
G12RAN: Real Analysis

5. Differentiability

Definition Let f be a real-valued function defined on an open interval (b, c) and let

a ∈ (b, c). Then f is differentiable at a if limx→a

(

f(x)−f(a)
x−a

)

exists and is a real

number (note that this quotient is not defined at a, but is defined on a punctured
neighbourhood of a). In this case we also define the derivative of f at the point a, f ′(a),

by f ′(a) = limx→a

(

f(x)−f(a)
x−a

)

.

The function f is differentiable (on (b, c)) if it is differentiable at all points of (b, c).

Similarly, a function f from R to R is differentiable if it is differentiable at all points
of R. (You can also define differentiability on closed intervals by looking at one-sided
limits at the endpoints).

Note that the function f ′ is defined at all points where f is differentiable, and is unde-
fined elsewhere. For example, if f(x) = |x|, then f is differentiable at all points except
0. So f is defined at all points of R but f ′ is only defined on R \ {0}.

Most standard functions met are differentiable at those points where they are defined:
for example, this is true for exp(x) and for polynomial functions with real coefficients
(defined and differentiable everywhere), rational functions p(x)/q(x) for polynomials
p and q (defined and differentiable where q(x) 6= 0), trigonometric functions such as
sin(x), cos(x), tan(x) etc. (differentiable at all points where they are defined) and
log(x) (defined and differentiable for x > 0).

The following are the basic results about differentiability and differentiation. (There
will be more results and applications in the next Chapter).

Theorem (Differentiability implies continuity) Let f be a real-valued function defined
on an open interval (b, c) and let a ∈ (b, c). If f is differentiable at a then f is also
continuous at a. If f is differentiable on (b, c) then f is continuous from (b, c) to R.

So every differentiable function is continuous. But not every continuous function is
differentiable, as the example f(x) = |x| shows. In fact it is possible for a continuous
function to fail differentiability at all points! One example will be described in lectures,
but those interested might want to read about Brownian motion.

Theorem (The algebra of differentiable functions) Let f and g be real-valued functions
defined on an open interval (b, c) and let a ∈ (b, c). Suppose that f and g are both
differentiable at a. Then:

(i) f + g is differentiable at a and (f + g)′(a) = f ′(a) + g′(a);

(ii) fg is differentiable at a and (fg)′(a) = f ′(a)g(a) + f(a)g′(a);
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(iii) if g(a) 6= 0 then f/g is defined on some open interval centred on a and f/g is
differentiable at a, with

(

f

g

)

′

(a) =
g(a)f ′(a) − f(a)g′(a)

(g(a))2
.

Similarly, if f and g are differentiable throughout the interval (a, b) then so are f ,
g and (apart from where g(x) = 0) f/g.

Theorem (The chain rule) Let f , g be real-valued functions defined on (b, c), (d, e)
respectively. Let a ∈ (b, c) and suppose that f(a) ∈ (d, e). If f is differentiable at a
and g is differentiable at f(a), then g ◦ f (the composite function) is defined on an open
interval containing a, is differentiable at a, and (g ◦ f)′(a) = g′(f(a))f ′(a).

Theorem (Rolle’s theorem). Let a, b be real numbers with a < b. Let f be a continuous,
real-valued function defined on [a, b] such that f is differentiable on (a, b). Suppose that
f(a) = f(b). Then there is at least one point c ∈ (a, b) such that f ′(c) = 0.

One related result is that if you want to find the greatest and least values taken by
a differentiable function f on an interval [a, b], you only need to check the values of f
at the endpoints a and b, and at any ‘stationary points’ in (a, b) (i.e. points x ∈ (a, b)
where f ′(x) = 0).

Theorem (The mean value theorem, or MVT) Let a, b be real numbers with a < b. Let
f be a continuous, real-valued function defined on [a, b] such that f is differentiable on
(a, b). Then there is at least one point c ∈ (a, b) such that f ′(c) = (f(b)− f(a))/(b− a).

See lectures for geometrical interpretations of these results.

The MVT has many important applications, and here are a few.

Proposition Let a, b be real numbers with a < b. Let f be a real-valued function
which is differentiable on (a, b). Then:

(i) if f ′(x) > 0 for all x ∈ (a, b), then f is strictly increasing on (a, b);

(ii) if f ′(x) ≥ 0 for all x ∈ (a, b), then f is nondecreasing on (a, b);

(iii) if f ′(x) = 0 for all x ∈ (a, b), then f is constant on (a, b);

(iv) if f ′(x) ≤ 0 for all x ∈ (a, b), then f is nonincreasing on (a, b);

(v) if f ′(x) < 0 for all x ∈ (a, b), then f is strictly decreasing on (a, b).

However, it is possible to be strictly increasing on an interval and yet still have
some points where the derivative is 0, as the function f(x) = x3 shows.

Proposition Let f be a differentiable, real-valued function defined on an open interval
(a, b). Let A > 0. Then the following are equivalent (TFAE):

(i) |f(x)− f(y)| ≤ A|x − y| for all x, y in (a, b);

(ii) |f ′(x)| ≤ A for all x in (a, b).

The same result applies if you work on R rather than on (a, b). A function (differ-
entiable or not) for which such an A > 0 exists is said to satisfy a Lipschitz condition

of order 1, but we shall call such functions Lipschitz continuous for short. Every Lips-
chitz continuous function is continuous, but not every continuous function is Lipschitz
continuous.
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