and y = pd y′. By interchanging x and y if necessary, we may suppose
that y′ is not divisible by p. Any z̄ ∈ P1(Z/pkZ) can be written as z̄ = (a : b) with a = pl for
some 0 6 l 6 k and p - b if p divides a.

(x, y) ∈ L(z̄) ⇔ pl+d x′ + b pd y′ ≡ 0 (mod pk)

⇔ pl x′ + b y′ ≡ 0 (mod pk−d)

⇔ l = 0 and x′ + b y′ ≡ 0 (mod pk−d)

The last equation has exactly one solution for b modulo pk−d and hence we may find pd

solutions in Z/pkZ.

Let R be the radius of a large circle. Write pl for the largest power of p which is smaller
than R. Define Σ(R) to be the number of integral points inside the disc D(R), but where we
count every point (x, y) exactly pd times if pd is the largest power of p dividing both x and y.
The point (0, 0) is not counted at all.

Lemma 13. There is a constant A such that

Σ(R) 6 (1 + 1
p
) π R2 + A · log(R)R

for all R > 10.

Proof. For any given radius r, the number of integral points B(r) is less than π (r+2)2. Hence,
using lemma 12, we have

Σ(R) = #B(R) +
lX

d=1

(pd − pd−1) · #B

„
R

pd

«

6 π (R + 2)2 +
lX

d=1

(pd − pd−1) · π ·
„

R

pd
+ 2

«

= π (R + 2)2 + (1 − 1
p
) · π ·

lX

d=1

„
R2

pd
+ 4 R + 4 pd

«

6 π (R2 + 4 R + 4) + (1 − 1
p
) · π ·

 
R2

p
· 1

1 − 1
p

+ 4 l R + 4 p
pl − 1

p − 1

!

6 π R2 + 4 π R + 4 π + π
R2

p
+ 4

p − 1

p
π · l R + 4 π pl − 4π

6 (1 + 1
p
)π R2 + 4 π

„
p − 1

p
· l + 1

«
R + 4 π pl

11



We note that the definition of l implies that pl < R and l < log(R)/ log(p). We obtain

Σ(R) 6 (1 + 1
p
) π R2 + 4 π

„
p − 1

p
· 1

log(p)
+

2

log(R)

«
log(R) · R

Hence for R > 10, we may take A = 10.

For any given point (x, y) write r for
p

x2 + y2. We wish to compute the average µ̃(R) of
log(r) on the non-zero integral points in D(R), but again counting each point pd times just as
in the definition of Σ(R). More precisely, we define µ̃(R) by

Σ(R) · µ̃(R) =
X′

(x,y)∈B(R)

log(r) +
lX

d=1

(pd − pd−1) ·
X′

(x,y)∈B

„

R
pd

«

log(pd · r) (2)

where the
X′

means that we are excluding (x, y) = (0, 0) from the sum.

Lemma 14. We have

µ̃(R) >
(1 + 1

p
) π R2

Σ(R)
·
„

log(R) − 1
2

+ O

„
log(R)

R

««

Proof. An argument similar to the one used in the computations of theorem 10 shows that for
any radius ρ > 2 and any a > 0, we have

X′

(x,y)∈B(ρ)

log(a · r) > 2 π

Z ρ−2

0

log(a · r) r dr

= π · (log(a · (ρ − 2)) − 1
2
) · (ρ − 2)2

Let pl′ be the largest power such that 2 · pl′ < R. The value of µ̃(R) would only decrease if
we replace l by l′ in the definition (2). Thus we have

Σ(R)

π · R2
· µ̃(R) > (log(R − 2) − 1

2
) · (1 − 2

R
)2

+ (1 − 1
p
)

l′X

d=1

pd

„
log
“
pd ·

“
R
pd

− 2
””

− 1

2

«
·
“

R
pd

− 2
”2

1
R2

= (log(R) + log(1 − 2
R

) − 1
2
) · (1 − 2

R
)2

+ (1 − 1
p
)

l′X

d=1

p−d · (log(R) + log(1 − 2pd

R
) − 1

2
) · (1 − 2pd

R
)2

= log(R) − 1
2

+ O

„
log(R)

R

«

+ (1 − 1
p
) · (log(R) − 1

p
)

l′X

d=1

( 1
pd

− 4
R

+ 4pd

R2 )

+ (1 − 1
p
)

l′X

d=1

p−d · log
“
1 − 2pd

R

”
·
“
1 − 2pd

R

”2

12



For the first sum, we find

(1 − 1
p
)

l′X

d=1

“
1

pd
− 4

R
+ 4pd

R2

”
> (1 − 1

p
) ·
 

1

p
·
1 − 1

pl′

1 − 1
p

− 4 l′

R
+

4

R2
p

pl′ − 1

p − 1

!

>
1

p
+ O

„
log(R)

R

«
.

The second sum can be written as

l′X

d=1

log(1 − 2pd

R
) · ( 1

pd
− 4

R
+ 4pd

R2 )

in which the first factor is negative and it takes the smallest value for d = 1. The second factor
is positive and it likewise it is maximal when d = 1. Hence we have

˛̨
˛̨
˛̨

l′X

d=1

log(1 − 2pd

R
) · ( 1

pd
− 4

R
+ 4pd

R2 )

˛̨
˛̨
˛̨ 6 l′ ·

˛̨
log(1 − 2p

R
)
˛̨
· ( 1

p
− 4

R
+ 4p

R2 )

= O(log(R)) · O( 1
R

) · ( 1
p

+ O( 1
R

)) = O
“

log(R)
R

”
.

Let k be a large integer. Then define R to be the real number satisfying

(1 + 1
p
) π R2 + A · log(R)R = 2pk(1 + 1

p
),

if k is sufficiently large so that R > 10. Note that the expression on the right is equal to
#P1(Z/pkZ).

Lemma 15. We have R =
p

2/π · pk/2 + O(k).

Proof. We write X2 = pk and C2 = 2
π
. If we denote by T the expression such that R =

C X (1 − T ) then

1 +
A

π (1 + 1
p
)

log(R)

R
=

„
C X

R

«2

=

„
1

1 − T

«2

= 1 + 2 T + 3 T 3 + · · ·

with R growing this expression tends to 1, hence T is tending to 0.

A

π (1 + 1
p
) C

· log(X) + log(C) + log(1 − T )

X
= (1 − T ) (2 T + 3 T 2 + 4 T 3 + · · · ) = 2 T + · · ·

which proves that T = O( log(X)
X

). Thus R = C · pk/2 + C X T = C · pk/2 + O(log(X)) =

C · pk/2 + O(k).

We finally start now, the proof of the theorem. Every lattice L(z̄) has at most two shortest
vector different except for maybe two values of z̄, corresponding to ±i, if they belong to Zp.
In this situation there are four shortest vectors. We have chosen R in such a way that the
number of points counted with the multiplicity at which they may appear at most as a shortest
vector of a lattice L(z̄) is smaller than the total number of such lattices. Hence we have that

13



µ(pk) > µ̃(R), i.e. Σ(R) 6 2 · #P1(Z/pkZ) or Σ(R) 6 2 · #P1(Z/pkZ) + 2 if i belongs to Zp.
Thus we obtain

µ(pk) > µ̃(R) >
1 + 1

p
) π R2

(1 + 1
p
) π R2 + A · log(R)R

·
`
log(R) − 1

2

´
+ O

„
log(R)

R

«

=

„
1 + O

„
log(R)

R

««
·
`
log(R) − 1

2

´
+ O

„
log(R)

R

«

= log

 r
2

π
· p k

2

!
− 1

2
+ O

„
k2

pk/2

«

which finishes the proof.

8 The lattice type

Let z ∈ P1(Zp) = P1(Qp). For any k > 1, we obtain a p-adic approximation lattice L(z, k) =
L(z mod pk) and we may consider the sequence minL(z, k) = minL(z mod pk). We say that
z is of lattice type α if there is a constant C > 0 such that

| log(minL(z, k)) − k · α| < C.

The previous section suggests that the most frequent lattice type is 1
2

log(p) which is also the
largest lattice type possible by Minkowski’s bound. The next lemma shows that the lattice
type is some sort of a measure of the irrationality of z.

Proposition 16. The elements in P1(Qp) of lattice type 0 are exactly P1(Q).

Proof. If z ∈ P1(Q) then, we may write z = (a : b) with a and b two integers which are prime
to each other. Then every one of the lattices L(z, k) contains the point (−b, a) and hence
minL(z, k) is bounded by

√
a2 + b2, i.e. z is of lattice type 0.

Conversely if z is of lattice type 0, there is a constant C such that all of the L(z, k) contain
an element of norm less than exp(C). Since there are only finitely many integral points in this
disc, there is a point (x, y) which belongs to L(z, k) for infinitely many k. Write z = (pn : z2)
for some n > 0 and z2 ∈ Zp. Hence pnx+ z2 y ≡ 0 (mod pk) for infinitely many k. So z2 must
be equal to −pn xy−1 which lies in Q.

The next proposition gives a lot of algebraic numbers of maximal lattice type.

Proposition 17. Let θ ∈ Qp be an algebraic integer such that Z[θ] is the number ring in a
quadratic imaginary field K. Then θ is of maximal lattice type 1

2
log(p).

Proof. The embedding Z[θ] ⊂ � Qp defines a prime ideal p = Z[θ]∩p Zp above p. The powers
of the ideal p

k may be written as

p
k = {x + y · θ | x, y ∈ Z with x + y · θ ∈ pkZp},

in other words it is the lattice L(θ, k) in Z[θ] ≈ Z2. Let h be the class number of K. For
1 6 i 6 h, let αi be the element of p

i whose value of |NK/Q(αi)| ∈ N is minimal. Since p
h is

principal, we may take αh = α to be the generator of p
h; moreover the minimal values of the

norm for p
h·k+i is taken by αk · αi. Hence we obtain for any 1 6 i 6 h

minL(θ, k · h + i) = min
β∈pk·h+i

|NK/Q(β)| = |NK/Q(α)|k · |NK/Q(αi)|

Now, we note that |NK/Q(·)|1/2 extends to a norm on the vector space Z[θ] ⊗ R and as such
it is equivalent to the usual norm. So the growth of the minimal vector is given by

log minL(L(θ, k · h + i)) = log(ph·k) + log |NK/Q(αi)|
since the norm of α is equal to ph. This proves the proposition.
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Apart from these two propositions there is a long list of questions that one might ask about
lattice types. Is it possible to construct p-adic integers that do not have a lattice type ? Can
transcendental numbers have non-trivial and non-maximal lattice type ? Can one give any
inequalities on the lattice type of sums or products of numbers ? . . .

The most important question with respect to our initial question is of course whether one
can find a criterion for deciding if a number has maximal lattice type. Most of all p-adic
numbers have maximal lattice type. The original conjecture 1 for curves of rank 2 can be
reformulated as follows.

Proposition 18. Let E be an elliptic curve of rank 2 over Q and p be a prime number. Let Q1

and Q2 be two linearly independent points in Bp(1). Then the strong conjecture 1 is equivalent
to the statement that z = (Lp(Q1) : Lp(Q2)) ∈ P1(Qp) has maximal lattice type

The notion of lattice type of dimension 2 can easily be generalised to higher dimensions
and the above proposition can be extended accordingly. The main results of section 7 should
also be valid in a suitable generalised form.

The conjecture of Lang and Waldschmidt as formulated in conjecture 3 implies that if
(logp(a1) : logp(a2)) ∈ P1(Qp) has a lattice type then it is of maximal lattice type and we can
put ε = 0.
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