
Extract from G11AN1 ANALYSIS lecture notes  Dr J.K. Langley 1993

(with slight modifications by Dr. Feinstein, 2000).

Dr Langley’s full set of lecture notes are available in the George Green science library, and also from

the module web page,

http://www.maths.nottingham.ac.uk/personal/jff/G12RAN/

6. L’Hopital’s rule, Taylor’s Theorem and Taylor Series

Indeterminate Forms

Consider the limit

x → 1
lim

x2 − 1

x16 + x − 2��������������� .

Both numerator and denominator approach 0 as x → 1. However, the limit may still exist. Such a limit is

called an indeterminate form. To develop a quick way to evaluate similar limits, we first need:

Theorem 6.1 Cauchy’s mean value theorem

Suppose that f,g are real-valued functions continuous on [a , b ] and differentiable on (a , b ). Then there

exists c in (a , b ) such that

( f(b) − f(a))g ′(c) = (g(b) − g(a)) f ′(c).

The Proof consists of just taking the function h(x) = ( f (b) − f (a))(g(x) − g(a)) − (g(b) − g(a))( f(x) − f(a)).

Since h(a) = h(b) = 0 we obtain a c with h ′(c) = 0 from Rolle’s theorem.

Theorem 6.2 L’Hôpital’s rule, first version

Let "lim" stand for any of
x → a +

lim ,
x → a −

lim ,
x → a
lim ,

x → + ∞
lim ,

x → − ∞
lim . If lim f (x) = limg(x) = 0 and

lim
g ′(x)

f ′ (x)� ������� = L

( finite or infinite ) exists, then

lim
g(x)

f(x)� �����

exists and is the same.

Proof

We first consider the case of
x → a +

lim . Since
x → a +

lim
g ′ (x)

f ′ (x)� ������� exists, there must be some δ > 0 such that

g ′ (s) ≠ 0 for a < s a + δ , since f ′ (s) /g ′ (s) is defined. We set f (a) = g(a) = 0 and this makes f,g con-

tinuous on [a , a + δ]. We also have g(x) ≠ 0 for x in (a , a + δ], for otherwise Rolle’s theorem would give us

an s between a and x with g ′ (s) = 0.

Now take x such that a < x < a + δ . Then by Theorem 6.1 there is a cx in (a, x) such that

( f(x) − f (a))g ′ (cx ) = (g(x) − g(a)) f ′ (cx ) .
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This gives f(x) /g(x) = f ′ (cx ) /g ′(cx ). Now as x → a + we see that cx → a + and so f(x) /g(x) → L.

The proof for
x → a −

lim is the same.

Now we consider the case where "lim" is
x → + ∞

lim . Here we set F(x) = f(1 /x) , G(x) = g(1 /x). Then

x → 0+
lim F(x) =

x → 0+
lim G(x) = 0. Now

L =
x → + ∞

lim
g ′ (x)

f ′ (x)� ������� =
x → 0+

lim
g ′(1 /x)

f ′ (1 /x)�	��������� =
x → 0+

lim
(−1/x2)g ′ (1 /x)

(−1/x2) f ′ (1 /x)
�
�
�
�
�
�
�
�
�
�
�
�
 =
x → 0+

lim
G ′(x)

F ′ (x)��������� .

By the first part, the last limit is
x → 0+

lim F(x) /G(x) =
x → + ∞

lim f (x) /g(x).

Examples 6.3

1. Consider
x → 1
lim

x2 − 1

x16 + x − 2
�
�
�
�
�
�
�
 . The rule applies and we can look at
x → 1
lim

2x

16x15 + 1� ������������� = 17/2. So the first limit

is 17/2.

2.
x → 0
lim

1 − cos x

x − sin x������������� . Applying the rule, we look at
x → 0
lim

sin x

1 − cos x������������� . This is again indeterminate, but we can

apply the rule again, and look at
x → 0
lim

cos x

sin x������� = 0. So the second limit is 0 and so is the first.

3.
x → + ∞

lim
x

log(1 + ex)� ��������������� . This is slightly different, as numerator and denominator both tend to + ∞. We could

convert it to the form covered above, but the computations will be very tricky. Instead, we wait for

L’Hôpital’s second rule ( 6.4 ).

4.
x → 1
lim

x2 − 1

x2 + 1��������� . We CANNOT legitimately apply L’Hôpital’s rule here, as the limit is NOT an indeterminate

form. This is because x2 + 1 → 2 ≠ 0 as x → 1. In fact, the required limit does not exist.

5.
x → 0
lim

sin x

x������� . Applying L’Hôpital’s rule, we need to look at 1/ (cos x) → 1 as x → 0. So the required limit

is 1.

6.
x → 0
lim

sin x

x2sin(1 /x)� ��������������� . This is an indeterminate form. If we apply the rule, we need to look at

x → 0
lim

cos x

2x sin(1/x) − cos(1 /x)� ��������������������������������� . However, this limit does not exist. This is because x sin(1/x) /cos x → 0 as

x → 0, but cos(1 /x) /cos x has no limit as x → 0.

This does not mean, however, that the required limit does not exist, as the rule says nothing about this case.

In fact, since sin(1/x) is bounded, we see from Example 5 that the required limit is 0.

7.
x → + ∞

lim (1 + 1/x)x. If we take logarithms, we need to look at
x → + ∞

lim x log(1 + 1/x) =
y → 0+

lim
y

log(1 + y)��������������� .

Applying the rule, we look at
y → 0+

lim
1

1/ (1 + y)������������� = 1. So the required limit is e, since the exponential func-

tion is continuous at 1.



- 3 -

Now we prove the second version of L’Hôpital’s rule.

Theorem 6.4

Let "lim" be as in 6.2. Suppose that lim f(x) is + ∞ or − ∞ and lim g(x) is + ∞ or − ∞.

If lim
g ′(x)

f ′ (x)� ������� exists and is L ( finite or infinite ) then lim
g(x)

f(x)� ����� exists and is L.

Proof

We prove this only for
x → a +

lim . For
x → + ∞

lim we can use the same trick as in 6.2.

Since lim f ′(x) /g ′(x) is assumed to exist, we see again that there must be some δ > 0 such that g ′ (s) ≠ 0 for

a < s a + δ .

We prove simultaneously the cases L ∈ and L = + ∞ ( if L = − ∞ look at − f /g ). Take an ε > 0 and an

M > 0. We know that there is some ρ > 0 such that ρ δ and such that a < y < b = a + ρ implies that

f ′ (y) /g ′(y) belongs to (L − ε /2 , L + ε /2) ( if L is finite ) or (2M , + ∞) ( if L = + ∞ ).

Now suppose that a < x < b = a + ρ . Then there exists a y with x < y < b such that

( f(b) − f(x))g ′ (y) = (g(b) − g(x)) f ′ (y) .

This gives

( f(b) − f(x)) / (g(b) − g(x)) = f ′(y) /g ′ (y) .

Dividing by g(b) − g(x) is legitimate, for if g(b) = g(x) we would obtain some s with x < s < b and

g ′ (s) = 0, which we have ruled out. Thus ( f(x) − f (b)) / (g(x) − g(b)) belongs to (L − ε /2 , L + ε /2) or to

(2M , + ∞). Now we write

g(x)

f (x)� ����� =
f (x) − f(b)

f(x)  � � � � � � � 
g(x) − g(b)

f (x) − f(b)! !�!�!�!�!�!�!�!
g(x)

g(x) − g(b)" "�"�"�"�"�"�"�" .

As x → a + , the first and last terms tend to 1, while the second term lies in (L − ε /2 , L + ε /2) or (2M , + ∞).

Therefore if x is close enough to a , then f (x) /g(x) lies in (L − ε , L + ε) or (M , + ∞), which is exactly what

we needed to show.

Examples 6.5

1.
x → + ∞

lim
x

log(1 + ex)# #�#�#�#�#�#�#�# . The rule 6.4 tells us to look at
x → + ∞

lim
1

ex / (1 + ex)$ $�$�$�$�$�$�$�$ = 1. So the required limit is e.

2.
x → 0+

lim
cosec x

log x%&%�%�%�%�% . We need to look at
x → 0+

lim
− cot x cosec x

1/x'&'�'�'�'�'�'�'�'�'�'�' =
x → 0+

lim
x cos x

− sin2x()(�(�(�(�( . This is, using Example 5 of

6.3, equal to 0. So the required limit is 0.

3.
x → + ∞

lim (log x)1/x. We take logarithms and look at
x → + ∞

lim
x

log log x*+*�*�*�*�*�* . Applying 8.5 we look at

x → + ∞
lim

1

1/ (x log x), ,�,�,�,�,�,�,�, = 0. The required limit is therefore e0 = 1.

4.
x → 0+

lim (cos x)1/x 2

. We take logarithms and look at
x → 0+

lim
x2

log(cos x)-.-�-�-�-�-�-�- . The rule tells us to look at
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x → 0+
lim

2x

− tan x/ /�/�/�/�/ =
x → 0+

lim
2

− sec2x010�0�0�0�0 = −1/2. So the required limit is e−1/2.

5.
x → 0+

lim (sin x)1/ log x. We take logarithms and look at
x → 0+

lim
log x

log(sin x)232�2�2�2�2�2�2 , and so at
x → 0+

lim
1/x

cot x4&4�4�4 =

x → 0+
lim

sin x

x cos x5 5�5�5�5�5 = 1. The required limit is therefore e.

Theorem 6.6 Taylor’s Theorem, or the n’th Mean Value Theorem

Suppose that n is a positive integer, and that f is a real-valued function which is n times differentiable on

an interval containing the points a and x ≠ a . Then there exists c lying strictly between a and x ( i.e. in

(a,x) or in (x,a) ) such that

f(x) =
k =0
∑

n −1

k!

f (k)(a)6 6�6�6�6�6 (x − a)k +
n !

(x − a)n787�7�7�7�7 f (n)(c).

Remarks

1. If we put n = 1 we get f(x) = f(a) + (x − a) f ′ (c) which is the ordinary mean value theorem. 2. In gen-

eral, c will depend on f , n and x . 3. There are other versions of this, with different forms for the remainder

term, but this is probably the easiest to remember!

Proof of Taylor’s theorem (THIS PROOF IS NON-EXAMINABLE, but you should make sure that

you understand the theorem and can apply it)

We keep x fixed and for y lying between a and x we set

H(y) = (k =0
∑

n −1

k !

(x −y)k9 9�9�9�9�9 f (k)(y)) − f (x).

Then

H ′(y) = −
k =1
∑

n −1

(k −1)!

(x − y)k −1:�:�:�:�:�:�:�: f (k)(y) +
k =0
∑

n −1

k !

(x − y)k;<;�;�;�;�; f (k +1)(y) =
(n − 1)!

(x − y)n −1=<=�=�=�=�=�=�= f (n)(y).

Now we put

G(y) = H(y) −
(x − a)n

(x − y)n>)>�>�>�>�> H(a).

Then G(a) = 0 and G(x) = H(x) = 0. So by Rolle’s theorem there exists a point c lying between a and x

such that G ′(c) = 0. This gives

H ′(c) + n
(x − a)n

(x − c)n −1?<?�?�?�?�?�?�? H(a) = 0, and
(n − 1)!

(x − c)n −1@<@�@�@�@�@�@�@ f (n)(c) + n
(x − a)n

(x − c)n −1A<A�A�A�A�A�A�A H(a) = 0.

Therefore H(a) = −
n !

(x − a)nB)B�B�B�B�B f (n)(c) which is what we need.

As an application we prove

Theorem 6.7 The Generalised Second Derivative Test
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Suppose that n 2 and that f is a real-valued function such that f ′(a) = ...... = f (n −1)(a) = 0, and that

f (n)(a) exists and is ≠ 0.

If n is even and f (n)(a) > 0, then f has a local minimum at a .

If n is even and f (n)(a) < 0, then f has a local maximum at a .

If n is odd then f does not have a local maximum or a local minimum at a .

Proof

We suppose first that f (n)(a) > 0 ( if not, we can look at − f ). Then

x → a
lim

x − a

f (n −1)(x) − f (n −1)(a)C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C > 0.

So there is some δ > 0 such that f (n −1)(s) > 0 for all s in (a,a + δ ) and f (n −1)(s) < 0 for all s in (a − δ ,a).

Now suppose that 0 <
D
x − a E < δ . Then by Taylor’s theorem ( with n replaced by n −1 ) we have, for some

s between a and x ,

f(x) = f(a) +
(n −1)!

(x − a)n −1F+F�F�F�F�F�F�F f (n −1)(s).

If n is odd, this gives f (x) > f (a) if x > a and f (x) < f (a) if x < a .

If n is even, we obtain f(x) > f(a) for x > a and for x < a . So we have a minimum.

Another application of Taylor’s theorem is to estimation.

Example 6.8

Estimate cos(0.1) so that the error has absolute value less than 10−5.

We use Taylor’s theorem. With f(x) = cos x we have, for n ∈ ,

f(x) =
k =0
∑

n −1

k!

f (k)(0)G G�G�G�G�G xk +
n !

xnH.H f (n)(s)

for some s between 0 and x . Now I f (n)(s) J is certainly 1. So we need to make (0.1) n /n ! < 10−5, and

n = 4 will do. Our estimate is
k =0
∑
3

k !

f (k)(0)K K�K�K�K�K (0.1)k = 199/200.

The Taylor Series

Suppose that f is a real-valued function such that all the derivatives f (n) exist at a . Then we can form the

Taylor series

T(x,a) =
k =0
∑
∞

k!

f (k)(a)L L�L�L�L�L (x − a)k .

Remarks

1. The special case where a = 0 is called the Maclaurin series of f . 2. T(x,a) is, of course, a power series.

3. The obvious question to ask is: are T(x,a) and f(x) equal? Obviously T(a,a) = f(a).

Example 1

Suppose that f(x) is a polynomial. Let the degree of f be n −1. Then f (n)(x) is identically 0, and Taylor’s

theorem gives
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f(x) =
k =0
∑

n −1

k!

f (k)(a)M M�M�M�M�M (x − a)k =
k =0
∑
∞

k !

f (k)(a)N N�N�N�N�N (x − a)k = T(x,a)

so that the answer is always yes in this case.

Example 2

The functions sine and cosine equal their Maclaurin series for all x , i.e.

sin x = x − x3 /3! + x5 /5! − ..... , cos x = 1 − x2 /4! + x4 /4! − ..... .

You can prove this using Taylor’s theorem with a = 0, and f either sine or cosine. We get a remainder

term f (n)(c)xn /n !, where c depends on x and n . However, f (n)(c) has absolute value at most 1, and so the

remainder tends to 0 as n → ∞.

However, in general, the answer to our question above is "not necessarily" as you will see on question sheet

5.

 J.K. Langley 1993, slight modifications J. F. Feinstein 2000


