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Abstract

Let E/Q be an elliptic curve of conductor N . We consider trace-compatible towers of
modular points in the non-commutative division tower Q(E[p∞]). Under weak assumption
we can prove that all these points are of infinite order. Furthermore, we use Kolyvagin’s
construction of derivate classes to find explicit elements in certain Tate-Shafarevich groups.
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1 Introduction

1.1 Definition of self-points

Let E/Q be an elliptic curve. Write N for its conductor. As proved in [BCDT01], there exists a
modular parametrisation

ϕE : X0(N) ≻ E

which is a surjective morphism defined over Q mapping the cusp ∞ on the modular curve X0(N)
to O. The open subvariety Y0(N) in X0(N) is a moduli space for the set of couples (A,C) where
A is an elliptic curve and C is a cyclic subgroup in A of order N . More precisely, if k/Q is a field,
then Y0(N)(k) is in bijection with the set of such couples (A,C) with A and C defined over k, up
to isomorphism over the algebraic closure k̄.

In particular, we may consider the couple xC = (E,C) for any given cyclic subgroup C of order
N in E as a point in Y0(N)(C). Its image PC = ϕE(xC) under the modular parametrisation is
called a self-point of E. The field of definition of the point PC on E is the same as the field of
definition Q(C) of C. The compositum of all Q(C) will be denoted by KN ; it is the smallest field
K such that the Galois group Gal(K̄/K) acts by scalars on E[N ].

More generally, for any integer m we define a number field Km as follows. There is a Galois
representation attached to the m-torsion points on E

ρ̄m : Gal(Q̄/Q) ≻ Aut(E[m]) ∼= GL2(
Z/mZ) ≻ PGL2(

Z/mZ).

The field Km is the field fixed by the kernel of ρ̄m. The Galois group of the extension Km/Q can
be viewed via ρ̄m as a subgroup of PGL2(

Z/mZ).
We will call higher self-point the image under ϕE of any couple (A,C) where A is an elliptic

curve which is isogenous to E over Q̄. Though, the most interesting case of higher self-points is the
case when the isogeny between E and A is of degree a prime power pn. In particular this prime p
is allowed to divide the conductor N .

This construction imitates the definition of Heegner points, where one uses couples (A,C) with A
having complex multiplication. More generally, modular points on elliptic curves were considered
earlier by Harris in [Har79] without any restriction on A. This article is a sequel to the previous
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articles [DW08] and [Wut07] on self-points, where we have emphasised already that the theory of
self-points differs from the well-known theory of Heegner points. For instance, there does not seem
to be a link between the root numbers and the question of whether the self-points are of infinite
order.

We present here not only a generalisation of the previous results on self-points, but also we
introduce the construction of derivative classes à la Kolyvagin. Indeed, Kolyvagin [Kol90] was able
to find upper bounds on certain Selmer groups by constructing cohomology classes starting from
Heegner points. We propose here to do the analogue for self-points. But the situation is radically
different as the Galois groups involved are non-commutative and rather than finding upper bounds
of Selmer groups over the base field, we will find lower bounds on Selmer groups over certain
number fields.

1.2 The results for self-points

The main question that arises first is whether we can determine if the self-points are of infinite
order in the Mordell-Weil group E(Q(C)). It was shown in [DW08] that the self-points are always
of infinite order if the conductor is a prime number. We extend here the method and provide a
framework to treat the general case. In theorem 15 we will prove the following.

Theorem 1. Let E/Q be a semi-stable elliptic curve of conductor N 6= 30 or 210. Then all the
self-points are of infinite order

But the methods are more general and we are able to prove that they are of infinite order in most
cases. In fact, we conjecture that this holds whenever E does not admit complex multiplication.
In section 6.2 we will give a self-point of finite order on a curve with complex multiplication. In the
largest generality, we are able to prove in theorem 5 that there is at least one self-point of infinite
order under the assumption that j(E) /∈ 1

2Z.
Next we address the question of the rank of the group generated by self-points in E(KN). If N

is prime, we saw that the only relation among the self-points is that the sum of all of them is a
torsion point in E(Q). For a general conductor, we find that for all proper divisors d of N and
all cyclic subgroups B in E of order d, the sum of all self-points PC with C ⊃ B is torsion. This
is proved in proposition 7 as a consequence of the existence of the degeneracy maps on modular
curves. For a lot of semi-stable curves we prove in theorem 17 that these are the only relations
among self-points.

Theorem 2. Let E/Q be a semi-stable elliptic curve. Suppose that N 6= 30 or 210. Suppose that
for each prime p | N such that ρ̄p is not surjective, there is a prime ℓ | N such that the Tamagawa
number cℓ is not divisible by p. Then the group generated by the self-points is of rank N .

We conjecture that this holds more generally.

Conjecture 1. Let E/Q be an elliptic curve without complex multiplication. Then all the self-points
are of infinite order and the only relations among them are produced by the degeneracy maps. In
particular, the rank of the group generated by self-points should be equal to

δ(N) =
∏

p|N

⌈

(1 − p−2) · pordp(N)
⌉

,

where ⌈x⌉ denotes the smallest integers larger or equal to x.

The expression δ(N) in the conjecture is equal to N if and only if N is square-free.
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1.3 The results for higher self-points

We are particularly interested in higher self-points that are modular points coming from a couple
(E′, C′) where E′ has an isogeny to E of degree a power of a prime p. There are two cases that
we treat: when p is a prime of good reduction and when p is a prime of multiplicative reduction.

For simplicity we only sketch the results for the good case here. See section 7 for more details.
Let D be a cyclic subgroup of E of order pn+1 and let E′ = E/D. Given any self-point PC, we

may consider the image C′ of C under the isogeny E ≻ E′. The higher self-point QD is defined
to be the image of (E′, C′) ∈ Y0(N) under the modular parametrisation ϕE . It is a point in the
Mordell-Weil group of E over the field Q(C,D), which is contained in Kpn+1N . In corollary 23, we
are able to prove that the higher self-points are all of infinite order in some cases.

Theorem 3. Let E/Q be a semi-stable curve of conductor N 6= 30, or 210. Suppose that p is a
prime such that p > N , and such that ρ̄p : Gal(Q̄/Q) ≻ PGL2(Fp) is surjective. Let s be the
rank of the group generated by self-points in E(KN ). Then the higher self-points in E(Kpn+1N )
generate a group of rank at least s · (p+ 1) · pn.

If one assumes that the prime is of ordinary reduction for E, one can weaken the condition on
the bad reduction substantially.

Furthermore these higher self-points are trace-compatible in the following sense. LetD be a cyclic
subgroup of order pn+1 and let ap be the pth Fourier coefficient of the modular form associated to
the isogeny class of E. Then we have

∑

D′⊃D

QD′ = ap ·QD

where the sum runs over all cyclic subgroup D′ of order pn+2 containing D. If the Galois represen-
tation ρKN ,p : Gal(K̄N/KN) ≻ PGL2(Zp) is surjective then we can reformulate this equation,
by saying that the trace of QD′ from its field of definition to the field of definition of QD is equal
to ap · QD. This trace compatibility reminds of the definition of an Euler system; but the field
Q(C,D) is not even Galois and Fn/F is not an abelian extension.

The higher self-points are the only known towers of points of infinite order in the division tower
Q(E[p∞]) of E. But the growth of the rank of the Mordell-Weil group should often be faster
than the lower bound (p + 1)pn that we establish here in many cases. This is due to changing
signs in the functional equations and the corresponding parity results on the corank of Selmer
groups. See [CFKS06] and [MR07]. These results predict, under the assumption of the finiteness
of the Tate-Shafarevich group, that there should be more points of infinite order in the division
tower not encountered for by higher self-points. Furthermore the higher self-points do not seem
to be linked in an obvious way to root numbers. Also it is completely unknown if there is a
relation to L-functions (or to non-commutative p-adic L-functions as in [CFK+05]) in analogy to
the Gross-Zagier formula for Heegner points.

1.4 Derivatives

In [Kol90], Kolyvagin has used Heegner points of infinite order to construct cohomology classes
that obstruct the existence of further points of infinite order. We aim to use a similar construction
to build cohomology classes from higher self-points of infinite order.

Let p be a prime of either good ordinary reduction or of multiplicative reduction. If p does not
divide the conductor N , define Fn = Kpn+1N , otherwise let Fn = KpnN . Put F = F−1. If we
suppose that

ρF,p : Gal(F̄ /F ) ≻ PGL2(Zp)
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is surjective, then Gal(Fn/F ) = PGL2(
Z/pn+1Z). We are interested in a particular cyclic subgroup

A in Gal(Fn/F ). Choosing a Zp-basis of the quadratic unramified extension O of Zp gives a map

O
× ≻ GL2(Zp) ≻ PGL2(Zp) ≻ PGL2(

Z/pn+1Z),

whose image is a cyclic group An of order (p+ 1) · pn. By a slight abuse of notation we will denote
the subfield of Fn fixed by An by FAn .

The construction of derivatives provides us with a map

∂n : H1(An, S) ≻ X(E/FAn ).

The source is a cohomology group of the saturated higher self-points (see section 8 for the defi-
nitions). Although we do not know its exact structure, we can prove that it contains at least pn

elements. It seems plausible to think that the map ∂n is very often injective, but we do have no
means to prove this in a single case. Nevertheless, we are able to show the existence of points of
infinite order in E(FAn ) whenever the map is not injective. Here the final result in theorem 24.

Theorem 4. Let E/Q be an elliptic curve. Suppose that E does not have potentially good super-
singular reduction for any prime of additive reduction. Let p be a prime of either good ordinary
or multiplicative reduction. Assume that ρF,p is surjective and that KN contains a self-point of
infinite order. Then we have

#Selpn(E/FAn ) > pn.

The construction of derivatives relies on a property of modular representation theory. The higher
self-points generate in the Mordell-Weil group a copy of the irreducible Steinberg representation.
More precisely, if Hn denotes Gal(Fn/F ), there is a certain Q[Hn]-module in E(Fn) ⊗ Q which is
irreducible. But this is no longer irreducible over Fℓ[Hn] when ℓ divides (p + 1) · pn. The idea of
using modular representation theory to study Selmer groups is developed by Greenberg in [Gre08]
and could maybe shed new light on these derivatives.
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2 The fundamental theorem

In this section we prove the following theorem.

Theorem 5. Let E/Q be an elliptic curve of conductor N . Suppose that the j-invariant of E is not
in 1

2Z, then there is at least one self-point PC of infinite order in E(KN ).

Proof. Let p be a prime which divides the denominator of the j-invariant of E. If possible, we
avoid p = 2. Note that p2 may divide N , but we know that E acquires multiplicative reduction
over some extension of Q at p.

First we fix an embedding of Q̄ into Q̄p. We consider the modular parametrisation over Z̄p. The
modular curve X0(N) over Z̄p has a neighbourhood of the cusp ∞ consisting of couples (A,C) of
a Tate curve of the form A = Q̄×

p /q
Z together with a cyclic subgroup C of order N generated by

the N th root of unity. The parameter q is a p-adic analytic uniformiser at ∞, so that the Spf Z̄p[[q]]
is the formal completion of X0(N)/Z̄p at the cusp ∞, see chapter 8 of [KM85].
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Let fE =
∑

an q
n be the normalised newform associated to E and so fE/q · dq is the associated

differential. Let cE be the Manin constant (of the not necessarily strong Weil curve E), which by
definition is the number such that ϕ∗

E
(ωE) = cE · fE/q · dq where ωE is the invariant differential on

E. The rigid analytic map induced by ϕE on the completion can now be characterised as

log
E
(ϕE(q)) =

∫ ϕE(q)

O

ωE = cE ·
∫ q

0

fE

dq

q
= cE ·

∑

n>1

an
n

· qn . (1)

Here log
E

denotes the formal logarithm associated to E from the formal group Ê(m̄) to the maximal

ideal Ĝa(m̄) = m̄ of Z̄p. We deduce from this description the following lemma that will be useful
later. Write | · |p for the normalised absolute value such that |p|p = p−1.

Lemma 6. Let (A,C) be a point in Y0(N)(Q̄p) such that A is isomorphic to the Tate curve with

parameter q0 6= 0 and C is isomorphic to µ[N ]. If |q0|p < p−
1

p−1 , then ϕE(A,C) is a point of
infinite order on E(Q̄p).

Proof. Under the condition on the absolute value of q0, we know that the sum on the right hand
side of (1) converges. We consider the sum

z = cE ·
∑

n>1

an
n

· qn0 .

Since the Manin constant is known to be an integer (see [Edi90]), the absolute value of the right
hand side is

|z|p = |cE|p ·
∣

∣

∣
q0 +

ap
p
qp0

∣

∣

∣

p

as these are the terms of large absolute value. But note that the condition on q0 implies that
the second term on the right hand side is actually slightly smaller that the first, and hence the

absolute value of the sum is bounded by |z|p = |cE|p · |q0|p < p−
1

p−1 . Therefore the value of
z lies in the domain of convergence of the p-adic elliptic exponential exp

E
and we obtain that

ϕE(A,C) = exp
E
(z). Since we know that |z|p 6= 0, we can deduce that exp

E
(z) is not a torsion

point in E(Q̄p).

We now proceed to the proof of the theorem. Since E has multiplicative reduction over Z̄p, there
is exactly one of the xC = (E,C) in the neighbourhood of ∞ on X0(N) represented by the p-adic
Tate parameter qE associated to E together with the group C isomorphic to µ[N ]. If p 6= 2, then
we know that

|qE|p = |j(E)|−1
p 6 p−1 < p−

1
p−1

and if p had to chosen to be equal to 2 in the beginning then we know that

|qE|2 = |j(E)|−1
2 6 p−2 < p−

1
p−1 .

Hence in any case, the lemma applies and provides us with a point of infinite order among the
self-points.

Note that if the chosen prime p is such that p2 does not divide N then qE lies in pvZp, where
v = − ordp(j(E)). Hence the point PC in the proof will be defined over Qp.

The restriction at p = 2 seems unnecessary. Often one can deduce the result of the theorem
by hand for curves whose j-invariant is an odd integer divided by 2. We present here an easy
example. For the curve 2450o1 in Cremona’s tables [Cre97] with j-invariant − 189

2 , the 2-adic Tate
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parameter is equal to 2 + 22 + 24 +O(29) and the newform is fE = q− q2 + q4 + O(q8). From this
one concludes that log

E
(PC) = 23 + O(25). So PC is of infinite order. Nevertheless we do not see

any easy argument to prove that PC 6= O for a general curve with j(E) ∈ 1
2Z \ Z as it seems that

the 2-adic valuation of log
E
(PC) can be arbitrary large.

2.1 A torsion self-point

This theorem could still be valid if E is a curve with integral j, though not all self-points are of
infinite order. We present here a surprisingly easy example of a self-point that is torsion.

The curve 27a2 admits a cyclic isogeny of degree 27 defined over Q to the curve 27a4 . Let E be
any of the two curves. So E has exactly one cyclic subgroup of order 27 defined over Q, i.e. the
curve E admits a self-point in E(Q). Since the rank of E(Q) is zero, the self-point has to be of
finite order. Note that these curves have complex multiplication. See section 6.2 for more detailed
computations on these self-points.

3 Relations

In [DW08] it is shown that the self-points on a curve of prime conductor satisfy exactly one
relation. What kind of relations could occur among the self-points for a curve of conductor N?
Here is a first part of an answer. But first, we need some more notations. The Galois group
G = GN = Gal(KN/Q) was identified with a subgroup of PGL2(

Z/NZ). For any divisor d of N , we
define the image of GN under the projection PGL2(

Z/NZ) ≻ PGL2(
Z/dZ) as Gd and Kd its fixed

field in KN . In other words Kd is the smallest number field for which the absolute Galois groups
acts by scalars on E[d].

Proposition 7. The sum of all self-points is a torsion point defined over Q. Let d 6= N be a integer
dividing N , then there are relations of the form

RB :
∑

C⊃B

PC is torsion in E(Kd),

where B is any given cyclic subgroup of order d and C runs through all cyclic groups of order N
containing B.

Proof. There is a map from π : X0(N) ≻ X0(d) inducing a map π∗ : J0(d) ≻ J0(N) on
Jacobians. Given a cyclic subgroup subgroup B of order d on E, we may consider the point
xB = (E,B) on X0(d). The divisor class

π∗
[

(xB) − (∞)
]

=
∑

C⊃B

[

(xC)
]

− π∗
[

(∞)
]

is in the image of π∗ in J0(N) and hence in the kernel of the map ϕE : J0(N) ≻ E because N
is the exact conductor of E. This gives the relation RB.

Taking d = 1 gives the result that the sum of all self-points is a torsion point. Since this sum is
fixed by the Galois group, it has to be a rational point.

4 The Steinberg representations

The aim is to describe certain irreducible representations that will appear in the study of self-points.
Let N > 1 be an integer. We are interested in the group P = PGL2(

Z/NZ). We will decompose
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the Q[P ]-module V whose basis {eC} as a Q-vector space is in bijection with the projective line
P1(Z/NZ) and the action of P is given by the usual permutation on the basis. So it can be written
as

V =
⊕

C∈P1(Z/NZ)

Q eC = IndPB(1B)

where B is a Borel subgroup of P and 1B is its trivial representation.

Theorem 8. The Q[PGL2(
Z/NZ)]-module V splits into the sum

V =
⊕

D|N

WD

of irreducible Q[PGL2(
Z/NZ)]-modules WD where D runs through all divisors of N . Let D =

∏

p p
dp

be the prime decomposition of a divisor D of N . Define

δp = pdp −
[

pdp−2
]

=
⌈

pdp − pdp−2
⌉











1 if dp = 0,

p if dp = 1 and

pdp − pdp−2 if dp > 1.

Then Q[PGL2(
Z/NZ)]-module WD has dimension δ(D) =

∏

p|D δp as a Q-vector space.

Proof. We split the proof into three parts according to whether N is a prime, a prime power or any
integer. The first two cases could also be treated by invoking theorem 3.3 in [Sil70] on page 58, but,
since we need the explicit description of WD later on, we prefer to prove this theorem in details.
Since the proof is inductive on N , we will now write PN for PGL2(

Z/NZ) and VN for its V .

Case when N is prime: Write p = N . The claim is simply that the Q[P ]-module Vp splits into two
irreducible components W1 ⊕Wp. We define W1 to be the 1-dimensional subspace of V generated
by the vector v1 =

∑

C eC where the sum runs over all C in P1(Fp). Of course, W1 = V Pp is an
irreducible Q[P ]-submodule of Vp and the space

Wp =
{

∑

aC · eC

∣

∣

∣

∑

aC = 0
}

is a complement to it. It remains to show that Wp is irreducible. Let g be an element of order p in
P , such as the class of ( 1 1

0 1 ). On Vp ⊗ C the element g acts with eigenvalues {1, 1, ζ, ζ2, . . . ζp−1}
where ζ is a primitive pth root of unity. Hence on Wp every pth root of unity appears exactly once
as an eigenvalue. So the only possibility for Wp to split up in two Q[P ]-submodules would have to
involve a 1-dimensional and a (p− 1)-dimensional submodule.

As we can see from the fact that PSL2(Fp) is a simple group when p > 3 and by direct calculations
for p = 2 and 3, there are only two one-dimensional representations of PGL2(Fp): the trivial
representation and the one with kernel PSL2(Fp) of index 2. Since PSL2(Fp) acts transitively on

P1(Fp), the one-dimensional subrepresentations of Vp must be contained in V
PSL2(Fp)
p = W1.

Case when N is a prime power: We write N = pk with p being prime. We will prove the statement
by induction on k. The case k = 1 has been treated already; thus we may assume that k > 2. The
claim is that Vpk splits as ⊕Wpm where m runs from 0 to k.

There is a reduction map α : P1(Z/pkZ) ≻ P1(Z/pk−1Z) which is surjective and any fibre contains
p elements. Define

V ′ =
{

∑

aC eC

∣

∣

∣
aC = aC′ whenever α(C) = α(C′)

}

.
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It is easy to see that V ′ is isomorphic as a vector space to Vpk−1 and the action of Ppk factors through
the quotient Ppk ≻ Ppk−1 induced by reduction. By induction V ′ splits as a Q[Ppk−1 ]-module
into the sum

V ′ =

k−1
⊕

m=0

Wpm

and this is also a decomposition of V ′ into irreducible Q[Ppk ]-modules. As a complement to V ′,
we define

Wpk =
{

∑

aC eC

∣

∣

∣

∑

α(C)=D

aC = 0 for all D in P1(Z/pk−1Z)
}

.

It is clear that Wpk is a Q[Ppk ]-submodule of Vpk . If k > 1 then its dimension is equal to

dimQWpk = #P1(Z/pkZ) − #P1(Z/pk−1Z) = (p+ 1) · pk−1 − (p+ 1) · pk−2 = pk − pk−2

It remains to show that Wpk is irreducible.

Let ∞ be any point in P1(Fp) and write U∞ for the preimage of ∞ under the reduction map
P1(Z/pkZ) ≻ P1(Fp). Within V , we define a linear subspace

V∞ =
{

∑

aC eC

∣

∣

∣
aC = 0 if C ∈ U∞

}

of dimension pk and let W∞ = Wpk ∩ V∞ and V ′∞ = V ′ ∩ V∞. Let g be an element of Ppk of
order pk whose fixed points lie in U∞. If ∞ is (0 : 1), then we may take the class of the matrix
( 1 1

0 1 ). The element g acts on V∞⊗C such that every pk-th root of unity appears exactly once. The
eigenvalues of g on the subspace V ′∞ are all pk−1-st roots of unity. Hence on W∞ every primitive
pk-th root of unity appears exactly once as an eigenvalue. So W∞ is an irreducible Q[〈g〉]-module
and so, if Wpk splits as a Q[Ppk ]-module then W∞ has to be completely contained in one of the

summands. But for any two distinct points ∞ and ∞′ in P1(Fp) the spaces W∞ and W∞′

span
the whole of Wpk . Hence Wpk can not be reducible.

General case: The general case follows fairly easily from the previous cases. Let N =
∏

pnp be the
prime decomposition of N . We may suppose that N is not a prime power as we have treated this
case already. Now the group PN splits as

PN = PGL2(
Z/NZ) =

∏

p|N

PGL2(
Z/pnpZ) =

∏

p|N

Ppnp

by the Chinese remainder theorem. Similarly, we have

P1(Z/NZ) =
∏

p|N

P1(Z/pnp Z) and so VN =
⊗

p|N

Vpnp

as a Q[PN ]-module. Now we use the previous case to rewrite

VN =
⊗

p|N

np
⊕

m=0

Wpm .

Let D be any divisor of N and
∏

pdp its prime factorisation, then define

WD =
⊗

p|D

Wpdp .

It is clear from the representation theory of direct products that WD is irreducible. Rearranging
the above decomposition of VN we find the desired expression VN = ⊕D|NWD.
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Proposition 9. Let p be a prime. Let G be a subgroup of a Borel subgroup of PGL2(Fp) acting on
V =

⊕

QeC. Suppose that the class of ( 1 1
0 1 ) belongs to G. Then V decomposes into irreducible

Q[G]-modules as W1 ⊕W ′
1 ⊕W ′

p where W ′
p is an irreducible Q[G]-module of dimension p− 1.

Proof. Let C0 be the element of P1(Fp) which is fixed by the Borel group containing G. By our
assumption, we know that C0 is the only fixed point of G acting on P1(Fp). Hence V contains
two linearly independent vectors that are fixed by G, namely eC0

and v0 =
∑

C 6=C0
eC. The

Q[G]-submodule

W ′
p =

{

∑

C 6=C0

aC · eC

∣

∣

∣

∣

∑

C 6=C0

aC = 0

}

is a complement to V G. Now use the class g of the matrix ( 1 1
0 1 ) as before to show that W ′

p is
irreducible as the eigenvalues of g on W ′

p are exactly the set of all primitive p-th roots of unity.

In fact one can show that the theorem 8 holds even as C[PGL2(
Z/NZ)]-modules. On the other

hand the previous proposition really relies on the fact that we are only considering decompositions
as Q[G]-modules. For instance we may well take G to be the cyclic group generated by the matrix
( 1 1

0 1 ); then of course W ′
p⊗C will split into 1-dimensional representations. But since the p-th roots

of unity are not all defined over Q, at least if p > 2, this decomposition does not hold in general
for W ′

p.
We can now reformulate the statement of proposition 7 as follows. There is a G-equivariant map

ι : VN ≻ E(KN ) ⊗ Q, defined by sending eC to PC. It has a kernel containing all submodules
Wd for d 6= N dividing N . So it induces a map

ι : WN ≻ E(KN ) ⊗ Q

which is G-equivariant. By the fundamental theorem 5, this morphism is non-trivial if j 6∈ 1
2Z.

Hence we can deduce the following corollary.

Corollary 10. The self-points generate a group of rank at most δ(N) inside E(KN ). If WN is an
irreducible Q[GN ]-module and the j-invariant is not in 1

2Z, then the self-points generate a group
of rank δ(N) and the Galois group acts like the Steinberg representation WN on it.

5 Self-points on semi-stable curves

We will suppose in this section that the curve E/Q is semi-stable. In particular, the j-invariant
can not belong to 1

2Z as all primes dividing N must appear in the denominator of j(E) and there
is no curve of conductor 2. Hence the fundamental theorem 5 applies to E.

5.1 Some lemmae

In what follows we often have to split up the primes dividing N into two groups. Let s, standing for
“surjective”, be the product of all primes p dividing N such that the representation ρ̄p is surjective.
Let m, standing for “méchant”, be the product of the remaining primes dividing N . Note that
there are not many choices for m as described in the following lemma.

Lemma 11. We have m ∈ {1, 2, 3, 4, 5, 6, 7, 10}. If p | m, then Gp is contained in a Borel group of
PGL2(Fp) and hence is either a cyclic or a meta-cyclic1 group.

1metacyclic : a semi-direct product of cyclic groups

9



Proof. Let p | m. By a theorem of Serre in [Ser96], the curve admits a p-isogeny E ≻ E′ and
either E or E′ must have a point of order p defined over Q. Then by Mazur’s theorem on torsion
points on elliptic curves over Q in [Maz78], we know now that p 6 7 and that m 6 10.

Lemma 12. Let E/Q be a semi-stable elliptic curve. Then the largest prime p dividing N is such
that the representation ρ̄p is surjective. Unless N is 30 or 210, we have p− 1 > m.

Proof. If N is divisible by a prime p > 13, then the largest prime p divising N cannot divide m
and satisfies p− 1 > m because m 6 10 by the previous lemma. Hence we are left with a finite list
of possible N to check. This can be done easily; to illustrate it we show in the table 1 the list of
curves of square-free conductors N whose prime divisors are among {2, 3, 5, 7}. For the full proof,
we would need to list also conductors divisible by 11, but then the list will be far too long to be
included here. But the only three exceptional isogeny classes can already be seen in the this table.

To each isogeny class, we give the number i of isogenous curves, the maximal degree d of an
isogeny among them, the value of m, and the largest p | N such that ρ̄p is surjective. This ends
the proof.

N 14a 15a 21a 30a 35a 42a 70a 105a 210a 210b 210c 210d 210e
i 6 8 6 8 3 6 4 4 8 8 6 4 8
d 18 16 8 12 9 8 4 4 12 12 8 4 16
m 2 1 1 6 1 2 2 1 6 6 2 2 2
p 7 5 7 5 7 7 7 7 7 7 7 7 7

Table 1: Some of the evil curves to be treated separately in lemma 12

Lemma 13. Let E/Q be a semistable elliptic curve with 6 | N and such that the representation ρ̄2

is surjective onto PGL2(F2). If there exists a prime p | N such that 3 ∤ cp, then K2 can not be
contained in K3.

Proof. We wish to derive a contradiction from the assumption that K2 is contained in K3. By
assumption, the Galois group G2 = Gal(K2/Q) is PGL2(F2), which is isomorphic to the symmetric
group on three letters S3. The Galois group G3 is contained in PGL3(F3) = S4. Therefore the
Galois group Gal(K3/K2) is contained in the Klein group V4 of S4.

Suppose first that the reduction of E at p is split multiplicative. Let qE be the Tate parameter
of E over Qp. Choose a place υ above p in K2 and a place w above υ in K3. Then the completion
K3,w is equal to Qp(ζ3, 3

√
qE) and K2,υ is equal to Qp(

√
qE). Since 3 does not divide cp > 1, we

know that qE can not be a cube. Therefore the degree of K3,w/K2,υ is divisible by 3. But this is
impossible as the degree of K3/K2 must be a power of 2.

If the reduction is non-split multiplicative at p, then one can do the same argument but trans-
posed to the extension L of Qp over which E acquires split multiplicative reduction. As L/Qp is
of degree 2, we still find that the degree of K3,w/K2,υ must be a multiple of 3.

Lemma 14. Let E/Q be a semi-stable elliptic curve. For the second and third point below, we
assume that, if 2 | N and 3 | N then there is a prime p | N such that 3 ∤ cp.

i). Then Gs acts transitively on the set P1(Z/sZ) of cyclic subgroup of order s in E.

ii). The Steinberg representation Ws is irreducible as a Q[Gs]-module.

10



iii). Let U1 ⊕ · · · ⊕ Uk be the decomposition of Wm into irreducible Q[Gm]-modules then we have
the decomposition of WN into irreducible Q[GN ]-modules as follows

Wn =

k
⊕

i=1

(

Ui ⊗Ws

)

.

Proof. We will first prove by induction the statement in ii) with s replaced by any of its divisors
r, assuming the additional hypothesis. If r = p is prime then Gp = PGL2(Fp) and theorem 8
shows that Wp is irreducible as a Q[Gp]-module. Let p be the largest prime factor of r. We may
suppose that r is composite and so p > 2. Put t = r

p > 2. We assume that Wt is an irreducible

Q[Gt]-module. We wish to prove that Wr is an irreducible Q[Gr]-module.

Kr

Kt

Hp

Kp

Kt ∩Kp

Hp

Q

GpGt

The Galois group Hp = Gal(Kr/Kt) is isomorphic to the
Galois group of the extension Kp/Kt ∩ Kp. Hence Hp is a
normal subgroup of Gp = PGL2(Fp). We use the fact that
PSL2(Fp) is simple for p > 3. SoHp is either all ofGp, PSL2(Fp),
the trivial group or, in the case p = 3, the Klein group V4 in
PGL2(F3) = S4. Treating the four cases separately, we will
prove that Wp is an irreducible Q[Hp]-module.

First, if Hp is all of Gp then Wp is irreducible as a Q[Hp]-
module by theorem 8. If Hp is equal to PSL2(Fp), then Wp

could split at most into two subspace of equal dimension as
PSL2(Fp) has index 2 in PGL2(Fp). But the dimension of Wp is
odd, unless p = 2 which we excluded. Hence Wp is irreducible.

Next, we will exclude the case when Hp is trivial. If it were
so, then there is a surjective map from Gt onto Gp = PGL2(Fp).
The group Gt is contained in PGL2(

Z/tZ) whose order is

∏

ℓ|t

ℓ · (ℓ+ 1) · (ℓ− 1) .

So the order of Gt can not be divisible by p as p is larger than any of the ℓ, unless p = 3 and t = 2.
But it is also impossible that there is a surjective map from PGL2(F2) onto PGL2(F3). So Hp is
not trivial.

Finally, we treat the case when Hp is the Klein group in PGL2(F3) = S4. Since p = 3, we have
t = 2. As G2 = PGL2(F2) = S3, the only possibility for this case is when K2 is contained in K3.
But it was shown in lemma 13 that this is not possible under our additional hypothesis.

Let X be a sub-Q[Gr]-module of Wr = Wp ⊗Wt. As Hp acts trivially on Wt, we deduce that
there is a subspace Z of Wt such that X = Wp ⊗Z. By induction hypothesis, we know that Wt is
irreducible as a Q[Gt]-module. Hence Z = Wt and we have shown that Wr is Q[Gr]-irreducible.

Now we will prove i). If the additional hypothesis is verified then Ws is an irreducible Q[Gs]-
module by ii), hence Gs acts transitively on P1(Z/sZ). But the only place where we used the
additional hypothesis in the proof of ii) is when we excluded the possibility that Hp is the Klein
group in PGL2(F3). But since the Klein group acts transitively on P1(F3), we can prove directly
the truth of i) in general.

Finally we must prove iii). We follow once again the same lines as the proof of ii). Of course, we
may assume that m > 1. Let 1 6 i 6 k and let r | s. We will prove by induction that Ui⊗Wr is an
irreducible Q[Grm]-module. Let p be the largest prime dividing r and let t = r

p . By induction, we

may suppose that Ui⊗Wt is Gtm-irreducible. Let Hp = Gal(Krm/Ktm) ⊂ PGL2(Fp). As before, if

11



we can prove that Wp is an irreducible Q[Hp]-module then we know that Ui⊗Wr = Ui⊗Wt⊗Wp

is Grm-irreducible. Once again we must exclude only the possibility that Hp is trivial or equal to
the Klein group V4 in PGL2(F3).

Suppose first that p = 2. By maximality of p, we must have t = 1. If Hp is trivial, then there
is a surjective map from Gm to PGL2(F2). Running through all the possible odd m in lemma 11,
we find that only m = 3 can be possible. Moreover in this case we must have K2 = K3. Again we
use the previous lemma 13 to exclude this possibility.

We treat now the case that p = 3. Then t = 1 or t = 2. Suppose that Hp is trivial. There must
be a surjective map from Gtm to PGL2(F3) ∼= S4. We can check that if t = 1 then we must have
m = 7 as otherwise #Gm will not be a multiple of 3. But #G7 is not divisible by 24. If t = 2,
then m can only be 5 or 7. Again it can not be 7. So we must have Gtm ⊂ S3 × (Z/4Z ⋉ Z/5Z) and
it is easy to check that the latter group does not have a subquotient isomorphic to S4.

Continuing with the case p = 3, we suppose now that Hp is the Klein group in PGL2(F3). This
time we have a surjection of Gtm onto S3. If t = 1 then we can again check that there is no
possibility for Gm. So suppose that t = 2. Then Gtm is contained in S3 × Gm. Then the only
possibility for the surjection is that Gm lies in its kernel and PGL2(F2) maps isomorphically onto
S3. In this case we would have that K2 is contained in K3. Once again the lemma 13 excludes
this.

The very last step is to assume that p > 3 and that Hp is trivial. Then there is a surjective map
from Gtm to PGL2(Fp). By the maximality of p, we know that #PGL2(

Z/tZ) is not divisible by p.
Therefore p 6= m must divide #Gm. Running through the list of possible groups in lemma 11, we
find that this is not possible.

5.2 Results for semi-stable curves

Theorem 15. Let E/Q be a semi-stable elliptic curve of conductor N with N 6= 30 or 210. Then
all the self-points PC are of infinite order in E(Q(C)).

Proof. By lemma 12, we may choose a prime p dividing N such that ρ̄p is surjective and such that
p− 1 > m.

Any cyclic subgroup C of order N may be written as C = A ⊕ B with A of order m and B of
order s = N

m . Now we use the previous lemma. For any fixed A, the group GN acts transitively on
the set {A ⊕ B}B as B runs over all cyclic subgroups of order s in E. Hence all self-points {PC}
with the m-part A fixed are conjugate in E(KN ). In particular, if m = 1 then all self-points are
conjugate and the fundamental theorem 5 proves the theorem. So suppose now that m > 1.

Now we use the p-adic proof of the fundamental theorem 5. We identify the curve E/Q̄p with
the Tate curve Q̄×

p /q
Z
E
. Fix a cyclic subgroup A of order m in E and let B = µ[s] and C = A⊕B.

Since any self-point is conjugate to such a point, it is sufficient to prove that PC is of infinite order.
For each ℓ | m, let Aℓ be the ℓ-torsion part of A. Write A′′ for the direct sum of all Aℓ such

that Aℓ is generated by the ℓ-th roots of unities µ[ℓ] in E(Q̄p). Write A′ for the sum of all other
Aℓ. So A = A′ ⊕A′′. Denote the order of A′ by m′ and, likewise, the order of A′′ by m′′. Now we
consider the isogeny ψ with kernel A′

0 ≻ A′ ≻ E
ψ≻ E′ ≻ 0 .

If Â′ is the kernel of the dual isogeny ψ̂ : E′ ≻ E, then we may consider the point

x′
C

=
(

E′, Â′ ⊕ ψ(A′′) ⊕ ψ(B)
)

∈ X0(N)(Q̄p)

which is nothing else but the Atkin-Lehner involution wm′ applied to the point xC = (E,C). We
know already that ψ(B) = µ[k] and ψ(A′′) = µ[m′′], but we also see that the group Â′ is isomorphic
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to µ[m′]. Hence the point x′
C

lies now close to the cusp ∞ and its Tate-parameter will be a certain
m′-th root u of qE. Since

|u|p =
(

|qE|p
)

1

m′

= p−
cp

m′ < p−
1

p−1

as m′ 6 m < p − 1, we can apply lemma 6 to show that ϕE(x′
C
) is of infinite order. But we also

know that the Atkin-Lehner involutions wℓ act like multiplication by −aℓ ∈ {±1} for all primes ℓ
dividing N as shown in [AL70]. So PC = ϕE(xC) = ±ϕE(x′

C
)+T where T is a point of finite order,

and hence PC is of infinite order.

As remarked earlier we have a GN -equivariant map

ι : WN ≻ E(KN ) ⊗ Q

The second point of lemma 14 shows the following

Theorem 16. Let E/Q be a semi-stable elliptic curve with N 6= 30, 210 and suppose that all the
representations ρ̄p for all primes p | N are surjective, then the group generated by the self-points
is of rank N and the Galois groups acts like the irreducible Steinberg representation WN on it.

We prove now an extension of this theorem to the case when m 6= 1. In particular WN might
not be irreducible anymore. Unfortunately we can not prove that the rank is N in general for a
semistable curve as we have to exclude the possibility that the curve has two distinct isogenies of
the same degree defined over Q. For, if the curve has two isogenies of degree p over Q, then in the
decomposition of WN into irreducible Q[G]-modules, there will be a representation that appears
with multiplicity 2. The second hypothesis in the following theorem excludes this possibility, but
it is also needed elsewhere to be able to apply the lemmae from the previous section.

Theorem 17. Let E/Q be a semi-stable elliptic curve. Suppose that N 6= 30 or 210. Suppose that
for each prime p | N such that ρ̄p is not surjective, there is a prime ℓ | N such that the Tamagawa
number cℓ is not divisible by p. Then the group generated by the self-points is of rank N .

Proof. As a consequence of the second hypothesis, we know that for each p | N there is an element
of order p in Gp. See the appendix of [Ser68]. Since either Gp is all of PGL2(Fp) or it is contained
in the Borel subgroup, we conclude that, either Gp acts transitively on P1(Fp) or it has one single
fixed point, which we will call Cp ∈ P1(Fp).

Let p | m. Then by proposition 9, the Q[Gp]-module Wp decomposes as the sum of the trivial
part W ′

1 and an irreducible part W ′
p of dimension p − 1. If m is not prime it can only be either

2 · 3 or 2 · 5 by Mazur’s theorem. If m = 6 then W6 decomposes as W ′
1 ⊕W ′

2 ⊕W ′
3 ⊕W ′

6 where
W ′

6 = W ′
2⊗W ′

3. To see that the latter is also irreducible one needs only to note that the dimension
of W ′

2 is 1. In the same way, for m = 10, we have an irreducible component W ′
10.

Using lemma 14, we know now that WN decomposes as

WN =
⊕

d|m

(

W ′
d ⊗Ws

)

into irreducible Q[GN ]-modules. We must now prove that none of the components belongs to the
kernel of the map ι : WN ≻ E(K) ⊗ Q.

First recall the definition of W ′
d ⊗Ws. It contains all elements

∑

C∈P1(Z/NZ)

aC eC ∈
⊕

C∈P1(Z/NZ)

Q eC

subject to the following three conditions.
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• For all N 6= b | N and all cyclic subgroups B of order b, the sum
∑

C⊃B aC vanishes.

• For all primes p | d and all C ⊃ Cp, we have aC = 0.

• For all primes p | md and all C 6⊃ Cp, we have aC = 0.

Let d | m. Define A to be the direct sum of Cp for all p | md . So A is a cyclic group of order m
d .

The map ι on W ′
d ⊗Ws is induced from the map

ιd :
⊕

D

Q eA⊕D ≻ E(K) ⊗ Q

where D runs through all the cyclic subgroups D in E of order d · s such that D does not contain
any of the Cp with p | d. As this map sends eA⊕D to the self-point PA⊕D, it follows from theorem 15
that the map ιd is not trivial.

Now we use the relations in proposition 7 to see that, for all b | ds and all cyclic groups B of
order b, not containing any of the Cp, we have

∑

D⊃B

eA⊕D ∈ ker ιd .

Hence the only irreducible part of the domain of ιd which does not lie in the kernel is W ′
d ⊗Ws

Hence ιd induces an injection W ′
d ⊗Ws ≻ ≻ E(K) ⊗ Q.

The hypothesis in this last theorem is fulfilled for the very large part of semi-stable curves. We
could not find an strong Weil curve with N < 10′000 for which the theorem would not apply. The
first curve which does not satisfy the hypothesis with p = 3 is 651e2 as it has G3 = Z/2Z and the
Tamagawa numbers are c3 = 3, c7 = 3, and c31 = 3. For p = 2, the examples that do not satisfy
the hypothesis are exactly those which have all 2-torsion points defined over Q, like for instance
30a2.

6 Examples

The following table 2 shows some computations done for the optimal curves (with one exception)
of smallest conductor. We do not give the complete explanation of how one obtains these results.
For more detail, we refer the reader to [DW08] and [Wut07]. But we will consider two curves in
more detail later.

The curves in table 2 are labelled as in Cremona’s tables [Cre97]. The first line shows the
structure of the torsion group over Q, e.g. 2 · 4 means that E(Q)tors = Z/2Z ⊕ Z/4Z. The next line
indicates the largest degree of a cyclic isogeny defined over Q on E. The last two lines are those
containing information about self-points, first we counted the number of irreducible Q[GN ]-modules
in WN and finally, we computed the rank of the group generated by self-points in E(KN ). The
two values in bold face are lower than the usual conjectured rank, which is no surprise since these
two curves have complex multiplication. When there is no ∗ sign next to the rank, the value is
proven using the results in the previous section. The sign ∗ indicates that we have only empirically
computed the rank using the following method.

Using high precision computation we may find a very good approximation to the values of

zC =

∫ ∞

xC

fE(q)
dq

q

as elements of C, where C runs over all cyclic subgroups of order N in E. Hence zC maps to PC

under C ≻ C/ΛE ≻ E(C) where ΛE = Zω1 ⊕ Zω2 is the period lattice of E. Let t be the
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N 11a1 14a1 15a1 17a1 19a1 20a1 21a1 24a1 26a1
tors. 5 2 · 3 2 · 4 4 3 2 · 3 2 · 4 2 · 4 3
isog. 25 18 16 4 9 6 8 8 9
WN 1 2 1 1 1 2 1 4 1
rank 11 14 15 17 19 15 21 18∗ 26

N 26b1 27a2 30a1 32a1 33a1 34a1 35a1 37a1 38a1
tors. 7 3 2 · 3 4 2 · 2 2 · 3 3 1 3
isog. 7 27 12 4 4 6 9 1 9
WN 1 5 4 ? 1 2 1 1 1
rank 26 20 30∗ 12

∗ 33 34 35 37 38

Table 2: The ranks of the group generated by self-points for some curves

order of the torsion subgroup of E over Q. Consider the abelian group spanned by 1
tω1,

1
tω2 and

all the zC in a complex vector space of dimension 2 + #P1(Z/NZ). Using the LLL-algorithm, we
find small vectors in this lattice. These are likely to give relations

b1ω1 + b2ω2 +
∑

C

aCzC = 0

with b1, b2, and aC all integers. This yields a probable relation among the self-points. Unfortunately
we might not catch those relations involving torsion points on E not defined over Q. So to increase
the likelihood of finding all relations we multiply t by a product of small primes. For all cases for
which we were able to determine the rank, this empirical computation gave the same answer. In
principle these computations could be made rigorous by considering exact estimates for the error
terms.

6.1 Conductor 24

We present here an example of a curve where we are unable to determine the rank of the group
generated by self-points. The Mordell-Weil group of the curve 24a1, given by the equation

E : y2 = x3 − x2 − 4 · x + 4

is E(Q) = Z/2Z ⊕ Z/4Z. The situation is rather complicated and we do not explain all computations
here. The field K4 turns out to be Q(i,

√
3), which happens to be equal to Q(E[4]). There is

are two non-trivial Galois-orbits of 4-torsion points, one over Q(
√

3) and the other over Q(
√
−3).

Hence the representation V4 splits as

V4 = 1⊕ 1⊕ 1⊕ 1⊕ 1(
√

3) ⊕ 1(
√
−3) ,

where 1(
√
d) is the one-dimensional representation corresponding to the Dirichlet character asso-

ciated to Q(
√
d). Now, the field K8 can be computed, too. In turns out that it coincides with

Q(E[8]) in this case. It is a degree 16 extension of discriminant 236 · 312. It contains the ex-
tension Q(i,

√
2,
√

3). The sub-extension K4 is fixed by the centre of the Galois group G8. The
group G8 admits two irreducible 2-dimensional representations, one of which we call Z2. Then the
representation V8 splits in many components and we find that

W8 = 1(
√

2) ⊕ 1(
√
−2) ⊕ Z2 ⊕ Z2 .
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The first two factors correspond to two couples of lines in E[8] defined over Q(
√

2) and Q(
√
−2)

respectively. The other lines are defined over fields of degree 4.
Using that the field K3 intersects K8 in Q(

√
−3), we find that W24 splits into 4 irreducible

factors W24 = W3(
√

2)⊕W3(
√
−2)⊕Z6 ⊕Z6. Here Z6 = W3 ⊗Z2 is an irreducible representation

of dimension 6. In particular, this representation appears with multiplicity 2. So the usual proof
that there are no further relations among self-points will not work.

The cyclic subgroup of order 8 in E which corresponds to µ[8] over Q3 contains the rational 4-
torsion point. So one of the two factors of dimension 3 in W24 certainly appears in E(KN )⊗Q. But
we are unable to show that any other self-points are of infinite order with the means of theorem 15.

So we can only conclude that the rank r of the group generated by the self-points satisfies
3 6 r 6 18. But we strongly believe that r = 18 as suggested by the empirical computations.

6.2 Conductor 27

There are four curves of conductor 27 forming the following isogeny graph

27a2 ≺ 27a1 ≺ 27a3 ≺ 27a4

The isogenies ≺ are all of degree 3 and, in the sense that they are drawn here, the kernels
are Z/3Z while the dual isogenies have kernel µ[3]. Over the field F = Q(

√
−3) = Q(ζ) with ζ a

third root of unity, the curves 27a1 and 27a3 become isomorphic, the same holds for the curves
27a2 and 27a4. The first couple has complex multiplication by the maximal order Z[ζ], while the
second couple has cm by Z[3ζ].

Let E be the curve 27a2 defined by

y2 + y = x3 − 270 · x − 1708 .

Theorem 18. The self-points on the curve 27a2 generate a group of rank 20 in E(K27). There
are exactly two linearly independent self-points defined over K3 = Q( 6

√
−3) and they generate a

subgroup of finite index in E(K3).

The proof is contained in the following explanations. But we do omit certain computations from
the presentation here.

The field K3 is equal to Q( 6
√
−3) and the Galois group G3 is a dihedral group of order 6. In

fact some 3-torsion points are defined over F = Q(
√
−3) and some others are over Q( 3

√
−3) and

we have V3 = 1⊕1(
√
−3)⊕Z2 where Z2 is the unique irreducible 2-dimensional representation of

G3.
In order to determine the structure of V27, we need to use the theory of complex multiplication.

Let H27 be the subgroup Gal(K27/F ) inside G27. We know that the representation ρ̄27,F now
maps to

ρ̄27,F : H27 ≻ ≻ AutO/27O(E[27])

(Z/27Z)×
=

(O/27O)×

(Z/27Z)×
= {( 1 ∗

0 1 ) ∈ PGL2(
Z/27Z)} ∼= Z/27Z

where O = Z[3 ζ] is the ring of endomorphisms of E/F . It is possible to verify that H27 is equal to
this group and hence G27 is a dihedral group of order 54 generated by h = ( 1 1

0 1 ) and s = ( 1 0
0 −1 ).

The computation of V27 is now easy and one finds

W27 = 1⊕ 1(
√
−3) ⊕ Z2 ⊕ Z2 ⊕ Z18.

Here Z2 is the unique 2-dimensional irreducible Q[G27]-module (the action of h has trace −1) and
Z18 is the unique irreducible 18-dimensional Q[G27]-module (it splits over C into six 2-dimensional
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representations). As the curve 27a2 is not the strong Weil curve in the isogeny class, the modular
parametrisation ϕE from the elliptic curve X0(27) to E is not an isomorphism but an isogeny of
degree 3. The curve X0(27) has six cusps represented by the classes {∞, 0, 1

3 ,
2
3 ,

2
9 ,

4
9}. The group

X0(27)(Q) contains the cusps ∞ and 0 and the self-point obtained from the isogeny 27a2 ≻ 27a4.
They form exactly the kernel of ϕE . The other cusps are mapped to the 3-torsion points defined
over F on E. In fact E(F ) = Z/3Z and E(K3)tors = Z/3Z ⊕ Z/3Z. A two-descent over K3 shows that
the 2-Selmer group of E/K3 has two copies of Z/2Z in it.

The trivial factor in W27 corresponds to the self-point obtained from the 27-isogeny defined over
Q on 27a2. We know that it is the point O in E(Q). The factor 1(

√
−3) in W27 must also belong

to the kernel of ι : W27 ≻ E(K27) ⊗ Q as the Mordell-Weil group E(F ) is of rank 0. From the
factors Z2 at least one of them must be in the kernel as the rank of E(K3) is bounded by 2 from
above. It is not hard to check by looking at traces of Frobenii that the torsion subgroup of E(K27)
only contains nine 3-torsion points. Since the degree of ϕE is 3, there are at most 27 points in
X0(27)(K27) which map to torsion points in E(K27) under ϕE. As there are 36 points xC, we
conclude that at least 9 self-points are of infinite order. By looking at the decomposition of W27

we see that Z18 can not belong to the kernel of ι.
Finally we have to show that there is a self-point of infinite order in E(K3). This will show that

the second copy of Z2 does not belong to the kernel of ι. This can be done numerically. The point
τC = 1

6 · (−1 +
√
−3) in the upper half plane corresponds to a point xC in X0(27). We find that

−1

8

(

36 · s5 + 15 · s4 − 45 · s3 − 18 · s2 + 69 · s+ 99
)

with s = 6
√
−3

is the x-coordinate of the self-point PC in E(K3). Its canonical height is 1.5191 and hence PC is of
infinite order. This point PC and its conjugates over F will generate a group of rank 2 in E(K3).
Since we have computed the 2-Selmer group earlier, we conclude that the rank of E(K3) is as
claimed equal to 2.

It seems plausible that this point PC can also be constructed as an “exotic Heegner point” using
the construction of Bertonlini, Darmon and Prasanna in [BDP07]. But the authors exclude there
explicitly the case of conductor N = 27.

7 Higher self-points

In this section, we investigate on three particular cases of higher self-points. Let E/Q be an elliptic
curve of conductor N . For any cyclic subgroup D in E we may consider the isogenous curve E/D
with a suitable choice of a cyclic subgroup of order N in it. In the first case, we use subgroups
D defined over Q to construct new points and for the two other cases we use subgroups D of
prime-power order pn, first when p divides the conductor and then when it does not divide the
conductor.

7.1 Self-points via rational isogenies

Let D be a cyclic subgroup in E defined over Q. Suppose for simplicity that the order of D is
prime to N . Then for any cyclic subgroup C of order N on E,

QD = ϕE

(

E/D, (C +D)/D
)

is a higher self-point defined over the same field as PC. It would be interesting to know in general
when PC and QD are linearly independent. For instance this can be shown on the curves of
conductor 11 : There are 3 curves in the isogeny class and hence we find, for any fixed C, one
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self-point and two higher self-points on E defined over Q(C). Using the canonical height pairing,
we can prove the linear independence of these three points computed explicitly on E. So the rank
of E(Q(C)) will have to be at least 3. See [DW08] and [Wut07] for more details on this example.

In some cases the method of the proof of theorem 15 can be used to show that QD is also of
infinite order. But the methods of the proof of theorem 17 will not be sufficient to prove the
independence of PC and QD.

7.2 The multiplicative case

Let now p be a prime dividing N exactly once, i.e. E has multiplicative reduction at p. Let M be
such that N = p ·M . As a base-field we will consider here the number field F = KM , the smallest
field such that its absolute Galois group acts as scalars on E[M ]. In the particular situation when
N = p is prime then F = Q; the same is true for instance if E is a curve of conductor 14 and
p = 7.

For any n > 0, we define now Fn to be the field KpnN and Hn to be the Galois group of Fn/F .
Via the Galois representation

ρF,p : Gal(F̄ /F ) ≻ Aut(TpE) ∼= GL2(Zp) ≻ PGL2(Zp)

the group Hn identifies with a subgroup of PGL2(
Z/pn+1Z).

Fix a subgroup B of order M in E. Let n > 0 and let D be a cyclic subgroup of order pn+1 in
E. Let A = D[p] and C = A⊕B, which is a cyclic subgroup of order N . Write ψ for the isogeny

E ≻ E′ of kernel D and ψ̂ for its dual. Define

C′ = ker(ψ̂)[p] ⊕ ψ(B) ,

which is a cyclic subgroup of E′ of order M ·p = N . The image of the point yD = (E′, C′) ∈ Y0(N)
through the map ϕE will be denoted by QD. It is by definition a higher self-point. We will say
that “QD lies over PC” or “over B”.

In particular, if n = 0, then D = A is a cyclic subgroup of order p. From the construction above,
we see that the point yD is nothing but wp(xC) where wp is the Atkin-Lehner involution on X0(N).
Hence we have that QD = −ap · PC + T for some 2-torsion point T defined over Q. Here ap = ±1
is, as before, the Hecke eigenvalue of the newform fE attached to the isogeny class of E.

Let D be a cyclic subgroup of E of order pn+1. By the definition of the Hecke operator Tp on
J0(N), we have that

Tp
(

(yD) − (∞)
)

=
∑

D′⊃D

(

(yD′) − (∞)
)

where the sum runs over all cyclic subgroups D′ in E of order pn+2 containing D. This gives us
the relation

ap ·QD =
∑

D′⊃D

QD′ . (2)

Hence by induction, we know that QD is of infinite order if the self-point PC is.

Lemma 19. Let B be a fixed subgroup of order M in E and let n > 0. Then
∑

D QD is a torsion
point in E(F ), where the sum is over all cyclic subgroups D of E of order pn+1.

Proof. Suppose first that n = 0. Then we sum over all cyclic subgroups D = A of order p which
gives

∑

D

QD =
∑

C⊃B

(−apPC + T ) = (p+ 1) · T − ap
∑

C⊃B

PC .
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The first term on the right hand side is clearly torsion and the second term contains exactly one
of the relations from proposition 7. Now by induction, we assume that the statement holds for n.
But then

∑

D′ QD′ , with the sum running over all cyclic subgroups D′ of order pn+2, is, by (2),
equal to ap ·

∑

D QD, with the sum now running over cyclic subgroups of order pn+1.

The Q-vector space with basis {eD}D in bijection with P1(Z/pn+1Z) is a natural Q[Hn]-module.
Define

V ′
(n) =

⊕

A Q eD

Q
(
∑

D eD

)

which is a vector space of dimension pn+1 + pn − 1.
Fix a cyclic subgroup B of order M in E. By the previous lemma, there is a morphism of

Q[Hn]-modules given by

ιn = ιB,n : V ′
(n) ≻ E(Fn) ⊗ Q

eD ≻ QD

We assume that the representation ρF,p is surjective onto PGL2(Zp). So Hn
∼= PGL2(

Z/pn+1Z)
and the Q[Hn]-module V ′

(n) is the Steinberg representation, which was denoted by Vpn/W1 earlier
in section 4.

Theorem 20. Suppose E/Q is an elliptic curve and p a prime of multiplicative reduction. Suppose
that ρF,p is surjective and that there is a self-point PC of infinite order in E(F0). Then for all
n > 0 and all cyclic subgroups D of order pn+1 with D[p] ⊂ C the point QD is of infinite order.
They generate in E(Fn) ⊗ Q a Q[Hn]-module isomorphic to the representation V ′

(n) of dimension

pn+1 + pn − 1.

As a special case, we recover Theorem 8 in [DW08] in the case when N = p is prime and F = Q.

Proof. We only have to show that ιn is injective. Suppose n > 0 is the smallest value such that ιn
is not injective. Since V ′

(n) = Wpn+1 ⊕ V ′
(n−1) if n > 0 and V ′

(0) = Wp, this means that ιn induced

on Wpn+1 is not injective. Since this is an irreducible Q[Hn]-module when ρF,p is surjective, this
means that ιn is trivial on Wpn+1 . This is impossible since we have shown that all QD above PC

are of infinite order.

7.3 The good case

Let p be a prime not dividing N , i.e. of good reduction for E. Let F be a number field such
that E(F ) contains a self-point PC of infinite order. We fix the corresponding cyclic subgroup C
of order N in E.

For any n > 0, let Fn be the smallest Galois extension of F such that the absolute Galois group
Gal(F̄ /F ) acts via scalars on E[pn+1], hence Fn = F ·Kpn+1 . Define Hn to be the Galois group
Gal(Fn/F ), which will be considered as a subgroup of PGL2(

Z/pn+1Z).
For any n > 0 and any cyclic subgroup D of order pn+1 we construct a higher self-point QD in

E(Fn) as follows. Let ψ : E ≻ E/D be the isogeny associated to D. Put yD = (E/D,ψ(C)) ∈
Y0(N) and QD = ϕE(yD). This is a higher self-point “above PC”.

Again we may use the definition of the Hecke operator Tp to prove that, for all n > 0 and D as
before

ap ·QD =
∑

D′⊃D

QD′ , (3)
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where the sum runs over all cyclic subgroups D′ of order pn+2 in E containing D. Furthermore we
have

ap · PC =
∑

D

QD (4)

with the sum running over all cyclic subgroups D of order p in E.
Let V(n) = Vpn+1 be the Q[Hn]-module whose basis {eD}D as a vector space over Q is in bijection

with P1(Z/pn+1Z). We have a Hn-morphism defined by

ιn = ιC,n : V(n) ≻ E(Fn) ⊗ Q

eD ≻ QD

Theorem 21. Let E/Q be an elliptic curve of conductor N . Let p be a prime of good and ordinary
reduction for E. Let F be a number field such that E(F ) contains a self-point PC of infinite order.
Suppose that the representation ρF,p is surjective. Then all higher self-points QD constructed above
are of infinite order and they generate a group of rank pn · (p+ 1).

Proof. By induction on n using the formulae (3) and (4) and the hypothesis that p is ordinary to
guarantee that ap 6= 0.

The above easy proof of the theorem breaks down if E has supersingular reduction at p, for ap
is then almost always equal to 0.

Theorem 22. Let E/Q be a a semi-stable elliptic curve of conductor N 6= 30 or 210. Let p > N
be a supersingular prime for E. Let F = KN . Suppose that the representation ρF,p is surjective.
Then all higher self-points QD above a given self-point PC are of infinite order and they generate a
group of rank pn · (p+ 1).

Proof. We follow the proof of theorem 15. Let ℓ > 2 be a prime dividing N . We proved that the
self-points are of infinite order by showing that when a certain Atkin-Lehner involution is applied
to one of the conjugates of xC one obtains a point ℓ-adically close to the cusp ∞ on X0(N)(Q̄ℓ).

Let QD be a higher self-point above the self-point PC . Since ρF,p is surjective, the point QD

will be conjugate over KN to a all other higher self-point above the same self-point. Therefore
without loss of generality we may assume that the cyclic subgroup D on E corresponds to µ[pn+1]
in E(Q̄ℓ). Then the point yD = (E′, C′) is represented by a Tate curve over Q̄ℓ with parameter qE′

equal to the pn+1-st power of qE.
Let r be a divisor of N such that wr(yD) is the couple (E′′, µ[N ]) with E′′ the Tate curve with

parameter q
1/r
E′ . Using the fact that p > N > r, we find that

∣

∣

∣
q
1/r
E′

∣

∣

∣

ℓ
= |qE|

pn+1

r

ℓ 6 ℓ−
p
r
·pn

6 ℓ−1 < ℓ−
1

ℓ−1

and hence, the lemma 6 shows that ϕE(E′′, µ[N ]) is of infinite order. Then as usual QD differs
from ±ϕE(wr(yD)) by a torsion point. So QD is of infinite order.

Since the representation Wpn is irreducible for PGL2(
Z/pn+1Z), we can show by induction that

the rank of the group generated by higher self-points is dim(V(n)) = pn · (p+ 1).

Putting the previous two results together, we are able to show a corollary which hold for all but
finitely many primes p.
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Corollary 23. Let E/Q be a semi-stable curve of conductor N 6= 30, or 210. Suppose that p is a
prime such that p > N , (so it is of good reduction), and such that ρ̄p : Gal(Q̄/Q) ≻ PGL2(Fp)
is surjective. Let s be the rank of the group generated by self-points in E(KN ). Then the higher
self-points in E(Kpn+1N ) generate a group of rank at least s · (p+ 1) · pn.

Proof. Take F = KN in the previous theorems. We only have to show the condition that ρF,p is
surjective. Note that it is enough to show that ρ̄F,p : Gal(F̄ /F ) ≻ PGL2(Fp) has all of PSL2(Fp)
in its image, since the representation Vpn will still have the same decomposition.

Let Hp be the group Gal(KNp/KN), i.e. the image of ρ̄F,p. It is equal to the normal subgroup
in Gal(Kp/Q) ∼= PGL2(Fp) corresponding to the subextension Kp/KN ∩Kp. Since p > 11 when
p > N , we have that PGL2(Fp) has only three normal subgroups, namely itself, PSL2(Fp) and {1}.
By the remark above, we only have to exclude that Hp is not trivial.

If Hp was trivial, then p, dividing the order of PGL2(Fp), would have to divide the order of
GN , which is a subgroup of PGL2(

Z/NZ). But when p > N , then p cannot divide the order of
PGL2(

Z/NZ), except when p = 3 and N = 2, which cannot occur as a conductor.

8 Derivatives

Let E/Q be an elliptic curve of conductor N . Let p be an odd prime of ordinary, either good
or multiplicative, reduction. In order to treat the cases of higher self-points discussed in the
sections 7.2 and 7.3 simultaneously, we choose now a base field F . If E has good ordinary reduction
at p, then F is any number field such that E(F ) contains a self-point PC of infinite order. If p
divides N , then F is a number field such that the absolute Galois group of F acts by scalars on
E[Np ].

We will suppose from now on that

ρF,p : Gal(F̄ /F ) ≻ PGL2(Zp)

is surjective.
We let Fn be the smallest extension of F such that Hn = Gal(Fn/F ) acts by scalars on E[pn+1].

By assumption the map ρF,p induces an isomorphism from Hn to PGL2(
Z/pn+1Z). Also, this implies

that E(Fn) has no p-torsion elements.
Let O be the ring of integers in the unramified quadratic extension of Qp. Choosing a basis of

O over Zp, we get a homomorphism

Ψ: O
× ≻ GL2(Zp) ≻ PGL2(Zp) ,

whose kernel is Z×
p . The image of the composition

O
× Ψ≻ PGL2(Zp) ≻ PGL2(

Z/pn+1Z) ≻ Hn

will be denoted by An. This is a cyclic group of order (p+1)·pn = #P1(Z/pn+1Z); it is the projective
version of the non-split Cartan group in GL2(

Z/pn+1Z). To simplify the notations we will write FAn
for the subfield of Fn fixed by An.

Theorem 24. Let E/Q be an elliptic curve. Suppose that E does not have potentially good super-
singular reduction for any prime of additive reduction. Let p be a prime of either good ordinary
or multiplicative reduction. Let F be the number field as above and assume that ρF,p is surjective.
Then we have

#Selpn(E/FAn ) > pn

where A is any non-split Cartan group in PGL2(Zp).
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The proof of this theorem will be completed in section 8.3.
Since there are no p-torsion points in E(Fn), as ρF,p is assumed to be surjective, there is an

isomorphism
H1(FAn , E[pk]) ≻ H1(Fn, E[pk])An

induced by the restriction map. This implies that the map

Selpn(E/FAn ) ≻ Selpn(E/Fn)An

is injective. We conjecture that the elements in the Selmer group constructed above do not lie in
the image of the Kummer map, but represent non-trivial elements in the Tate-Shafarevich group
X(E/FAn )[pn]. If so, these classes in the Tate-Shafarevich group will capitulate in the extension
Fn/F

A
n , since the elements of the Selmer group in the theorem restrict to elements in the image of

the higher self-points inside Selpn(E/Fn).

8.1 The field extension

Lemma 25. The cyclic group An intersects trivially any Borel subgroup in Hn.

Proof. We prove the statement that the image of Ψ in PGL2(Zp) intersects trivially any of its Borel
subgroups B. Let L be the Zp-line O such that B is the stabiliser under the action of PGL2(Zp)
on P1(Zp) viewed as the set of Zp-modules in O generated by a unit. Let α ∈ O

× be any element
with a non-trivial image under Ψ, then α 6∈ Z×

p can not fix L.

This implies in particular that any generator αn of An acts simply transitively on the set
P1(Z/pn+1Z).

Lemma 26. Let υ be either a place of ordinary reduction above p or a infinite place or a place of
potentially multiplicative reduction. Then the image of

ρ̄Fυ,p : Gal(F̄υ/Fυ) ≻ PGL2(
Z/pn+1Z)

lies in a Borel subgroup of PGL2(
Z/pn+1Z).

Proof. First suppose that υ divides p. As E is of ordinary reduction at υ, there is a cyclic subgroup
of E[pn+1] of order pn+1 which is fixed by the Galois group Gal(F̄υ/Fυ). This subgroup consists
of all elements of E[pn+1] with trivial reduction over F̄υ. Therefore the image of ρ̄Fυ,p is contained
in the stabiliser of this point in P1(Z/pn+1Z), which is a Borel subgroup.

Now, let υ be a place of split multiplicative reduction for E. From the description of E as a
Tate curve over Fυ , we see that there is subgroup isomorphic to µ[pn+1] inside E[pn+1]. As before
Gal(Fυ/Fυ) will fix this subgroup and hence the image of ρ̄Fυ ,p is contained in a Borel subgroup.

Next, we suppose that υ is a place of bad reduction, but not of split multiplicative type. Then
by hypothesis, E has either non-split multiplicative or additive and potentially multiplicative
reduction. In both cases there exists a quadratic extension L of Fυ, unramified in the first case and
ramified in the second, such that E has split multiplicative reduction over L, see page 312 in [Ser72].
Hence E[pn+1] can be described as the set of ζi · aj with ζ a primitive pn+1-st root of unity, a a
pn+1-st root of the Tate-parameter q and 0 6 i, j < pn+1; but the action of σ ∈ Gal(Fυ/Fυ) is
given by σ ∗ (ζi ·aj) = χL(σ) ·σ(ζ)i ·σ(a)j where χL is the quadratic character associated to L/Fυ.
Therefore the subgroup generated by ζ is still fixed under Gal(Fυ/Fυ).

Finally, we have to treat the case when υ is an infinite place. But for any p, there is a cyclic
subgroup of order pn+1 in E(R), hence the image is contained in a Borel subgroup.

22



Remark: We used here in a crucial way the assumption that p is a prime of ordinary reduction.
Certainly it will not hold for places of additive reduction that are potentially supersingular.

Proposition 27. Suppose that none of the primes of additive reduction for E are potentially good
supersingular. Then then extension Fn/F

A
n is nowhere ramified. Moreover all places above ∞, p,

and N split completely in this extension.

Proof. Since Fn is a subfield of F (E[p∞]) it is clear that it is unramified outside ∞, p and N .
By the previous lemma, we know that the decomposition group of a place υ dividing ∞ · p · N
in F inside Hn is contained in a Borel. Since any Borel intersects An = Gal(Fn/F

A
n ) trivially by

lemma 25, we have that the places above ∞ · p ·N in FAn split completely.

8.2 The A-cohomology of the Steinberg representation

Let
V ′
n =

{

f : P1(Z/pn+1Z) ≻ Q
∣

∣

∣

∑

D

f(D) = 0
}

be the Q[Hn]-module considered earlier in section 7.2. It is a Q-vector space of dimension m− 1
with m = (p+ 1) · pn. There is a natural lattice T ′

n in V ′
n which is fixed by Hn, defined by

T ′
n =

{

f : P1(Z/pn+1Z) ≻ Z
∣

∣

∣

∑

D

f(D) = 0
}

.

Lemma 28. We have
H1(An, T

′
n) = Z/mZ .

Proof. Note first that the An-fixed part of V ′
n is trivial since An act transitively on P1(Z/pn+1Z),

for a function f : P1(Z/pn+1Z) ≻ Q that is fixed by An would necessarily be constant, but then
∑

D f(D) = 0 implies that f = 0. Consider now the exact sequence of Hn-modules

0 ≻ T ′
n ≻ V ′

n ≻ T ′
N/V

′
n ≻ 0 ,

which induces an isomorphism

(

T ′
n/V

′
n

)An ≻ H1(An, T
′
n)

since H1(Hn, V
′
n) = 0 as V ′

n is divisible. So we are looking to determine the An-fixed functions in

T ′
n/V

′
n =

{

f : P1(Z/pn+1Z) ≻ Q/Z

∣

∣

∣

∑

D

f(D) = 0
}

.

Such a function must be constant, since An acts transitively, say f(D) = f0. Then m · f0 = 0, so
f0 ∈ 1

mZ gives the result.

Proposition 29. Let U be any lattice in V ′
n which is fixed by Hn, then

#H1(An, U) = m.
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Proof. The lattice U is contained in a scaled version of T ′
n with finite index, say

0 ≻ U ≻ T ′
n ≻ Z ≻ 0 .

Since the Herbrand quotient2 satisfies h(An, Z) = 1 for the finite An-module Z, we have

#H1(An, U) = h(An, U) = h(An, T
′
n) = #H1(An, T

′
n) = m.

It is not true in general that H1(An, U) is cyclic. For n = 0, it can have up to three cyclic
factors.

8.3 Proof of Theorem 24

We have an injection

ι : V ′
n ≻ ≻ E(Fn) ⊗ Q

f ≻
∑

D

f(D) ·QD .

Where QD is the higher self-point constructed in section 7.2 and section 7.3. Let Sn be the
saturated group generated by the higher self-points in E(Fn), that is

Sn =
{

P ∈ E(Fn)
∣

∣

∣
there is a k > 0 such that k · P ∈ Z[Hn] ·QD

}

.

By definition all torsion points in E(Fn) belong to Sn, moreover we have

0 ≻ E(Fn)tors ≻ Sn ≻ Un ≻ 0

where Un can be identified as a Hn-stable lattice in the image of ι. Because there are no An-fixed
elements in Un, we find

0 ≻ H1(An, E(Fn)tors) ≻ H1(An, Sn) ≻ H1(An, Un)

≻ H2(An, E(Fn)tors) ≻ H2(An, Sn) ≻ 0 .

Since the Herbrand quotient h(An, E(Fn)tors) is trivial, we find

#H1(An, Sn) = #H1(An, U
′
n) · #H1(An, Sn) > #H1(An, U

′
n) = m = (p+ 1) · pn

by proposition 29. Note also that since E(Fn) has no p-torsion points, we know that

#H1(An, Sn)[p
n] = #H1(An, Un)[p

n] = pn .

Consider now the natural inclusion of Sn into E(Fn). The cokernel of this inclusion Yn is a free
Z-module. The long exact sequence

0 ≻ E(FAn )tors ≻ E(FAn ) ≻ Yn
An ≻ H1(An, Sn) ≻ H1(An, E(Fn)) (5)

shows that Yn
An has the same rank as E(FAn ).

2For a finite cyclic group G acting on a G-module A, we define h(G, A) = # H1(G, A)/# H2(G, A).
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Composing the last map in the above sequence with the inflation map will be called the derivation
map

∂n : H1(An, Sn) ≻ H1(An, E(Fn)) ≻inf≻ H1(FAn , E) .

Since Sn has no p-torsion elements, we can identify the pn-torsion part of the source with

( Sn
pn Sn

)An ∼=≻ H1(An, Sn)[p
n]

and therefore we call the image of ∂n the derived classes of higher self-points.

Lemma 30. The image of ∂n is contained in X(E/FAn ).

Proof. Let κ be the lift of an element in the image of ∂n under the map

H1(FAn , E[m′]) ≻ H1(FAn , E)[m′]

for a sufficiently large m′. Since the extension Fn/F
A
n is non-ramified at a place υ outside

the set Σ of places in FAn above p, N or ∞, the restriction of κ to H1(FAn,υ, E[m′]) will lie in

H1
f (F

A
n , E[m′]). Now for any place υ in Σ, the place υ splits completely in extension Fn/F

A
n

by proposition 27, so the restriction of κ to H1(FAn,υ, E)[m′] is trivial as it comes from the

inflation H1(Fn/F
A
n , E(Fn))

inf≻ H1(FAn , E). Hence κ belongs to the Selmer group within
H1(FAn , E[m′]).

We can now end the proof of theorem 24. Denote by s the minimal number of generators of the
kernel of ∂n. From the long exact sequence (5), we see that the rank of Y An

n is at least s. So, if ∂n
is not injective, then rank(E(FAn )) is positive. So either the image of ∂, lifted to the Selmer group,
will contribute pn elements or else E(FAn ) will give rise to a copy of Z/pnZ in Selpn(E/FAn ).

We add here a comment on the case when E has supersingular reduction at p. It turns out that
construction of derivative classes in H1(FAn , E) using higher self-points works the same, provided
that the higher self-points are of infinite order. The main difference is that the cohomology classes
do not belong to the Tate-Shafarevich group. In fact, under the assumption that the derivative
map is not trivial, they will provide classes that are orthogonal to elements from the Selmer group
and could be used to bound the Selmer group from above; just like Kolyvagin’s classes built from
Heegner points. Unfortunately we do not know a way of proving the assumption and hence these
derivative classes can not be used to say something about the Selmer group.

8.4 Derivative of self-points

Rather than constructing derivative classes of higher self-point, we can also produce cohomology
classes from self-points. We only sketch here the results whose proofs are in the similar to the
previous sections.

Let E/Q be an elliptic curve of conductor N . Assume for simplicity that N = p is prime. Put
K = Kp. It is known that ρp is surjective, see [DW08] for more details. So the Galois group
G = Gal(K/Q) is isomorphic to PGL2(Fp). Let A be any cyclic subgroup of order p+ 1 in G.

Theorem 31. There is map ∂ to the Tate-Shafarevich X(E/KA) from a group of order at least
p+ 1. If this map is not injective, then there are points of infinite order defined over KA that only
become divisible in E(K). If r is the difference of the rank of E(Q(C)) and E(Q), then

Selp+1(E/K
A) > (p+ 1)r · #E(Q)[p+ 1] .
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As before we consider the saturation of the self-points S in E(K). We know that S modulo
its torsion-part is a lattice U in the Steinberg representation of PGL2(Fp). As we have seen in
section 8.2, the cohomology group H1(A,U) will have p+1 elements. In section 4 of [DW08], we have
computed the torsion subgroup of E(K). Using this we can compute that E(KA)tors = E(Q)tors
and that

H1(A,E(K)tors) = H2(A,E(K)tors) =

{

Z/2Z

0

with the non-trivial case exactly when E is one of the curves 17a2, 17a3, 17a4 or any Neumann-
Setzer curve. As before this shows that H1(A,S) has either p + 1 or 2 (p + 1) elements. The
derivative map is again

∂ : H1(A,S) ≻ H1(A,E(K)) ≻ H1(KA, E)

and its image is in the Tate-Shafarevich group X(E/KA).
We should add here that the control theorem for the Selmer group is not necessarily perfect; the

kernel of
Selp+1(E/K

A) ≻ Selp+1(E/K)

can be of order 1 or 2.
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