G12RAN: Real Analysis

4. Sequences and Continuous functions
Continuous functions

Definition Let I be an interval in R such that I has more than one point in it and let
f be a function from I to R. Let a € I. If a is not an endpoint of I then we say that f
is continuous at a if

lim f(z) = lim_f(z) = f(a), (+)
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i.e. both one-sided limits exist and are equal to the value of the function at the point,
f(a).

If, instead, a is an endpoint of the interval I (e.g. if I = [a,b]) then only one of
the one-sided limits makes sense, and we say that f is continuous at a if this one-sided
limit exists and equals f(a).

Note also that () above is the same as saying that

lim f(z) = f(a).
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This time the value of the function at a does matter (unlike in the definition of limit
values in Chapter 3).

If f is not continuous at a then f is discontinuous at a. The function f is continuous
(from I to R) if it is continuous at every point of I. Otherwise the function f is
discontinuous (i.e. there is at least one point of I at which f is discontinuous).

An equivalent definition of continuity in terms of sequences is as follows. With
I, a as above, we say that f is continuous at a if the following condition holds: for every
sequence (z,) in I which converges to a, we have

lim f(z,) = f(a).
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(Note that, unlike with the definition of limit values from Chapter 3, some or all of the
xn may equal a: does this make any difference?)

This sequence version of the definition is valid both for points a which are endpoints of
I and for points which are not endpoints of I, so it may be easier to use. On the other
hand, if I is an open interval or I = R then none of the points in I are endpoints of I
and in this case both definitions are very easy to work with.

In terms of sequences, the function f is continuous from I to R if and only if the
following condition holds: for all sequences (z,) C I which converge to some point of
I, the sequence (f(x,)) also converges and

lim f(z,) = f(lim x,).
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You should also be aware of the e —§ definition of continuity used in most standard
texts. This is equivalent to our definition: we state it here for information.

Definition Let A, B be subsets of R and let f be a function from A to B.

Let a € A. Then f is continuous at a if for all € > 0 there is a § > 0 such that for
all z in A with |z — a| < § we have |f(z) — f(a)| < € (so, for x € AN (a —d,a + ) we
have f(z) € (f(a) — €, f(a) + €)).

Typical examples of continuous functions include all polynomial functions, and
standard functions such as sin(z), cos(x), exp(x) etc. (where they are defined: e.g. the
function tan(z) is continuous except at the points where it is undefined. The function
tan(x) is undefined whenever cos(z) = 0).

In order to prove the theorems we want about continuous functions, we will need
some more results about sequences.

Sequences revisited

Definition Let (z,) C R. Then a subsequence of (z,) is a sequence of the form
Ty Tngs Tng, - - - (0T (Tn, )52) With ny < ng < ng < ... (and where all the nj are in N).
If we say that (y,) is a subsequence of (x,), it means that there is a strictly increasing
sequence of positive integers (ny)%; as above with y, =z, for k=1,2,3,....

Theorem 4.1 (Bolzano-Weierstrass Theorem) Let (x,) be a bounded sequence of
real numbers. Then (z,) has a convergent subsequence.

Remark. Of course, the sequence (x,) need not itself converge, as the sequence x,, =
(—1)™ shows. The same example shows that a sequence may have different convergent
subsequences with different limits. For this example, some subsequences converge to 1,
some converge to —1, and the remaining subsequences diverge.

Main theorems about continuous functions

Here are two of the most important results about continuous functions.

Theorem 4.2 (Boundedness Theorem) Let a, b be real numbers with a < b, and
let f : [a,b] — R be a continuous function. Then f is bounded on [a,b] and attains its
bounds.

Remark: this means that, under these conditions,there must exist points x;, x5 in
[a, b] such that, for all = € [a, D],

f(x1) < f(z) < f(22).

Theorem 4.3 (Intermediate Value Theorem) Let a, b be real numbers with a < b,

and let f be a continuous function from [a, b] to R. Then for every ¢ between f(a) and
f(b) there exists d in [a, b] such that f(d) = c.
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More advanced results on sequences (NON-EXAMINABLE)

We conclude with some more advanced concepts, which are the lower and upper limits
of a sequence. These are of vital importance throughout more advanced Analysis, but
it is possible to understand this module without them.

If we have a bounded sequence of real numbers x,,, but we do not yet know whether
it converges, then we can not use the notation lim,,_, . (z,). But we do know that (z,,)
has at least one convergent subsequence.

If you look at the set of all possible limits of subsequences of your sequence (z,,),
you obtain a non-empty, bounded subset of R. It turns out that this set always has
a greatest element (the maximum possible limit of a convergent subsequence of (x,,))
and a least element (the minimum possible limit of a convergent subsequence of (x,,)).
These are called, respectively, the upper limit and the lower limit of the sequence (z,).
The upper limit of the sequence is also called the limit supremum of (x,) and is denoted
by limsup,,_, . (). The lower limit is also called the limit infimum of the sequence
(x,,) and is denoted by liminf, . (z,). A more explicit definition is the following.

Definition Let (z,) be a bounded sequence of real numbers. For each n € N, set
E, ={xn,Tnt+1, Tnt2, ...}, (a non-empty bounded subset of R) and set

sp = inf(E,), Sy, =sup(Ey).
It is easy to see that the sequences (s,) and (S,,) are both bounded and monotone, so

must converge, and we can define

liminf(z,) = lim (s,), limsup(z,)= lim (S,).
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When z,, = (—1)", for example, we have

liminf(z,) = —1 and lim sup(z,) = 1.

Note that the lower and upper limits of a bounded sequence always exist, whether
or not the sequence converges, and this makes them very useful when dealing with se-
quences whose convergence we are unsure of. The following result gathers together some
standard facts about liminf and lim sup. As an exercise, you may convince yourselves
of the details.

Theorem 4.4 Let (x,,) be a bounded sequence of real numbers. Then
(i) liminf, . (x,) < limsup,,_, . (n),
(ii) limsup,,_, . (zn) = —liminf,, o (—x,)
(iii) The sequence (x,,) converges if and only if

liminf(z,) = limsup(z,,).

If (z,) converges, then

lim (z,) = liminf(z,) = limsup(z,,).

n—oo n—oo n—oo



