
G12RAN: Real Analysis

1. Properties of the real numbers

I. Review of notation, definitions and results from earlier modules

You should make sure that you read this section to remind yourself of this material.

Sets of real numbers

We will often work with the sets of natural numbers, integers, rational numbers or
real numbers. These are, respectively, N = {1, 2, 3, . . .}, Z = {. . . ,−2,−1, 0, 1, 2, . . .},
Q = {m/n : m ∈ Z, n ∈ N} and R (the set of all real numbers).

Note that we could also write, for example, Q = {x ∈ R : x is rational}.

Warning! Some authors include 0 in N, but in this module 0 will not be an element of
N.

An interval in R is any of the following types of subset of R (here a, b are in R with a ≤ b):
∅, R, (−∞, a), (−∞, a], (a,∞), [a,∞), [a, b] and (when a < b) (a, b), [a, b) or (a, b]. Here
(a, b) = {x ∈ R : a < x < b}, [a, b] = {x ∈ R : a ≤ x ≤ b}, [a, b) = {x ∈ R : a ≤ x < b}
and the other intervals are defined similarly.

These intervals are often described as open, closed or half-open as appropriate. We
can clearly distinguish between the bounded intervals and the unbounded intervals. The
empty set ∅ is, by convention, a bounded interval. It is possible, though not common,
to write R = (−∞,∞).

Please note that there are many subsets of R which are not intervals and which can
not be described as open, closed or half-open (e.g Q). In the case where a = b, then the
interval [a, b] has only one element.

Throughout this module, the notation ∞ is interchangeable with +∞, and so we could
also write R = (−∞, +∞). Of course, +∞ and −∞ are not elements of R.

Non-negative elements of sets

We denote by R
+ the set of non-negative real numbers, i.e. R

+ = {x ∈ R : x ≥ 0} =
[0,∞). Similarly Q

+ = {x ∈ Q : x ≥ 0}, and Z
+ = {0, 1, 2, . . .}.

Warning! Some authors exclude 0 from these sets, and consider strictly positive ele-
ments of these sets instead.
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Set operations

Given two sets A and B, you should be familiar with the notions of intersection, union,
and set difference. These are, respectively, A ∩ B = {x : x ∈ A and x ∈ B}, A ∪ B =
{x : x ∈ A or x ∈ B(or both)} and A \ B = {x ∈ A : x 6∈ B}. For example, we have
Q

+ = Q ∩ [0,∞), while the set of all irrational (but real) numbers is R \ Q.

Sequences

Notation Let X be a set. We use the notation (xn)∞
n=1 ⊆ X to mean that x1, x2, x3, . . .

is a sequence of elements of X. If there is no danger of ambiguity we will often shorten
this to

(xn) ⊆ X.

Definition Let (xn) ⊆ R, and let x ∈ R. Then we say (xn) converges to x in R if, for
every positive real number ε, from some term onwards the sequence xn stays within the
interval (x − ε, x + ε).

Equivalently, we may state this definition (more formally) in terms of ε and N :
(xn) converges to x if, for all ε > 0 there exists an N(ε) ∈ N such that, for all n ≥ N(ε),
|xn − x| < ε. If (xn) converges to x, we write xn → x as n → ∞, or limn→∞(xn) = x.
We also say that the limit as n → ∞ of the sequence (xn) is x.

If the sequence (xn) does not converge, then we say that (xn) diverges. In this case
the notation limn→∞(xn) does not mean anything.

If we ever write

lim
n→∞

(xn) = x

we always mean that the sequence (xn) converges and the limit of the sequence is x.

Exercise Is it possible for a sequence of rational numbers to converge to an irrational
number? Is it possible for a sequence of irrational numbers to converge to a rational
number?

There is a notion of divergence to +∞ (or −∞). We say that a sequence of real numbers
(xn) diverges to +∞ if, for all M > 0, there is an N(M) ∈ N such that for all n ≥ N(M)
we have xn > M . This says that, from some term on, all terms are greater than M .
How far you need to go will depend on how big M is.

Example The sequence xn = n2 diverges to +∞.

Exercise Write down a formal definition for the notion of divergence to −∞.
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Proposition 1.1. (The algebra of limits). If (xn), (yn) are convergent sequences of
real numbers, with limn→∞(xn) = x and limn→∞(yn) = y, then

(i) xn + yn → x + y as n → ∞,
(ii) xnyn → xy as n → ∞,
(iii) if y 6= 0 then xn/yn → x/y as n → ∞.

Remark: strictly speaking, in 1.1 (iii) we should be worried about division by zero. Just
because y 6= 0 does not mean that none of the yn are zero. However, since limn→∞(yn)
is not zero, it follows that from some term onwards we will have yn 6= 0. From this term
onwards, xn/yn makes sense, and gives a sequence in R which converges to x/y.

The following well known false statement and proof illustrates the danger of assuming
that sequences are convergent.

False theorem 1.2. Let (xn) ⊆ R and suppose that limn→∞(x2
n
) = 1. Then

lim
n→∞

(xn) = 1 or − 1.

False proof. By the algebra of limits,

lim
n→∞

(x2
n
) = ( lim

n→∞

(xn))2,

i.e. (limn→∞(xn))2 = 1. The result follows.

The fact that this statement is false is shown by using, for example, the example xn =
(−1)n. This sequence satisfies the conditions of the false theorem, but it does not
converge at all, and this is where the false proof breaks down.

However, there is some standard theory available that helps to guarantee conver-
gence under certain conditions.

Theorem 1.3. (Squeeze rule, or Sandwich Theorem). Let (an), (bn), (cn) be sequences
of real numbers such that, for all n ∈ N,

an ≤ bn ≤ cn.

Suppose that the sequences (an) and (cn) both converge, and that they have the same
limit. Then the sequence (bn) also converges, and

lim
n→∞

(an) = lim
n→∞

(bn) = lim
n→∞

(cn).
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Bounded sets in R

You should be familiar with the following fact about R (known as the completeness
axiom for R): if E is a non-empty subset of R which is bounded above, then E has a
least upper bound (also called the supremum of E). Similarly, if E is non-empty and
bounded below, then E has a greatest lower bound (or infimum). We will use the terms
infimum, supremum throughout this module, and use the following notation.

Notation. Let E be a non-empty subset of R. If E is bounded above, then we denote
the supremum of E (the least upper bound of E) by sup(E). If E is bounded below
then we denote the infimum of E (the greatest lower bound of E) by inf(E).

Note that if E is the open interval (0, 1) and F is the closed interval [0, 1], then inf(E) =
inf(F ) = 0 and sup(E) = sup(F ) = 1. This shows that (for non-empty, bounded sets)
the least upper bound and greatest lower bound may or may not be elements of the set
in question. In other words, non-empty bounded sets may or may not have maximum
and/or minimum elements.

Definition Let (xn) be a sequence of real numbers. We say that (xn) is a monotone
increasing (or nondecreasing) sequence if we have x1 ≤ x2 ≤ x3 ≤ . . ., while (xn) is
monotone decreasing (or nonincreasing) if we have x1 ≥ x2 ≥ x3 ≤ . . .. In either of
these two cases we say that (xn) is a monotone sequence.

Warning! Most sequences are not monotone! For example, the sequence xn = (−1)n/n
is far from monotone, even though it converges to 0.

Theorem 1.4 (Monotone Sequence Theorem or MST) Let (xn) be a monotone sequence
of real numbers. Then either (xn) converges to some real number x, or else the sequence
(xn) diverges to either +∞ or −∞.

In fact, if (xn) is monotone increasing and is bounded above in R, then (xn) con-
verges to sup({x1, x2, x3, . . .}). Similarly, if (xn) is monotone decreasing and is bounded
below in R, then (xn) converges to inf({x1, x2, x3, . . .}).

Exercise. Let (xn) be a monotone decreasing sequence of non-negative real numbers.
Is it necessarily the case that (xn) converges to 0?

Density of the rationals and the irrationals

Proposition 1.5 Let a, b be real numbers with a < b. Then there are infinitely
many rational numbers in the interval (a, b) and there are also infinitely many irrational
numbers in the interval (a, b).

Because of this, we say that the rational numbers are dense in R, and so are the irrational
numbers.
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