
G12RAN: Real Analysis

7. Integration

You will probably be familiar with integration as a form of anti-differentiation, and as
‘area under the curve’. The problem is: how do you know which functions have anti-
derivatives? (An anti-derivative for a function f is another function F which satisfies
F ′ = f . Anti-derivatives are also called primitives). On question sheet 5 there is an
example of a function which has no anti-derivative (the characteristic function of a set
with just one point). The main result of this chapter is the (first) Fundamental Theorem
of Calculus, one implication of which is that every continuous, real-valued function on

an interval has an anti-derivative. Of course, some discontinuous functions also have
anti-derivatives (can you think of an example?).

For a bounded, real-valued function f defined on an interval [a, b], we will discuss
partitions P of [a, b] and the corresponding Riemann upper sum and Riemann lower

sum for f on [a, b] (denoted by U(P, f) and L(P, f) respectively).
Roughly speaking, U(P, f) and L(P, f) represent the integrals of certain easy to

consider ‘staircase’ functions (functions which are constant on the open intervals be-
tween vertices of the partition), one staircase function being as small as possible without
falling below f , the other being as large as possible without climbing above f . It is not
hard to prove the following fact:

Lemma Let P and Q be partitions of [a, b]. Then L(P, f) ≤ U(Q, f) (i.e. every
Riemann lower sum is no greater than any other Riemann upper sum).

This allows us to define the Riemann lower and upper integrals for f over the
interval [a, b] by, respectively,

∫
b

a

f(x) dx = sup{L(P, f) : P is a partition of [a, b]}

∫
b

a

f(x) dx = inf{U(P, f) : P is a partition of [a, b]}.

We say that the function f is Riemann integrable over [a, b] if

∫ b

a

f(x) dx =

∫ b

a

f(x) dx

(i.e. if the lower integral is equal to the upper integral). In this case we define the
Riemann integral of f from a to b to be the common value:

∫
b

a

f(x) dx =

∫
b

a

f(x) dx =

∫
b

a

f(x) dx.

Unbounded functions on an interval [a, b] are declared not to be (proper) Riemann
integrable (it is hard to define lower and upper sums for such functions). However they
may be ‘improper’ Riemann integrable (see question sheet 5).
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Note that the Riemann lower integral is always less than or equal to the Riemann
upper integral, every Riemann lower sum is less than or equal to the lower integral, and
every Riemann upper sum is greater than or equal to the upper integral.

It is easy to show that constant functions are Riemann integrable (with the obvious
integral) but that functions like χQ are not (see question sheet 5).

Theorem (Riemann’s criterion for integrability) Let f be a bounded, real-valued func-
tion on an interval [a, b]. Then T.F.A.E.
(i) f is Riemann integrable on [a, b],
(ii) For all ε > 0 there is a partition Pε of [a, b] such that U(Pε, f) − L(Pε, f) < ε.

From this, and the fact that every continuous, real-valued function on [a, b] must
also be uniformly continuous, we deduce easily:

Theorem Every continuous, real-valued function on an interval [a, b] is Riemann inte-
grable on [a, b].

Other examples of functions which are always Riemann integrable on intervals [a, b]
include all monotonic functions (exercise!).

It is not too hard (but we will not have time to prove this in this module) to show
that if f and g are Riemann integrable on an interval [a, b], then so are the functions
f + g, fg and |f | (here |f |(x) is defined to be |f(x)|, of course).

We now come to the final (and main) result of this chapter.

Theorem (First Fundamental Theorem of Calculus) Let f be a continuous, real-valued
function on [a, b]. For x ∈ [a, b] define

F (x) =

∫
x

a

f(t) dt.

Then F is continuous on [a, b], and is differentiable on (a, b), with F ′(x) = f(x).

From this it follows easily that continuous, real-valued functions on intervals al-
ways have anti-derivatives. It also shows that anti-differentiation is the correct way to
integrate continuous functions.
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