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1 Useful sources

A very useful text for the material in this mini-course is

the book

Banach Algebras and Automatic Continuity

by H. Garth Dales, London Mathematical Society

Monographs, New Series, Volume 24, The Clarendon

Press, Oxford, 2000.

In particular, many of the examples and conditions

discussed here may be found in Chapter 4 of that book.

We shall refer to this book throughout as the book of

Dales.

Most of my e-prints are available from

www.maths.nott.ac.uk/personal/jff/Papers

Several of my research and teaching presentations are

available from

www.maths.nott.ac.uk/personal/jff/Beamer
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2 Introduction to normed algebras

and Banach algebras

2.1 Some problems to think about

Those who have seen much of this introductory material

before may wish to think about some of the following

problems.

We shall return to these problems at suitable points in

this course.

Problem 2.1.1 (Easy using standard theory!) It is

standard that the set of all rational functions (quotients

of polynomials) with complex coefficients is a field: this

is a special case of the “field of fractions” of an integral

domain.

Question: Is there an algebra norm on this field

(regarded as an algebra over C)?
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Problem 2.1.2 (Very hard!) Does there exist a pair of

sequences (λn), (an) of non-zero complex numbers such

that

(i) no two of the an are equal,

(ii)
∑
∞

n=1 |λn| < ∞,

(iii) |an| < 2 for all n ∈ N, and yet,

(iv) for all z ∈ C,

∞∑

n=1

λn exp (anz) = 0?

Gap to fill in
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Problem 2.1.3 Denote by C[0, 1] the “trivial” uniform

algebra of all continuous, complex-valued functions on

[0, 1].

(i) (Very hard!) Give an example of a proper, uniformly

closed subalgebra A of C[0, 1] such that A contains the

constant functions and separates the points of [0, 1].

In other words, give an example of a non-trivial uniform

algebra on [0, 1].

(ii) (Impossible?) Is there an example of an algebra A

as in (i) with the additional property that the only

non-zero, multiplicative linear functionals on A are the

evaluations at points of [0, 1]?

In other words, is there a non-trivial uniform algebra

whose character space is [0, 1]?

(This is a famous open problem of Gelfand.)
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2.2 Revision of basic definitions

Banach algebras may be thought of as Banach spaces

with multiplication (in a sense made more formal below).

The additional structure provided by the multiplication

gives the theory of Banach algebras a rather different

flavour from the more general theory of Banach spaces.

Banach algebras may be real or complex. However the

theory of complex Banach algebras is richer, and so this

is what we will focus on.

Banach algebras may be commutative or

non-commutative. We will focus mainly on commutative

Banach algebras.

A key example of a commutative Banach algebra is

CC(X), the algebra of continuous, complex-valued

functions on a compact, Hausdorff space, with the usual

pointwise operations and with the uniform norm.

A typical non-commutative Banach algebra is B(E), the

algebra of all bounded linear operators from E to E for

some Banach space E (of dimension at least 2!), with

the usual vector space structure and operator norm, and

with product given by composition of operators.
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In particular, for a Hilbert space H, B(H) and its

subalgebras are of major interest.

Just as the theory of Banach algebras should not be

regarded as part of the theory of Banach spaces, the

theory of B(H) and its subalgebras has its own flavour

and a vast literature, including the quite distinct study of

C∗-algebras and von Neumann algebras.

Definition 2.2.1 A complex algebra is a complex

vector space A which is a ring with respect to an

associative multiplication which is also a bilinear map,

i.e., the distributive laws hold and, for all α ∈ C and a

and b in A, we have

(αa)b = a(αb) = α(ab) .

The complex algebra A has an identity if there exists an

element e 6= 0 ∈ A such that, for all a ∈ A, we have

ea = ae = a.

Real algebras are defined similarly.
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Note that, if A has an identity e, then this identity is

unique, so we may call e the identity of A.

We will often denote the identity by 1 rather than e,

assuming that the context ensures that there is no

ambiguity.

The assumption above that e 6= 0 means that we do not

count 0 as an identity in the trivial algebra {0}.

From now on, all algebras will be assumed to be complex

algebras, so we will be defining complex normed algebras

and Banach algebras.

Definition 2.2.2 A (complex) normed algebra is a

pair (A, ‖ · ‖) where A is a complex algebra and ‖ · ‖ is a

norm on A which is sub-multiplicative, i.e., for all a and

b in A, we have

‖ab‖ ≤ ‖a‖‖b‖ .

A normed algebra A is unital if it has an identity 1 and

‖1‖ = 1.

A Banach algebra (or complete normed algebra) is a

normed algebra which is complete as a normed space.
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Notes.

• In our usual way, we will often call A itself a normed

algebra, if there is no ambiguity in the norm used on

A.

• We will mostly be interested in commutative, unital

Banach algebras.

• The condition that the norm on A be

sub-multiplicative is only slightly stronger than the

requirement that multiplication be jointly continuous

(or equivalently, that multiplication be a ‘bounded

bilinear map’) from A×A → A.

In fact (easy exercise) if we have ‖ab‖ ≤ C‖a‖‖b‖,

for some constant C > 1, then we can easily find an

equivalent norm on A which is actually

sub-multiplicative.

• If a normed algebra (A, ‖ · ‖) has an identity 1 such

that ‖1‖ 6= 1, then we may again define another

norm ||| · ||| on A as follows:

|||a||| = sup{‖ab‖ : b ∈ B̄A(0, 1) } .
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As another exercise, you may check that ||| · ||| is

equivalent to ‖ · ‖, that ||| · ||| is sub-multiplicative

and that |||1||| = 1.

So the assumption that ‖1‖ = 1 is a convenience,

rather than a topological restriction.

• Every subalgebra of a normed algebra is a normed

algebra, and every closed subalgebra of a Banach

algebra is a Banach algebra.

Examples.

(1) Let E be a complex Banach space of dimension > 1.

Then (B(E), ‖ · ‖op) is a non-commutative, unital

Banach algebra, where the product on B(E) is

composition of operators.

(2) Let X be a non-empty, compact, Hausdorff

topological space. Then CC(X) is a commutative,

unital Banach algebra with pointwise operations and

the uniform norm | · |X : recall that

|f |X = sup{|f(x)| : x ∈ X } .

As we are focussing on complex algebras, from now

on we will denote CC(X) by C(X).
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(3) With notation as in (2), every (uniformly) closed

subalgebra of C(X) is also a commutative Banach

algebra with respect to the uniform norm | · |X .

A uniform algebra on X is a closed subalgebra A

of C(X) which contains all the constant functions

and which separates the points of X, i.e.,

whenever x and y are in X with x 6= y, there exists

f ∈ A with f(x) 6= f(y).

Every uniform algebra on X is, of course, a

commutative, unital Banach algebra, with respect to

the uniform norm.

Also, by Urysohn’s Lemma, C(X) itself does

separate the points of X, and so C(X) is a uniform

algebra on X.

Gap to fill in
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(4) In particular, let X be a non-empty, compact subset

of C.

Consider the following subalgebras of C(X):

A(X) is the set of those functions in C(X) which

are analytic (holomorphic) on the interior of X;

P0(X) is the set of restrictions to X of polynomial

functions with complex coefficients;

R0(X) is the set of restrictions to X of rational

functions with complex coefficients whose poles (if

any) lie off X (so

R0(X) = {p/q : p, q ∈ P0(X), 0 /∈ q(X) }).

It is easy to see that these subalgebras contain the

constant functions and separate the points of X.

Indeed the polynomial function Z, also called the

co-ordinate functional, defined by Z(λ) = λ

(λ ∈ C), clearly separates the points of X by itself,

and is in all of these algebras.

The algebra A(X) is closed in C(X), because

uniform limits of analytic functions are analytic (see

books for details), and so A(X) is a uniform algebra

on X.
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The algebras P0(X) and R0(X) are usually not

closed in C(X) (exercise: investigate this).

We obtain uniform algebras on X by taking their

(uniform) closures: P (X) is the closure of P0(X)

and R(X) is the closure of R0(X).

The functions in P (X) are those which may be

uniformly approximated on X by polynomials, and

the functions in R(X) are those which may be

uniformly approximated on X by rational functions

with poles off X.

We have P (X) ⊆ R(X) ⊆ A(X) ⊆ C(X).

Gap to fill in
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(5) The Banach space C1[0, 1] of once continuously

differentiable complex-valued functions on [0, 1] is a

subalgebra of C[0, 1].

It is not uniformly closed, and so it is not a uniform

algebra on [0, 1].

However, it is a Banach algebra when given its own

norm, ‖f‖ = |f |X + |f ′|X (where X = [0, 1]).

This is a typical example of a Banach function

algebra.

Warning! In the literature, some authors call

uniform algebras function algebras.

Gap to fill in
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(6) Every complex normed space E can be made into a

(non-unital) normed algebra by defining the trivial

multiplication xy = 0 (x, y ∈ E).

Thus every complex Banach space is also a Banach

algebra.

(7) The following standard construction can be used to

‘unitize’ Banach algebras.

Let (A, ‖ · ‖A) be a complex Banach algebra

without an identity.

We may form a Banach algebra A#, called the

standard unitization of A, as follows.

As a vector space, A# = A⊕ C.

This becomes a Banach space when given the norm

‖(a, α)‖ = ‖a‖A + |α| (a ∈ A, α ∈ C) .

We can then make A# into a unital Banach algebra

using the following multiplication: for a and b in A

and α and β in C, we define

(a, α)(b, β) = (ab+ αb+ βa, αβ) .

15

Exercise. Check the details of these claims.

(What is the identity element of A#?)

Show also that A# is commutative if and only if A is

commutative.

We can combine this construction with (6) to give

examples of commutative, unital Banach algebras

which have many non-zero elements whose squares

are 0.

This never happens, of course, for our algebras of

functions.
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2.3 Characters and the character space

for commutative Banach algebras

In this section we will focus on commutative algebras.

However, many of the definitions and results are valid

(with some minor modifications) in the non-commutative

setting too: see books for details.

Definition 2.3.1 Let A be a commutative algebra with

identity 1.

An element a ∈ A is invertible if there exists b ∈ A with

ab = 1.

In this case the element b is unique: b is then called the

inverse of a, and is denoted by a−1.

The set of invertible elements of A is denoted by InvA.

Notes.

• For non-commutative algebras, we would insist that

both ab = 1 and ba = 1.

• For invertible elements a, it is clear that a−1 is

invertible and (a−1)−1 = a.

17

• With multiplication as in A, InvA is a group with

identity 1, and the map a 7→ a−1 is a bijection from

InvA to itself.

• Let X be a non-empty, compact, Hausdorff

topological space. Then

InvC(X) = {f ∈ C(X) : 0 /∈ f(X)} .

If X is a non-empty, compact subset of C then the

same is true for R(X) and A(X), but not for P (X)

unless X has ‘no holes’ (see books for more details

on this).

Gap to fill in
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Theorem 2.3.2 Let A be a commutative, unital

Banach algebra, and let x ∈ A with ‖x‖ < 1. Then

1− x is invertible, and

(1− x)−1 =
∞∑

k=0

xk = 1 + x+ x2 + · · · .

Thus whenever a ∈ A with ‖a− 1‖ < 1, we have

a ∈ InvA.

In other words, the open ball in A centred on the

identity element and with radius 1 is a subset of

InvA.

We now investigate characters and the character space of

commutative, unital Banach algebras.
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Definition 2.3.3 Let A be a commutative algebra.

A character on A is a non-zero, multiplicative linear

functional on A, i.e. a non-zero linear functional

φ : A → C satisfying φ(ab) = φ(a)φ(b) (a, b ∈ A).

The set of all characters on A is called the character

space of A, and is denoted by ΦA.

Notes.

• Suppose that A has an identity, 1. Then it is

elementary to show that φ(1) = 1 for all φ ∈ ΦA.

It is also easy to show, in this case, that ΦA is a

closed subset of the product space C
A.

• If A is an algebra of complex-valued functions on a

non-empty set X (with pointwise operations), then,

for every x ∈ X, there is an evaluation character

at x, denoted by x̂, defined by x̂(f) = f(x) (f ∈ A).

In general there may also be many other characters

on A.

However, it turns out that in the case of C(X) (for

compact, Hausdorff X) there are no others.
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For non-empty compact subsets X of C (also known

as compact plane sets), the same is true for R(X)

and for A(X), but not for P (X) unless X has ‘no

holes’.

See books for details: A(X) is rather hard!

Gap to fill in
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The following is the most basic of the ‘automatic

continuity’ results concerning Banach algebras.

Theorem 2.3.4 Let A be a commutative, unital

Banach algebra.

Then every character φ on A is continuous, with

‖φ‖ = 1.

Using this and the Banach-Alaoglu Theorem, we obtain

the following important corollary.

Corollary 2.3.5 Let A be a commutative, unital

Banach algebra.

Then ΦA is a weak-* compact subset of A∗.

The relative (i.e. subspace) weak-* topology on ΦA is

called the Gelfand topology.

The Gelfand topology is the weakest topology on ΦA

such that, for all a ∈ A, the map φ 7→ φ(a) is continuous.

22



We may restate the above corollary as follows:

ΦA is a compact, Hausdorff topological space with

respect to the Gelfand topology.

By default, we will always use the Gelfand topology

on ΦA.

In fact, every commutative, unital Banach algebra has at

least one character: we will return to this later.

We conclude this section by recalling the definition of the

Gelfand transform.

Definition 2.3.6 Let A be a commutative, unital

Banach algebra. Then the Gelfand transform is the

map from A to C(ΦA) defined by a 7→ â, where

â(φ) = φ(a) (a ∈ A, φ ∈ ΦA).

The Gelfand transform of A is the set

Â = {â : a ∈ A }.

23

2.4 Semisimple, commutative, unital

Banach algebras

You probably already know various definitions of the term

semisimple.

We give our definition in terms of characters.

See books for the equivalence of this and the usual

algebraic definition, in the setting of commutative, unital

Banach algebras.

Definition 2.4.1 Let A be a commutative, unital

Banach algebra. Then A is semisimple if
⋂

φ∈ΦA

kerφ = {0} ,

i.e., for every non-zero a ∈ A, there exists a character φ

on A with φ(a) 6= 0.
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Notes.

• Every unital Banach algebra of functions on a set X

is semisimple.

This may be seen immediately by considering just

the evaluation characters at points of X.

• Conversely, every semisimple, commutative, unital

Banach algebra A is isomorphic (as an algebra) to a

subalgebra of C(ΦA).

Indeed A is semisimple if and only if the Gelfand

transform is injective, in which case A is isomorphic

to its Gelfand transform Â.

We have implicitly assumed above the obvious notions of

algebra homomorphism (a multiplicative linear map)

and algebra isomorphism (a bijective algebra

homomorphism).

We also need the notion of a unital algebra

homomorphism.
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Definition 2.4.2 Let A and B be commutative, unital

Banach algebras, with identities 1A and 1B respectively.

A unital algebra homomorphism from A to B is an

algebra homomorphism T : A → B such that

T (1A) = 1B .

The following remarkable Automatic Continuity results

are true concerning semisimple, commutative, unital

Banach algebras.

The first result concerns the automatic continuity of

homomorphisms.

Theorem 2.4.3 Let A and B be commutative,

unital Banach algebras, and suppose that B is

semisimple. Then every unital algebra

homomorphism from A to B is automatically

continuous.

The next result (a corollary) is a uniqueness of norm

result.
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Corollary 2.4.4 Let (A, ‖ · ‖) be a semisimple,

commutative, unital Banach algebra.

Suppose that ‖ · ‖′ is another norm on A such that

(A, ‖ · ‖′) is a commutative unital Banach algebra.

Then the norms ‖ · ‖ and ‖ · ‖′ are equivalent.

Gap to fill in
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2.5 Resolvent and spectrum

We begin this section with some further facts concerning

the invertible group InvA of a commutative, unital

Banach algebra A.

For convenience, we will use the abbreviation CBA for

commutative Banach algebra.

Theorem 2.5.1 Let A be a unital CBA. Then the

following facts hold:

(a) InvA is open in A;

(b) the map a 7→ a−1 is a homeomorphism from InvA

to itself.

We now define the resolvent set and the spectrum for

an element of a commutative algebra with identity.

Definition 2.5.2 Let A be a commutative algebra with

identity and let x ∈ A.

Then the spectrum of x in A, σA(x) (or σ(x) if the

algebra under consideration is unambiguous) is defined by

σA(x) = {λ ∈ C : λ1− x /∈ InvA } .
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The resolvent set of x in A, ρA(x), is the complement

of the spectrum, i.e.,

ρA(x) = {λ ∈ C : λ1− x ∈ InvA } .

Notes. We are mainly interested in the case of CBA’s.

So, let A be a unital CBA.

• Since InvA is open in A, it follows easily that the

resolvent set is open in C, and hence that the

spectrum is closed in C.

• We have σA(x) ⊆ {λ ∈ C : |λ| ≤ ‖x‖ } . Thus the

spectrum is always a compact subset of C.

The next result is a consequence of Liouville’s Theorem

(complex analysis).

See books for the elegant details.

Proposition 2.5.3 Let A be a commutative, unital

normed algebra. Then, for all x ∈ A, σ(x) 6= ∅.
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The next result shows that C itself is the only complex

normed algebra which is a field.

Theorem 2.5.4 (Gelfand-Mazur) Let A be a

commutative, unital normed algebra.

Suppose that InvA = A \ {0}. Then A = lin {1},

and A is isometrically isomorphic to C.

Thus none of the many non-trivial extension fields of C

can be given a (complex) algebra norm.

Gap to fill in
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We conclude this section with the definition and formula

for the spectral radius.

Definition 2.5.5 Let A be a commutative, unital

Banach algebra, and let x ∈ A.

We define the spectral radius of x (in A), νA(x), by

νA(x) = sup{|λ| : λ ∈ σA(x) } .

The following result is the famous spectral radius

formula.

Theorem 2.5.6 Let A be a commutative, unital

Banach algebra, and let x ∈ A. Then

νA(x) = lim
n→∞

‖xn‖1/n = inf
n∈N

‖xn‖1/n .

Gap to fill in
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2.6 Maximal ideals and characters

When working with algebras rather than just rings, we

insist that an ideal in the algebra must be a linear

subspace, in addition to being an ideal in the ring theory

sense.

Fortunately, this makes no difference in the case where

the algebra has an identity.

Definition 2.6.1 Let A be a commutative algebra with

identity. Then a proper ideal in A is an ideal I in A

such that I 6= A.

A maximal ideal in A is a maximal proper ideal in A

(with respect to set inclusion).

An easy Zorn’s Lemma argument shows that every

proper ideal I in A is contained in at least one maximal

ideal in A.

We conclude this introductory chapter with a standard

result which connects up the concepts discussed so far.
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Theorem 2.6.2 Let A be a unital CBA. Then the

following hold.

(a) Every maximal ideal in A is closed.

(b) For every character φ ∈ ΦA, kerφ is a maximal

ideal in A.

(c) Conversely, every maximal ideal in A is the

kernel of a unique character on A. In particular,

every maximal ideal has codimension 1 in A.

(d) For every x ∈ A, we have

σA(x) = {φ(x) : φ ∈ ΦA } .

(e) The character space ΦA is non-empty, and, for

all x ∈ A, the spectrum of x is equal to the

image of the Gelfand transform of x, i.e.,

σA(x) = x̂(ΦA) .

Gap to fill in
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Gap to fill in
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3 Banach function algebras

3.1 Preliminary definitions and results

We saw in Chapter 1, via the Gelfand transform, that

semisimple, unital commutative Banach algebras are

(essentially) the same thing as Banach algebras of

continuous functions on compact Hausdorff spaces.

Given a non-unital Banach algebra A, we know how to

form the standard unitization A#.

Given a non-semisimple, unital, commutative Banach

algebra A, the standard way to make it semisimple is to

quotient out by the Jacobson radical.

35

The Jacobson radical, J , of the unital CBA A, is the

intersection of all of the maximal ideals in A.

(In the non-commutative setting, you should use

maximal one-sided ideals.)

With the quotient norm, A/J is then a unital,

semisimple CBA.

From now on, we will work mostly with unital,

semisimple CBA’s.

However, many of the definitions and results generalize in

standard ways to all CBA’s using the comments above.

For example, most of the named conditions we discuss

hold for a given non-unital CBA A if and only if they

hold for its standard unitization A#.

Indeed, in many cases, this can be used as the definition

in the non-unital case.

Gap to fill in
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In our terminology, a compact space is a non-empty,

compact, Hausdorff topological space.

Definition 3.1.1 Let X be a compact space.

A normed function algebra on X is a normed algebra

(A, ‖ · ‖) such that A is a subalgebra of C(X), such that

A contains the constants and separates the points of X,

and such that, for all f ∈ A, we have ‖f‖ ≥ |f |X .

A normed function algebra (A, ‖ · ‖) is a Banach

function algebra on X if it is complete.

As in Chapter 1, a uniform algebra on X is a Banach

function algebra A on X such that the norm on A is the

uniform norm | · |X .

Of course, in the case where (A, ‖ · ‖) is a Banach

algebra and a subalgebra of C(X), it is automatic that

‖f‖ ≥ |f |X for all f ∈ A.

37

Let A be a Banach function algebra on a compact space

X.

We define

εx : f 7→ f(x) , A→ C ,

for each x ∈ X.

Then εx ∈ ΦA, and the map x 7→ εx, X → ΦA, is a

continuous embedding.

We say that A is natural (on X) if this map is surjective.

A typical example of a uniform algebra which is not

natural is P (X) when X is a compact plane set with at

least one ‘hole’.

Gap to fill in
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It is standard that C(X) is always natural on X.

More generally, we state a well-known result on naturality

for ‘full’ subalgebras of C(X). Here, a subalgebra A of

C(X) is full if InvA = A ∩ InvC(X).

Proposition 3.1.2 Let A be a Banach function algebra

on a compact space X.

If A is self-adjoint, and A is a full subalgebra of C(X),

then A is natural on X.

Gap to fill in
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Using the Gelfand transform, every unital, semisimple

CBA can be regarded as a natural Banach function

algebra on its character space (which is compact in this

setting).

From now on, this is what we mean when we talk about

a Banach function algebra A on ΦA.

The well-known Banach algebra H∞ (bounded analytic

functions on the open unit disc) is a uniform algebra on

its character space. However, this character space is

quite complicated in nature.

Gap to fill in
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The following useful test for naturality, due to T. Honary

(1990), is not very well known.

Proposition 3.1.3 Let X be a compact space, and

let (A, ‖ · ‖) be a Banach function algebra on X,

with uniform closure B. Then A is natural on X if

and only if both of the following conditions hold:

(a) B is natural on X;

(b) limn→∞ ‖f
n‖1/n

= 1 for each f ∈ A with

|f |X = 1.

The proof of this result is an exercise.
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We can use either of the two tests for naturality above to

prove that the Banach function algebra C1[0, 1] is

natural on [0, 1].

(There are, of course, many easy proofs of this fact.)

Gap to fill in
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3.2 Two deep theorems

The next pair of theorems are very easy to state, but

their proofs require the deep theory of several complex

variables.

In our terminology, a clopen set is a set which is both

open and closed.

Theorem 3.2.1 (Shilov Idempotent Theorem)

Let A be a Banach function algebra on ΦA.

Suppose that E is a clopen subset of ΦA.

Then the characteristic function of E, χE , is in A.

In other words, every idempotent in C(ΦA) is

automatically in A.

Gap to fill in
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Theorem 3.2.2 (Arens–Royden)

Let A be a Banach function algebra on ΦA, and let

f ∈ C(ΦA).

If exp(f) ∈ A, then f ∈ A.

In other words, whenever a function in A has a

continuous logarithm defined on ΦA, then that

continuous logarithm must itself be in A.

Gap to fill in
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3.3 Regularity and normality

Definition 3.3.1 Let A be a Banach function algebra on

a compact space X. Then A is regular on X if, for each

proper, closed subset E of X and each x ∈ X \ E, there

exists f ∈ A with f(x) = 1 and f(y) = 0 (y ∈ E);

A is regular if it is regular on ΦA;

A is normal on X if, for each proper, closed subset E of

X and each compact subset F of X \ E, there exists

f ∈ A with f(x) = 1 (x ∈ F ) and f(y) = 0 (y ∈ E);

A is normal if it is normal on ΦA.

Gap to fill in
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Urysohn’s lemma tells us that the uniform algebra C(X)

is always normal, and hence also regular.

For any compact plane set X with non-empty interior,

the uniform algebras P (X), R(X) and A(X) are not

regular (hence not normal).

It is easy to check that the Banach function algebra

C1[0, 1] is normal (and hence regular).

We will meet many more examples of regular (and

normal) Banach function algebras later.
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Normal uniform algebras are less common.

The first non-trivial, normal uniform algebra was

constructed by McKissick in 1963.

His example was R(X) for a suitable Swiss cheese set

X ⊆ C.
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A Swiss cheese set with non-overlapping holes
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Definition 3.3.2 Let A be a Banach function algebra on

a compact space X, and let I be an ideal in A.

We define the hull of I, h(I), to be the intersection of

the zero sets of the functions in I, i.e.,

h(I) =
⋂

f∈I

f−1({0}) .

Now let E be a subset of X.

We define the kernel of E, I(E) (sometimes denoted by

k(E)), to be the closed ideal in A,

{f ∈ A : f(E) ⊆ {0} } ,

consisting of those functions in A which vanish

identically on E.

Suppose that A is natural on X, so that we may regard

X as equal to ΦA.

In this setting, since every proper ideal is contained in a

maximal ideal, it follows that no proper ideal in A has

empty hull.

This is false without the assumption of naturality.
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The connection with regularity is given by the following

standard result.

Proposition 3.3.3 Let A be a Banach function

algebra on a compact space X.

Then A is regular on X if and only if, for every

closed subset E of X, we have h(I(E)) = E.

More generally, we can define the hull-kernel topology

on X using E 7→ h(I(E)) as a closure operation.

Let A be a Banach function algebra on ΦA.

Then the hull-kernel topology on ΦA is weaker than the

Gelfand topology, and the topologies agree if and only if

A is regular.

Otherwise, the hull-kernel topology is non-Hausdorff.
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In the next result, it is not enough to assume regularity

on X, unless you know that your algebra is natural on X.

Theorem 3.3.4 Every regular Banach function

algebra is normal.
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51

The definition of normality is reminiscent of Urysohn’s

lemma.

However, in view of the following result of Bade and

Curtis, we can not hope to maintain control of the norms

of the functions f separating closed sets from each other.

This result (and its proof) may be found as Theorem

4.1.19 in the book of Dales.

Theorem 3.3.5 Let (A, ‖ · ‖) be a Banach function

algebra on a compact space X, let M > 0, and let

c ∈ (0, 1/2).

Suppose that, for every pair of disjoint closed

subsets E and F of X, there is an f ∈ A with

‖f‖ ≤M and such that |f(x)| < c (x ∈ E) and

|f(x)− 1| < c (x ∈ F ).

Then A = C(X).
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3.4 Some examples of Banach function

algebras

We have already discussed the uniform algebras C(X)

(for compact spaces X) and P (X), R(X) and A(X) (for

compact plane sets X).

Obviously, we can also work with compact subsets of C
N

for N > 1.

We also mentioned the Banach function algebra C1[0, 1].

Similarly, we can define Cn[0, 1], the Banach function

algebra of n-times continuously differentiable

complex-valued functions on the interval [0, 1].

However, the algebra C∞[0, 1] of infinitely-differentiable

functions on [0, 1] is not a Banach function algebra (no

matter which norm you try).
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Other well-known Banach function algebras include the

Lipschitz algebras Lip α(X) and lip α(X) for a compact

metric space X, and Fourier algebras A(Γ) = L1(G)

where G and Γ are mutually dual, locally compact,

abelian groups.

These Banach function algebras are regular (and, indeed,

have many stronger properties).

See Sections 4.4 and 4.5 of the book of Dales for many

more details concerning these algebras.
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There are also many useful examples of Banach function

algebras on N∞ := N ∪ {∞}, the one-point

compactification of N.

Here, C(N∞) may be identified with the algebra of all

convergent complex sequences.

Exercise.

(i) (You may wish to quote the Shilov Idempotent

Theorem!) Prove that every natural Banach function

algebra on N∞ is regular.

(ii) Give an example of a Banach function algebra on N∞

that is not regular on N∞.
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For 1 ≤ p <∞, the usual sequence spaces ℓp, are

(non-unital) subalgebras of C(N∞), and these

subalgebras may be unitized to give natural, Banach

function algebras on N∞.

Another interesting family of Banach function algebras

on N∞ is the following.

Let α = (αn)
∞

n=1 be a sequence of positive real numbers.

We define Aα by

Aα =

{
f ∈ C(N∞) :

∞∑

n=1

αn|f(n+ 1)− f(n)| < ∞

}
.

It is easy to see that Aα is a subalgebra of C(N∞), and

that Aα is a Banach function algebra, where the norm of

a function f ∈ Aα is given by

‖f‖ = ‖f‖∞ +
∞∑

n=1

αn|f(n+ 1)− f(n)|.

It is also easy to check that the character space of Aα is

just N∞.

We will frequently return to these examples in the

remaining chapters.
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3.5 Regularity and decomposable

operators

We conclude this chapter by discussing an interesting

connection, due to M. Neumann (1992), between

regularity and the theory of decomposable operators.

Definition 3.5.1 Let E be a Banach space, and let

T ∈ B(E). Then T is decomposable if, for every open

cover {U, V } of C, there are closed, invariant subspaces

F and G for T such that E = F +G, σ(T |F ) ⊆ U and

σ(T |G) ⊆ V .
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Let A be a Banach function algebra. For each f ∈ A, we

denote by Tf the multiplication operator in B(A) defined

by g 7→ fg.

Neumann investigated the decomposability of these

multiplication operators, and proved the following.

Proposition 3.5.2 (M. Neumann, 1992) Let A be a

Banach function algebra on ΦA.

For each f ∈ A, the multiplication operator Tf is

decomposable if and only if the function f is

continuous when ΦA is given the hull-kernel

topology.

Thus the Banach function algebra A is regular if and

only if, for all f ∈ A, the multiplication operator Tf

is decomposable.
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4 Regularity conditions and their

implications

4.1 Regularity and the structure of ideals

Recall the notions of the hull h(I) of an ideal I (the

intersection of the zero sets of the functions in I) and

the kernel I(E) of a set E (defined again below).

We now restrict attention to closed sets E.

Let A be a Banach function algebra on a compact space

X.

For each closed set E ⊆ X we define a pair of ideals,

I(E) (as before) and J(E) by

I(E) = {f ∈ A : f(E) ⊆ {0} }

and

J(E) = {f ∈ A : E ⊆ int (f−1({0})) } .

Thus the functions in I(E) are 0 at all points of E, while

each function f ∈ J(E) is 0 at all points of some

neighbourhood of E: the neighbourhood depends on f .
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For x ∈ X, we denote the maximal ideal I({x}) by Mx,

and we write Jx for J({x}).

Even without regularity, we always have h(Mx) = {x}.

However, an easy compactness argument shows that A is

regular on X if and only if, for all x ∈ X, we have

h(Jx) = {x}.
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The next result shows a close connection between

regularity and the ideal structure.

This result (and its proof) may be found as Proposition

4.1.20 in the book of Dales.

Proposition 4.1.1 Let A be a regular Banach

function algebra on ΦA, and let E be a closed

subset of ΦA. Then:

(i) J(E) is the minimum ideal in A whose hull is E;

(ii) J(E) is the minimum closed ideal in A whose

hull is E;

(iii) I(E) is the maximum ideal in A whose hull is E;

(iv) for each ideal I in A, we have

J(S) ⊆ I ⊆ I(S) ,

where S = h(I).
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In this setting, the quotient algebras I(E)/J(E) provide

a good source of radical Banach algebras.

However, this topic is beyond the scope of this course.

Recall that a prime ideal in a commutative, complex

algebra A is a proper ideal P in A with the property

that A \ P is multiplicatively closed.

Note that every maximal ideal in a unital CBA is a closed

prime ideal, and that the trivial ideal {0} is prime if and

only if the algebra is an integral domain.
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The next standard result places restrictions on the

possible prime ideals in regular algebras.

Proposition 4.1.2 Let A be a regular Banach

function algebra on ΦA, and let P be a prime ideal

in A. Then h(P ) has only one element, x say, and

we have

Jx ⊆ P ⊆ Mx .
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4.2 Spectral synthesis and strong

regularity

Definition 4.2.1 Let A be a Banach function algebra on

a compact space X, and let E be a closed subset of X.

We say that E is a set of synthesis for A if

J(E) = I(E).

Now let x ∈ X. We say that A is strongly regular at x

if {x} is a set of synthesis for A, i.e., if Jx = Mx.

The Banach function algebra is strongly regular on X,

if it is strongly regular at all points of X.

Spectral synthesis holds for A (or A has spectral

synthesis) on X if every closed subset of X is a set of

synthesis for A.

Clearly, whenever spectral synthesis holds for A on X,

then A is strongly regular on X.
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It is also easy to see that, if A is strongly regular on X,

then A is regular on X.

However, an elegant argument of Mortini shows that,

whenever A is strongly regular on X, then A is natural

on X.

Thus every such algebra is natural and regular (and

hence normal), and we may, without ambiguity, omit the

‘on X’ above.
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4.3 Examples

At this point, let us see where our previous examples fit

in.

• For every compact space X, C(X) has spectral

synthesis, and is strongly regular (etc.).

• For each n ∈ N, the Banach function algebra

Cn[0, 1] is not strongly regular.
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• (Sherbert, 1964) For every compact metric space X

and α ∈ (0, 1), the ‘little’ Lipschitz algebras lip α(X)

have spectral synthesis.

However, for α ∈ (0, 1], the only closed sets which

are of synthesis for Lip α(X) are the clopen subsets

of X.

Thus, unless the compact space X is discrete (and

hence finite), Lip α(X) is not strongly regular, and

does not have spectral synthesis.

• Let Γ be a locally compact, abelian group. Then the

Fourier algebra A(Γ) is strongly regular.

However, it is a famous theorem of Malliavin that

A(Γ) does not have spectral synthesis unless Γ is

discrete.
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• All of the examples of Banach sequence algebras

discussed earlier have spectral synthesis, and hence

are strongly regular.

In general, regular Banach sequence algebras need

not be strongly regular.

• Let X be a compact plane set such that

R(X) 6= C(X).

It is not known whether R(X) can be strongly

regular, or whether R(X) can have spectral

synthesis.

• It is open whether or not a non-trivial uniform

algebra can have spectral synthesis.

• There are non-trivial, strongly regular uniform

algebras. The first known examples were due to

Feinstein (1992).
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4.4 Spectral synthesis and closed ideals

Let A be a Banach function algebra on a compact space

X.

Suppose that A is strongly regular. Then A is natural on

X, A is regular, and, for all x ∈ X, the maximal ideal

Mx is the unique closed ideal in A whose hull is {x}.

In particular, every closed prime ideal in A is a maximal

ideal.

Now suppose, further, that A has spectral synthesis.

In this case, we have a complete description of the closed

ideals in A: they are precisely the kernels of the closed

subsets of A.
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Conversely, a Banach function algebra A on ΦA has

spectral synthesis if and only if A is regular, and the only

closed ideals in A are the kernels I(E) of closed sets

E ⊆ ΦA.

It appears to be open whether or not the regularity

assumption here is redundant:

Suppose that the only closed ideals in A are the kernels

I(E) of closed sets E ⊆ ΦA.

Does it follow that A is regular, and hence that A has

spectral synthesis?
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4.5 Bounded approximate identities and

strong Ditkin algebras

We begin this section by recalling the definition of

bounded approximate identity.

Definition 4.5.1 Let B be a commutative Banach

algebra (usually without identity).

A bounded approximate identity in B is a bounded

net (eα) ⊆ B such that, for all b ∈ B, the net (eαb)

converges to b in B.
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We now introduce the strong Ditkin algebras.

Definition 4.5.2 Let A be a Banach function algebra.

Then A is a strong Ditkin algebra if A is strongly

regular, and every maximal ideal in A has a bounded

approximate identity.

There is an intermediate condition between being

strongly regular and being a strong Ditkin algebra,

namely being a ‘Ditkin algebra’.

We shall not discuss this condition in detail here, but

those interested may wish to consult Chapter 4 of the

book of Dales.
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From now on we use the standard abbreviation b.a.i. for

bounded approximate identity.

Returning to our standard examples, we have the

following.

• For every compact space X, C(X) is a strong Ditkin

algebra.

• Consider the algebra lip α(X), where X is a compact

metric space and α ∈ (0, 1).

Let x ∈ X. Then Mx has a b.a.i. if and only if x is

an isolated point of X.

Thus, if X is infinite, then lip α(X) is a Banach

function algebra which has spectral synthesis, but is

not a strong Ditkin algebra.

• For every locally compact abelian group Γ, the

Fourier algebra A(Γ) is a strong Ditkin algebra.

Thus, if Γ is not discrete, then A(Γ) is a strong

Ditkin algebra which does not have spectral

synthesis.

• For p ∈ [1,∞), the (standard unitizations of the)

Banach sequence algebras ℓp are not strong Ditkin

algebras.
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• The situation for the algebras Aα depends on the

sequence α.

Recall that

Aα =

{
f ∈ C(N∞) :

∞∑

n=1

αn|f(n+ 1)− f(n)| < ∞

}
.

where α = (αn) is a sequence of positive real

numbers.

In this case, Aα is a strong Ditkin algebra if and only

if (αn) has a bounded subsequence.

Thus Aα fails to be a strong Ditkin algebra if and

only if αn → +∞ as n →∞.
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For a compact plane set X, R(X) is a strong Ditkin

algebra if and only if R(X) = C(X).

However, there are non-trivial, strong Ditkin uniform

algebras.

Strongly regular uniform algebras need not be strong

Ditkin algebras.
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4.6 Automatic continuity and Banach

extensions for strong Ditkin algebras

We now recall the definitions of Banach A-bimodules,

derivations, and intertwining maps, which play an

important role in the cohomology theory of Banach

algebras.

Definition 4.6.1 Let A be a commutative Banach

algebra.

A Banach A-bimodule is an A-bimodule E which is

also a Banach space such that both of the bilinear maps

(a, x) 7→ a · x and (a, x) 7→ x · a are jointly continuous

from A× E to E.

Given a Banach A-bimodule E, a linear map D from A

to E is a derivation if, for all a, b ∈ A we have

D(ab) = a ·D(b) +D(a) · b .

A linear map T from A to E is an intertwining map if,

for all a ∈ A, both of the maps b 7→ T (ab)− a · T (b) and

b 7→ T (ba)− T (b) · a are continuous from A to E.
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Clearly, every derivation into a Banach A-bimodule is an

intertwining map.
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A powerful automatic continuity result holds for strong

Ditkin algebras.

This result, and its proof, may be found as Corollary

5.3.5 in the book of Dales.

Theorem 4.6.2 Let A be a strong Ditkin algebra

and let E be a Banach A-bimodule.

Then every intertwining map from A to E is

automatically continuous.

In particular, every derivation from a strong Ditkin

algebra A into a Banach A-bimodule is automatically

continuous.
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Another important cohomological property of strong

Ditkin algebras concerns the splitting of Banach

extensions.

The following theorem, and its proof, may be found as

Theorem 5.4.41 in the book of Dales.

Theorem 4.6.3 Let A be a strong Ditkin algebra or

a C∗-algebra.

Then every Banach extension of A which splits also

splits strongly.
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5 Gelfand’s problem revisited,

mathematical curiosities and

some open problems

5.1 Space-filling curves and Jordan arcs

with positive area

In order to give examples of non-trivial uniform algebras

on the interval, we shall need the fact that there are

Jordan arcs in C which have positive area.

The first such arcs were constructed by Osgood in 1903.

These arcs are not, of course, space-filling curves, but the

construction is similar.
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First let us recall how we can obtain space-filling curves,

using the following pictures.
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A slight modification of this construction produces arcs

with positive area.
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We can now describe some non-trivial uniform algebras

on the unit interval.

These examples are not, however, natural on [0, 1]
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5.2 Progress on Gelfand’s problem

We now discuss some of the results related to Gelfand’s

problem.

Proposition 5.2.1 (D. Wilken, 1969) The only

strongly regular uniform algebra on [0, 1] is C[0, 1].

This result was strengthened somewhat by Feinstein and

Somerset (‘Strong regularity for uniform algebras’, 1998),

but it is an open question whether or not every (natural)

regular uniform algebra on [0, 1] is trivial.

Note that Wilken showed in 1965 that every natural

uniform algebra on [0, 1] is ‘approximately normal’.
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A rather different attack on the problem may be found in

the paper of Dawson and Feinstein (2003).

Proposition 5.2.2 Let A be a natural uniform

algebra on [0, 1].

Suppose that InvA is dense in A. Then A = C[0, 1].

Here the condition that InvA is dense in A says that A

has topological stable rank equal to 1.
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In the case where A is finitely generated as a Banach

algebra, Gelfand’s problem comes down to a question

about P (J) for polynomially convex arcs J in CN .

Under some fairly mild conditions on the polynomially

convex arc you can see that InvP (J) must be dense in

P (J), and so P (J) = C(J).

However, even in this setting, the solution to Gelfand’s

problem remains elusive.
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5.3 Open problems

Here we collect together some of the open problems in

this area.

Many of these have already been discussed in this course.

Question 5.3.1 Is there a non-trivial, natural uniform

algebra on [0, 1]?

Question 5.3.2 Is there a non-trivial, natural, regular

uniform algebra on [0, 1]?

Question 5.3.3 Is there a non-trivial uniform algebra

which has spectral synthesis?

Question 5.3.4 Let X be a compact plane set such that

R(X) 6= C(X). Can R(X) be strongly regular? Can

R(X) have spectral synthesis?
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Question 5.3.5 Let A be a regular Banach function

algebra on ΦA, and let x ∈ ΦA.

Suppose that Mx has a b.a.i.

Does it follow that A is strongly regular at x?

(This question is also open for uniform algebras.)

Question 5.3.6 Let A be a Banach function algebra on

ΦA.

Suppose that the only closed ideals in A are the kernels

I(E) for closed sets E ⊆ ΦA.

Does it follow that A is regular, and hence that A has

spectral synthesis?
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