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Section 1. Introduction

This course is about functions of a real variable. Topics will include:

Review of Sequences. Functions, Limits and Continuity. Differentiability. Power Series. Representing
Functions by Power Series. Indeterminate Forms. Integration. Improper Integrals.

Suggested reading:

R. Haggarty, Fundamentals of Mathematical Analysis, Addison Wesley

Mathematical Analysis, a Straighforward Approach, K.G. Binmore, CUP.

Calculus, M. Spivak, Addison Wesley.

Mathematical Analysis, T. Apostol, Addison-Wesley ( useful for all 3 years).

To establish the aims of the course, we will begin with some examples.
Examples 1.1
(i) This example appeared in GL11IMAL1. Consider the series

1-1/2+1/3-1/4+1/5-.........

This is an alternating series and, since 1/k decreases to 0, the series converges. If the sum is S, then

S= (1-1/2) +(1/3-1/4)+...... > 0.
However, if we write down the terms in a different order, as

1-1/2-1/4+1/3-1/6-1/8+1/5-1/10-1/12+1/7~-.....

(ie. one odd term followed by two even terms ) then we have

1/2-1/4+1/6-1/8+1/10-1/12+....
which is

(1/2)( 1-1/2+1/3-1/4+...) = S/2.
This shows that series ( or infinite sums ) can produce surprising phenomena, and so must be handled with
care. They cannot be avoided (a) because they are very useful and (b) because even an infinite decimal
expansion is in fact a series.
(ii) Consider the differential equation, in which 'y’ = dy/dx ,
Xy" + Xy = y-x

A method for solving such DEs ( which very often works) is to try for a solution of the form

y=ap+ tagx + ax® + agx® + ...,



that is, a power series solution. Assuming such a solution, we differentiate term by term and get

y' = a; + 2a,x + 3agx? +...
and
y" = 2a, +3.2a5x + 4.3a,x% +......
Putting these together we get
XBy" o+ X%y = apx? + 2%a,x3 + FPagx*t + ...
and we set this equal to
Yy - X = ag+agXx + ax® +..... - X

This gives
ag = 0,a, = 1,a = a,2%, = a;,3%3 = a, ...,

from which we deduce that a = ((k—l)!)z. Thus
= z k-1)! 2 Xk.
y Wz, (( ) )

This looks very nice. However, if x # 0, then the Ratio Test gives

( modulus of (k+1)’th term )/( modulus of k’th term ) = k? |[x| - o ask — . Thus the series we have
obtained DIVERGES for all x # 0 and is therefore not much use! The moral of this second example is that
technique is not always sufficient by itself - you need also to be able to interpret the solutions you get, and
this is one role of analysis. By the way, the series method used above does work for many equations - see
later courses!

The aims of analysis can be broadly summarised as follows.

(i) To justify the methods of calculus, and to determine whether some procedure for solving a problem is
valid, and to interpret the solutions it gives.

(ii) To study functions , and to discover their ( often surprising ) properties. This course is mainly about (i),
while the Complex Analysis course in Semester 3 is more oriented towards (ii). The next idea will be
fundamental.

1.2 Upper and Lower Bounds

Let A be a subset of R. We say that M OR is an upper bound for A if x < M for al xOA. We also say that
A is bounded above. Similarly, we define lower bounds. A is just called BOUNDED if it is bounded above
and below, which is the same as saying that there is some N = 0 such that |x| < N for al x OA.

Now we discuss the idea of maxima and minima. Let A be a subset of R. We say that X is the maximum of
Aif XOA and x < X for dl x in A. This is the same as saying that X is an upper bound for A which lies in
A. We write X = max A. Similarly Y = minAif Yisin A and is a lower bound for A.

Note that a non-empty finite set always has a maximum and a minimum but, for example, the open interval
(0,1) is bounded but has no max or min. For if t isin (0,1) then (1+t)/2isin (0,1) and is greater than t.



Hence we need the following idea.

1.3. Least Upper Bounds

Suppose that a subset B of R has a maximum X. Then no number less than X can be an upper bound for B,
so X is the LEAST upper bound of B. Now take a non-empty subset A of R such that A is bounded above.
We've aready seen that A might have no maximum, but it is a fundamental property of R that A has a least
upper bound. We express this as the

Continuum Property of the Real Numbers

If Ais a non-empty subset of R which is bounded above, then A has a LEAST UPPER BOUND or
SUPREMUM

( denoted l.u.b.A or sup A), that is, a number sOR such that

(i) s is an upper bound for A.

(if) No number less than s is an upper bound for A, i.e. if t < s then t is not an upper bound for Ai.e. if t<s
then there exists u in A such that u>t.

Remarks

1. The empty set has no least upper bound, as every real number is an upper bound for the empty set.

2. The rationals @ do not have this property. For instance, the set {x 0O : x?> < 2} has least upper bound
V2, but this number is not in @. Thus © "has gaps in it", but R does not.

3. We cannot prove this Continuum Property of R just using the algebraic properties of real numbers. It is
an AXIOM, or rule assumed without proof. A construction of the real numbers showing that this property
holds is very involved and is described in Spivak’'s book. For this course, we assume this property and are
able to deduce from it al the properties of sequences, functions etc. that we expect, plus a few more
besides.

Although not a full proof, the following is a reasonably convincing argument for the existence of least
upper bounds. Suppose that A is a non-empty set of real numbers, and that A is bounded above. Let S be the
set of al real x such that x is an upper bound for A. Then Sis not empty. Also, T = R\S is not-empty,
because we can take y [JA and note that y—1 is not an upper bound for A.

Now observe that if yOT and xOS, then y < x. Why? Because if not we must have y > X, so that y would
be greater than an upper bound of A and so must itself be an upper bound for A. This is a contradiction.

This makes it reasonable to conclude that, since R has no "gaps' in it, there exists some real s such that
every number less than sisin T, and every number greater than sisin S Issin S? Yes, because if not then
s is not an upper bound for A and so there is some v in Awith s< v. But then v > u = (v+9)/2 > s, which
is a contradiction since u is greater than s and so is an upper bound of A.

This is not a complete argument, since we didn't prove that s exists. Note, however, that if we only had
rational numbers this argument certainly wouldn’'t work.

Greatest lower bounds: similarly, if Ais anon-empty set of real numbers which is bounded below, then A
has a greatest lower bound, or infimum, denoted l.u.b A or inf A. Here s = inf A means

(i) sis alower bound for A. (ii) if t>s then t is not a lower bound for A i.e. there exists u A such that
uc<t.



We use the following convention. If A is not bounded above, we write

sup A = +oo, and if A is not bounded below, we write inf A = —c. Note that this is just a convention, and
does not mean that +o,—o are real numbers ( they're not! ).

The following fact is useful, and will be proved in Section 2.

Theorem 1.4

Let A be a subset of R. Then areal number s is the least upper bound of A iff the following two conditions
both hold.

(i) s is an upper bound for A. (ii) There is a sequence (X,) such that x, JA for al n and nIimooxn =s.

This is the right way to think about least upper bounds. The l.u.b. is an upper bound which is also the limit

of a sequence of members of the set. It is not hard to prove the following additional fact. If A is a non-
empty subset of R then the sup of A is +o iff there is a sequence (x,) of members of A such that
lim x, = +oo.

n- o

Example 1.5

Let A and B be non-empty bounded above sets of positive real humbers with sup A =a , sup B =8 and

set

C={ab:alAb0OB}.

Then sup C = aB.

Proof We first show that aB is an upper bound for C. Now if a,b are in A,B respectively then since a, b, a
and B are positive, we have ab < ab < aB. Now we just take seguences (x,) and (y,) such that
X, OA, ¥y, 0B, x, - a,y, - B. Now (X,Y,) is a sequence in C and tends to aB, by the algebra of limits (
also proved in Section 2 ).

It is also possible to prove this without using sequences, but this is trickier (try it! ).

1.6 The triangle inequality

Let X,y be real numbers. Then |x+y| < |x| + |y|and |x=y| = |[x| —-|y]|]|.
Reminder of the Proof

For the first part, just write

IX+y|? = (x+y)® = X*+2&xy+y? < x2+2|x||y| +y* = (|x] + |y])>

For the second part, we can assume WLOG ( "without loss of generality" - this means we are not reducing
the validity of our proof by this assumption ) that |x| > |y| ( if not, we can interchange x and y ). Now
write

IX| = [(x=y) +y| < [x=y|+|y]|
0 that
Ix=y| = |x] = |y] = [Ix] =yl

Section 2. Review of Sequences



Definitions 2.1
A real sequence (x,) is a non-terminating list of real numbers

XN’XN+1’XN+2’ ....... y

where N is some integer. We use the () to distinguish the SEQUENCE (x,,) from the particular term x,, and
the set {x,:n = N}. We are mainly interested in whether a sequence CONVERGES, that is, whether the
terms X, get very close to some real number a as n gets large. We want a definition which expresses this
idea in a clear and unambiguous way.

If we consider a, = 1/n, n > 1, then it's fairly obvious that a, approaches 0 as n gets large, and indeed
|a,+1—0| < |a,—0]| holds for al n = 1. This might lead us to use the definition:

" The sequence (x,,) converges to a if x, gets closer and closer to a as n increases."

However, the following example shows that this won't do. Let b, = 1/n if n is even, and b, = 1/n? if n is
odd. It's again clear that b, approaches 0 as n gets large, but it's not true this time that
|b,+1-0| < |b,-0] for al n> 1.

So we need a definition which encapsulates the idea that x, will be close to o, and indeed within any
prescribed distance from a, for all sufficiently large n, but not suggesting that x,,, is closer to a than x,.

In the G11MA1 course, the following definition was used. (x,,) converges to a if the following is true. If
some positive integer k is specified, then |x,—a| = 0 correct to k decimal places, for ALL large enough n.
This certainly implies that |x, — a| < 107 for al large enough n. This definition has the drawback that
isis rather unwieldy for proving theorems, and so for this course, we use another ( equivalent ) definition.
Definition

The real sequence (x,) converges to the real number o if the following is true. Given any positive real
number &, we can find an integer ny such that |x, — a| < & foralnz=ng.

Note that n, is alowed to depend on & and almost certainly will. The definition is saying that, for any
given € > 0, then |x, — a| =€ can only hold for FINITELY MANY n. It can be interpreted in the
following way. Someone gives us a positive number &, which is the accuracy to which x, must be approxi-
mated by a, and we can find some integer ny such that x, really is within € of a for all n = ny. This
definition does not mean that |x,,,—a| < |x,—a] for @l n. It just means that if n is large enough, then
|X,—a| will be less than the pre-assigned positive number ¢.

The new definition is equivalent to that of G11MA1L. For if the new definition holds, then we choose
£=10"%"Yand we'll have [x, — a| < 107 1for all n > some ny, which means that |x,—a| = O correct
to k decimal places.

On the other hand, if the G11IMA1 definition holds, and someone gives us a positive number ¢, then we
choose a k such that 107 < &. Now we find an ng such that for all n = n, we have |x,—a| = 0 correct to
k decimal places, and this will certainly mean that |x, — a| < 107 < & for al n > ny. The numbers ¢
considered here will usually be quite small, and it is a "tradition" that a small positive quantity is denoted
by £. Other notations for convergence are



X, - aasn - oand limx, =a,

n - o

both of which just mean that (x,) converges to a. We don’t bother to write n — +c because a sequence is
only defined for, say, n = N, so that n can only tend in one direction. A non-convergent sequence is called
DIVERGENT.

If you like to think geometrically, then the next idea may help you. The sequence (x,) converges to the real
number o iff the following is true. Given any open interval U with centre a, then x, OU for all but finitely
many n. To see that thisis true you need only write U in the form (a-¢, a +é¢).

Examples

(i) X, = 1/n? It is fairly obvious that (x,) in this case converges to 0. However, to be logically consistent
we need to check that our definition is satisfied. If £ > 0 is given we need |x,—-0| = 1/n? < ¢, and this is
true if n > v1/e. So if we choose n, to be the least integer > V1/¢, then we have |x,—-0| < ¢ for all
n > ng, as required.

(i) x, = (-1". Again, it's fairly clear that this sequence diverges. Well, suppose that (x,) does converge, to
a. We need to show that there is SOME ¢ > 0 for which the definition is violated. Try € = 1. Whether or
not a = 0, we are certainly going to have |x,—a| = 1 for infinitely many n, and this shows that the
required condition is not satisfied.

In practice, we do not need to check every sequence so rigorously ( pedantically? ), but the value of the
definition is that it enables us to prove theorems.

Lemma 2.2

(i) Let (x,) be a convergent sequence, with limit a. Then (x,) is BOUNDED, that is, there exists some
M > O such that |x,| < M for all n.

(ii) Let (y,) be a sequence and let SOR. Then (y,) converges to g iff ( if and only if ) the sequence
(y,—B) converges to O.

Pr oof

(i) Take € = 1 in the definition of convergence. Then we can find an ny such that |x,—a| < 1 for al
n = ny, which implies that |x,| < |a|+1 for all n > ny, by the triangle inequality. Assuming that the
sequence starts with xy, then

M= max{[Xn[, [Xneals oo [Xn s o] +1}
will do, as |x,| < M for ALL n for which the sequence is defined.

Note that the converse to (i) is FALSE, as shown by the example (-1)", which is bounded but not conver-
gent.
(ii) is obvious.

Lemma 2.3
Let (x,) and (y,) be real sequences which converge to 0, and let (z,) be a bounded sequence. Then



(i) (x,z,) convergesto 0. (ii) (x, + Y,) converges to O.
Part (i) applies, for example, to (sinn)/n, (1/n)e*'™.

Pr oof

(i) Suppose we are given some & > 0. We must show that we can find an ny such that |x,z,| < ¢ for all
n = ng. Now (z,) is bounded, so there exists an M > 0 such that |z,| <M for al n, which makes
[XnZn| < [%,|M. Soif we can make |x,| less than /M, we are done.

But this we can do using the convergence of (x,). Now /M is a positive number, so there DOES exist some
integer ng s.t. N = ng implies |X,| < &/M, which gives |x,z,| < € as required.

(i) Agan suppose we are given some positive €. We want to make |x,+Y,| <&. Now |X,+Yy,]| <
[Xn | +1Yn |, by the triangle inequality, so it suffices to make each of |x,|, |y,| less than /2.

Again we can do this. /2 is a positive number so there exists n; s.t. |x,| < /2 for al n = n,, and there
exists an n, ( possibly different to n; ) such that |y, | < /2 for all n = n,. If we set n3 = max{n;, ny}, then
we have, for al n = ng, |X,+Y,| < 2.6/2 = € as required.

Lemma 2.4

Suppose that (y,) is a sequence of non-zero real numbers converging to a non-zero limit S OR. Then the
sequence (1/y,) is bounded.

Pr oof

We know that for n large, y, is close to 8, and we want to show that y,, is not too close to 0. If we can
make |y, — B] < |B]|/2 then we must have |y,| = |B|/2. You can see this either by drawing a picture
and noting that the distance from 0 to 3 is | 3], or by writing

|ﬁ| = |.B_yn+yn| < |ﬁ_yn|+|yn|'

So we proceed as follows. The number |B|/2 is positive, so there is some ny st. n= ny implies
lya=B| < |B|/2, which implies that |y,| = |B]|/2 so that |1/y,| < 2/|B]|. If our sequence starts with
yn then

M = max{ 1/|yn|, Vlyn+als oo U Yn |5 2718 }
is such that |1/y,,| < Mforal n > N.
Now we can prove an important result.

Theorem 2.5 The Algebra of Limits

Suppose that (x,) , (y,) are real sequences converging to a, B respectively. Then

(i) (x,+Yy,) convergesto a +f.

(ii) (XnYn) converges to ap.

(iii) For any real A, the sequence (Ax,) converges to Aa.

(iv) (|xn]) convergesto |a].

(v) If B £ 0, then (1/y,) converges to 1/3.

Proof By 2.2, (x,—a) and (y,—pB) converge to zero. So by 2.3, (x,—a+y,—B) converges to 0, and this
sequence is (X, +Y,— (a+B)). Using 2.2 again, we see that (x,+Y,) converges to a + . This proves (i).
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To prove (ii), we need to show that x,y,—aB - 0asn — . We write

Xnyn_aﬁ = (Xn_a)yn + a(yn_ﬁ)-

Now x,—a and y, - both tend to 0, while (y,) and a are both bounded. Now the result follows from 2.2
and 2.3.

(iii) Just use (ii), with (y,) equal to the constant sequence all of whose terms are A.

(iv) This is easy, as ||x,| = |a|| < |x, — a|. So to make ||x,|—|a|| <&, we just need to make
|X,—a| < &, which we know is true for al large enough n.

(v) This time we first note that we cannot have y, = 0 for infinitely many n and we write

(Ilyn) = @IB) = (B = Yn)/BYa.

We know that B-y,, — 0. Also y, tends to the non-zero limit 82, and so (1/By,) is a bounded sequence,
by 2.4. So, by 2.3, (1/y,,) — (1/B) tends to O, and we are done, using 2.2.

Corollaries 2.6

(i) A convergent sequence has only one limit.

(ii) Suppose (x,) converges to B and that a is areal number s.t. x, = a for all n. Then g > a.

Pr oof

(i) Suppose that (y,) converges to a and to b. Then y,,—a tends to 0, and so does y, —b, which implies, by
2.5, that (y,—a) — (y,—b) tends to O also. But the last sequence is just the constant sequence (b—a). So
b=a.

(i) We know that nIimm(xn—ar) = B-a, so that nIimm|xn—ar| = |B-al. But x,—a = |x;—a], so

B-a = |B-al.
Another useful result is

Theorem 2.7. The Sandwich Theorem ( or Squeeze Lemma )

Suppose that (a,), (b,), (c,) are sequences s.t. for each n we have a, < b, < c,, and supppose further
that (a,) and (c,) converge to a (O0R. Then (b,,) converges to a.

Pr oof

Suppose we are given a positive real number €. We know there exists some n; such that n = n; implies that
la,—a| < &, so that a, O (a—¢,a+¢). Similarly there is some n, such that ¢, O (a—¢,a+¢) for al
nzn, Soif n > ng = max{ny,n,} then b, aso lies in (a-¢, a+¢g) which gives |b, — a| < ¢ as

required.
Example 2.8
Suppose |x| < 1. Then lim x" = 0.
n - oo
Pr oof
We can write |[x| = 1/y = 1/(1+u), where u > 0. But for n a positive integer, the binomial theorem

gives(1 + u)" = 1+nu > nu.So -1/nu < X" < 1/nuand 1/nu - Oasn - . Thus x" tends to O,

by the sandwich theorem.



This is a convenient point to recall and prove

Theorem 1.4

Let A be a non-empty set of real numbers. Then a real number s is the LUB of A iff the following two
conditions both hold.

(i) s is an upper bound for A. (ii) Thereis a sequence (X,) such that (x,) convergesto s and x, O A for al
n.

Pr oof

Suppose first that conditions (i) and (ii) hold. We have to show that any number < s is not an upper bound
for A. So taket < s and put € = (s-t)/2. Then for al large n we have |x,-s| < &, which implies that
X, > t, for if x, <t we would have ¢ > |s—-X,| = s—X, = s—t = 2¢. Since X, isin A, we see that t is not
an upper bound for A.

To prove the converse, suppose that sOR is the LUB of A. Now s-1/n < s so that s—1/n is not an
upper bound for A, and so we can choose an X, JA st. s=1/n < x, < s. Now (x,) converges to s by the
sandwich theorem.

Theorem 2.9 Existence of m’th roots

Let X > 0 and let m be a positive integer. Then there exists Y > 0 such that Y™ = X.
Pr oof

Let A = {x=0:x™ < X}. Then Aisnot empty, as 0 OA. Also

@+xX)™ = 1+mx+ ... > X

so 1+X is an upper bound for A. Now we use a standard real analysis trick. We let Y = sup A, and we
claim that Y™ = X

By Theorem 1.4 we can take a sequence (X,,) such that x, isin A, which implies that x" < X, and such
that x, — Y.Butthenx!" - Y™ sothat Y™ < X, by 2.6.

To show that Y™ > X, we put y, = Y+1/n. Then y, is not in A, so y" > X. Buty, - VY, so
yat Y™ giving Y™ > X.

2.10 Types of Divergence
Consider
a,=(-1)", b,=n%, ¢, =(-1)™ .

All three diverge, but (b,) is better behaved than the others. As n gets large, b, gets large and positive,
while a, and c¢,, do not approach anything. We say

limx, = +o

n - o
(or (x,) diverges to +oo ) if X, gets large and positive as n gets large. This means that if we choose any
positive real number M, we will have x, > M for al sufficiently large n. So our precise definition is

Definition The real sequence (x,) diverges to +o if the following is true. Given any positive real

number M, we can find an integer ng st. x, > M foral n = ng.
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So for any given positive number M, no matter how large M might be, there are only finitely many n such
that x, < M.
This definition does not assume or imply that x,.; > x,. For example, the sequence

X, = n(nodd),x, = n?(neven),

diverges to + but is not strictly increasing.
We also write lim x, = +oo. Similarly wesay lim x, = =—oif lim (=-x,) = +oo.
n - oo

n — oo n - o

2.11 Monotone sequences

Let (x,) be areal sequence. We say (x,) is

strictly increasing for n = N if x,,7 > X, On = N,

non-decreasing for n = Nif x,,1 =2 x, On>=N |

non-increasing for n = N if ;47 < X, On >N ,

strictly decreasing for n > N if x,,1 < X, On > N

If (x,) is any of the above it is called monotone. For a monotone sequence there are just three possibilities.
(i) (x,) converges. (ii) (x,) divergesto +o. (iii) (x,) divergesto —co.

To prove this we need only consider the case where (x,) is non-decreasing.

Theorem 2.12 The Monotone Sequence Theorem
Let (x,) be a sequence which is non-decreasing for n = N. Then

lim x, = sup{ x,:n=N}.

n - o

Pr oof

Denote the set {x,:n = N} by A. Suppose first that A is not bounded above, so that sup A = +o by our
convention. This means that if we are given some positive humber M, then no matter how large M might be,
we can find some member of the set A, say X, , such that x, > M. But then, because the sequence is
non-decreasing, we have x,, > M for al n > n,, and this is precisely what we need in order to be able to
say that lim x, = +oo.

n - o

Now suppose that A is bounded above, and let s be the sup. Suppose we are given some positive €. Then we
need to show that |x,—s| < & for al sufficiently large n. But we know that x, < s for al n, so we just
have to show that x, > s—¢ for all large enough n.

This we do as follows. The number s—¢ is less than s and so is not an upper bound for A, and so there
must be some n, such that x, > s—¢. Butthen x, > s—¢ for al n = n,, and the proof is complete.

Example 2.13
Determine, for different values of x,, the behaviour of the sequence (x,,) given by

Xne1 = 2%,/(1 + x2).
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Solution

Obviously if x5 = 0 then x, is always 0. Consider now the case where X, is positive, which certainly
implies that X, is positive for al n. We first identify the possible limits of the sequence. If x, — a, then
so does x,.;, and the algebra of limits gives 2a/(1+a?) = a, giving a = 0, 1. Obviously if x, = 1
then x, = 1 On, so we look at the cases Xy [0(0,1), Xg O(1, + ) separately.

If x, 0(0,1) then X,,1/x, = 2/(1+x2) > 1sothat X,,; > X,. Also x,,; < 1, because 2x < x?+1 for all
x # 1. So we see that if x5 0(0,1) then x,, increases and is bounded above by 1. Thus (x,) converges. The
limit can’t be O or -1, and so must be 1.

If X, > 1, we see that x; J(0,1), and so the sequence again converges to 1. Finaly, if x; < 0, we see
from the symmetry of the sequence that (x,) must converge to —1.

2.14 Subsequences
We know that the sequence given by a, = (-1)" is divergent. However, if we just take the EVEN n, we get
1,1,1,.... which obviously converges. What we've done is to form a sequence (b,,) given by b,, = a,,.
Given a sequence (X,), a SUBSEQUENCE is a sequence formed by taking some elements of the sequence
(X5), IN THE RIGHT ORDER. Thus, given
1,2,3,4,5,6, ...

then

1,35 179, ..
is a subsequence, but

11,5397, ...
is not. In general, given a sequence

XN, XN +1, XN+2, ..... y

then if we choose integers kq, k, .... S.t.

the sequence (y,) given by y, = X is a subsequence of (x,). We saw that (=1D" has a convergent subse-

guence. Does the sequence (sinn)? ( Answer later.) First we prove

Theorem 2.15

If (%) is asubsequence of (x,) and lim x, exists, then lim x, exists and is the same.
n n -» o n — oo

Pr oof

We just do the case of afinite limit, the other cases being similar. Suppose x, — a and we are given some
& > 0. Then we know there is some N such that |x,—a| < & for al n = N. But we can choose some Q such
that ko = N, and then k, > N for all n > Q. Thus |an‘a| < ¢ [On = Q, which is what we need.

Now we will answer our question about (sin n).

Theorem 2.16
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Let Xy, Xme1,---- D€ any real sequence. Then

(i) If (x,) is not bounded above, (x,) has a subsequence with limit + .

(ii) If (x,) is not bounded below, (x,) has a subsequence with limit —co.

(iii) If (x,) is bounded, (x,) has a convergent subseguence.

Part (iii) is called the Bolzano-Weierstrass theorem.

Pr oof

(i) Here (x,) is not bounded above. We first note that for any positive N, there are infinitely many n s.t.
X, > N. For if not, then x, < N for n = n,, say, and we have

Xn < MaX{XmXm+1seXn N} 0N,

which is a contradiction. So we construct a subsequence as follows. We choose k; > m st. x> 1, and
ko > Ky st. x> 2, and kg > k; st. x> 3, and so on. The reason that we specify that k, > k; etc. is to

ensure that terms from the original sequence occur in the right order.

(ii) Just apply (i) to the sequence (—x,).

(iii) Here (x,) is bounded, say |x,| < M for all n. We use a trick, and set

z, = sup{x,:p=n}.

Then z, > -M for al n, because the x, are al at least -M. Also z,,; < Zz, for al n. This is because
{Xp:p = n+1} is a subset of {x,:p = n} and, if Ais asubset of B, then the sup of B is an upper bound for B
and so for A, which means that sup A < sup B. Thus (z,) is a non-increasing sequence which is bounded
below, and so converges. We denote the limit by S. ( Sis sometimes called the limsup of (x,) ).

We shall show that (x,,) has a subsequence converging to S. To do this we first make a claim.

Claim

Given any positive real number ¢, there are infinitely many p st. [x, -S| < e.

Proof of Claim

Because ¢ is positive, we can find some n; st. |z,-S| <¢ for al n=n;, which means that
Xn < Z, < Steforal n=n;. Sox,<S+eforal p=n;. Also, for al n>n,, we have z, > S—¢. This
means that S—¢ is not an upper bound for {x,:p > n}, so that there must be some p > n st. X, > S-¢. In
summary, we have proved that for each n = n; there exists a p > n such that S-¢ < x; < S+¢, and this
proves the Claim.

Now we construct our subsequence with limit S. We choose k; st. [x, —S| < 1. Then we choose k; > k;

st. [%, =S| < 1/2. Now we choose k3 > k; sit. [%, =S| < 1/3etc.

So this tells us that (sin n) does have a convergent subsequence. How to find it is another story! There is
one more concept we need to consider with regard to sequences.

2.17 Cauchy sequences
We can think of a convergent sequence as one in which the elements of the sequence get close to some
number, the limit. A Cauchy sequence is one in which the elements of the sequence get close to EACH
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OTHER.

The definition is as follows. We say that the real sequence (x,) is Cauchy if, given any positive number ¢,
we can find an integer n; st. |X, = X,| < &€ for al n,m which are both > n;.

Thus we can make the elements of the sequence as close as we need to each other. In fact we have

Theorem A real sequence (X,) is Cauchy iff it is convergent.

One might therefore ask: why bother with Cauchy sequences? First, because it is often easier to prove that a
sequence is Cauchy than to prove it converges ( for which you need to know what the limit is ). Second,
Cauchy sequences become important later in other contexts, where they are not always convergent.

Proof of the Theorem

Suppose first that (x,) converges to a, and that we are given some ¢ > 0. If we can make x,, X, both within
e/2 of a, then they will be within £ of each other. We can do this. €/2 is positive, so there exists some n;
such that n>n; implies |x,—-a| <e&/2. Therefore if nm > n; we have |[X3—Xm| <

X -al + Ja=-xn| < e.

Now suppose that (x,) is Cauchy. We first note that (x,) must be bounded. For there exists an n, sit.
n,m = n, implies that [x,=X,| < 1. Thistellsus that [x,=x, | < 1foral n=n,, sothat |x,| < [x, | + 1

for al n > n,. Thusif the sequence starts from x,
M = max{|X |, [Xqerls s [Xn,-al, (%o, |1}
is such that |x,| < M for al n.

Now we know that (x,) is bounded, the Bolzano-Weierstrass theorem gives us a convergent subseguence,
(X ), say, with limit b, say. Suppose we are now given some positive €. We know there exists an ng st.
that for all nm = nz we have |x,—X,| < &/2. Choose akq > ng sit. [x, —b| < &/2. This we can do since

(X ) converges to b. Now we find that for all m = n; we have
Xm = bl < [Xm = X, | + [x, —b] < e/2+e/2 = e
This tells us that x,, tends to b as m tends to o, which is what we need.
This concludes what we need about sequences, but this is a convenient place to talk about countability.

Countability

This is an important idea when deciding how "big" infinite sets are compared to each other. We shall see
that R is a"bigger" set than ©. We use A,B etc. to denote subsets of R, although many of the ideas in this
section will work for other types of sets. We say that A is countable if either A is empty or there is a
sequence (a,) , n=1,2,3,.... , which "uses up" A, by which we mean that each a, A and each member of A
appears at least once in the sequence.

FACT 1: Any finite set is countable. If A= { X5, ..., Xy } ,just put a, =x, if n<N, and a, = xy if
n> N.
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FACT 2: If B O A and A is countable, then B is countable. If B is empty, this is obvious. If B is not
empty, then nor is A, so take a sequence which uses up A, and delete all entries in the sequence which don’t
belong to B. We then get either finitely many entries left ( so that B is finite ), or we get an infinite subse-
guence which uses up B.

FACT 3: Suppose that A is an infinite, countable set. Then there is a sequence (b,,) , n=1,2,..., of members
of A in which each member of of A appears exactly once. To see this, suppose that (a,) , n=1,2,... uses up
A. Go through the list, deleting any entry which has previously occurred. So if a, = g for some j < n, we
delete a,. The resulting subsequence includes each member of A exactly once. We have thus arranged A
into a sequence - first element, second element etc. - hence the name "countable” .

FACT 4: Suppose that A; , A, , Az, ... are countably many countable sets. Then the union U = D A,
n=1

which is the set of all x which each belong to at least one A, is countable.
Proof Delete any A; which are empty, and re-label the rest. Now suppose that the j’th set A; is used up by
the sequence (g ,) , N=1,2,..... Write out these sequences as follows:

8.1’1 8.12 a1’3 8.1’4 ....................

azyl a2’2 azyg a2'4 ....................
a3'1 a3,2 a3’3 a3‘4 .................... etC.

Now the following sequence uses up all of U. Wetake a; 1, @; 5, 81, 833, 85 831, 81 4,-.--.-

FACT 5: The set of positive rational humbers is countable. The reason is that this set is the union of the
sets A, ={ p/m: pON } , each of which is countable. Similarly, the set of negative rationa numbers is
countable ( union of the sets B, = { —p/n: pON } ), and so is @ ( union of these setsand { 0} ).

FACT 6: If A and B are countable sets, then so is the Cartesian product AxB, which is the set of al ordered
pairs (a, b), with a[0A and B 0OB. Here "ordered" means that (a, b) # (b, a) unless a = b. This is obvious
if Aor B isempty. Otherwise, if (a,) uses up A and (b,) uses up B, then AxB is the union of the sets C,, =
{ (&, ,by) : m=1,23,...} , each of which is countable.

FACT 7: the interval (0, 1) is not countable, and therefore nor are R , C. Proof Suppose that the segquence
(@) ,n=12,..., uses up (0, 1). Write out each g as a decimal expansion not terminating in ...999999" .
Suppose this gives

a; = 0.by 10550307 4.

ap = 0.by 10y 505305 4.

ag = 0.bg1b3,b33b34.........

etc. Here each digit b;, is one of 0,1,2,..9. We make a new number x = 0.C;C,C3C4.... as follows. We
look at b, ,. If b,, =4, we put ¢, =5, while if b, , # 4, we put ¢, = 4. Now x cannot belong to the list
above, for if we had x = a,,, then we'd have ¢, = a,,,,, which isn’t true.

The above facts give you a useful guide to which sets you can be sure are countable and which definitely
aren’'t. Question: let S be the set of all sequences (q,) , n=1,2,....., with the entries g, rational numbers. S
can be thought of as OxQxQxQx..... . Is S countable?
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Answer: no, because every real number in (0, 1) can be identified, by means of its decimal expansion, with
a sequence of integers ( namely, the digits ). So the set of sequences with integer entries is not countable,
and so nor is S.

Section 3. Functions, limits and continuity
Definitions 3.1

All functions in this course will be real-valued, each defined on some subset of R. Let A and B be subsets
of R. A function f:A — B isarule which assigns to each x in A a unique value f(x) in B. We say that A is
the DOMAIN of f ( the set of points at which f is defined ). By the RANGE of f we mean the set
f(A) = {f(X):x OA} ( or the IMAGE of A under f ). However, this term "range" is sometimes defined
slightly differently.

The GRAPH of f isthe set {(x,f(x)):x OA}. Note that this is a subset of R x[R.

We say that f:A — B is SURJECTIVE or ONTO if f(A) = B i.e. if for every y in B there is at least one x
in A such that f(x) =y. We say that f is INJECTIVE or 1-1 ( one-one, one-to-one ) on A if f takes
different values at different points i.e. if the following holds. For all x;,x, in A, f(x;) = f(x,) implies that

X1 = Xo.

3.2 Some Important Classes of Function

1. powers of x. The powers x" for n 0N are defined inductively by x° = 1, x"*! = x".x. For n a negative
integer, we just put x" = (1/x)™" ( with domain R\{0} ). Rational powers of x can be defined for x > 0 by
xP/d = (x¥NP_ 1t is routine to check that this defines x*’9 unambiguously. Note that we have not yet defined
x? for a irrational.

2. Polynomials and Rational Functions. If n is a non-negative integer, and ay,....,a, are real numbers, then
n
PX) = % a,x¥ is a polynomial. The degree of P is the largest k for which a, # 0. If P and Q are polyno-
K=0

mials such that Q is not identically zero, that is, Q has at least one non-zero coefficient, then
R(xX) = P(x)/Q(x) is arational function. The domain of R is the set of x for which Q(x) # 0.

3. Other Functions. The exponential and logarithm functions will be defined later. The trigonometric func-
tions will be used, but properties such as (d/dx)(sinx) = cosx will be proved in Section 6.

3.3 Thelimit of a function as x tendsto + .

Let f be areal-valued function defined on some interval [B, +), and let L be a real number. We say that
f(x) - Lasx - +oo if f(x) gets close to L as x gets large and positive. This means that | f(x)-L| gets
small and, for any positive number ( denoted by &, say ) which might be given, we will have |f(x)-L| < ¢
for all sufficiently large positive x, that is, for all x > some positive number X, which may depend on €.

So our precise, unambiguous definition will be:

Definition

Let LOR. We say that f(x) - Lasx - +o, 0or lim f(x) =L, if the following is true. For any positive

X - +oo

real number £ we can find a positive real number X, which may depend on ¢, such that | f(x)-L| < € for all
x> X.
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We say that lim f(xX) = +o if the following holds. Given any positive real number M we can find a
X - +oo

positive real number X such that f(x) > M for all x > X.

These definitions are very close to those for sequences, so that the following theorem is not surprising.
Theorem 3.4

Let LOR. We have lim f(x) = L iff nIimmf(xn) = L for every sequence (x,) which diverges to +co.

X - +o

Similarly, lim f(x) = +o iff lim f(x,) = +o for every sequence (x,) which diverges to + co.
n - oo

X - +oo

Pr oof
Suppose first that lim f(x) = L, and that x,, — + . Suppose we are given some € > 0. We need to show

X o +oo
that there exists some integer ng such that | f(x,)—L| < € for al n = ng.

Now we know that there is some positive number X such that | f(x)-L| < & for al x > X. But we also know
that X, — +o0, so there must be some ng such that x, > X for all n > ny, and this is all we need.

To prove the converse, suppose that it’s not true that § Iirrlmf(x) = L. ( Note that | do not say: "suppose that

lim f(x) # L" - we have to also allow for the case where the limit doesn’t exist. )

X - +oo

So we have to look at what it means for our limit definition not to hold. It means that there must be some
positive number e for which we cannot find any X with the property that x > X implies that |f(X)-L| < ¢.
So for any X you try, there must be some x > X such that |f(x)-L| > €. In particular, for each positive
integer n there must be some x,, > n such that | f(x,)—L| > &. Now this sequence (x,,) diverges to + o, but
(f(x,)) doesn’'t converge to L.

So we've just proved that "the first statement false" implies "the second statement false", so that the second
statement implies the first. The proof with L replaced by + is very similar.

3.5 Thelimit as x tends to —co.
Thisis easy to deal with, just by saying that lim f(x) will be lim f(-x), if the second limit exists.
X —» —o X - +oo

Obviously we also say that l[imf(x) = —oo if lim(=f(x)) = +oo.

3.6 Thelimit of a function as x tendstoa O R.

Since area number a can be approached from above or below we first separate these two possibilities. If L
isrea and f is area-valued function defined on some interval (a,B] we say that f(X) - L as x tends to a
from above if | f(x)—L| gets small as x approaches a from above, which means that for any positive number
& which might be given, we will have |f(x)-L| < ¢ for all x sufficiently close to, but greater than a, that is,
for al x in some interval (a,a+9), with & > 0. Here J is allowed to depend on ¢ and, if € is small, then &
will usually also be small. Again, the choice of the greek letter 6 to denote a small quantity is "tradi-
tional".

Definition

Let a and L be rea numbers. We say that f(x) — L as x tends to a from above, or |lim f(x) =L, if the
X - a+

following holds. Given any positive number &, we can find some positive number  such that | f(x)-L| < ¢
for all x such that a < x < a+d.
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We say that lim f(X) = +o if the following holds. Given any positive number M, we can find a positive
X - a+

number & such that f(x) > M for all x such that a < x < a+9.

It is very important to note that we have not said anything about f(a). The existence or value of f(a) makes
NO DIFFERENCE to the existence or value of the limit. A result connecting this definition with sequences
is the following.

Theorem 3.7
Let a and L be real numbers. Then |lim f(xX) = L ( respectively, lim f(x) = +o ) iff for every sequence
X - a+ X - a+

(x,) which converges to a and satisfies x, >a for al n, we have Ilim f(x,) =L ( respectively

n - o

lim f(x,) = +o).

n - oo

Pr oof

This time we'll do the case of an infinite limit. So suppose that lim f(x) = +o, and (x,) converges to a
X - a+

with x, > a for all n. If we are given some M > 0, we have to show that there is some n, such that
f(x,) > M for al n = ng.

Now we know there is some d > 0 such that a < x < a+9 implies f(x) > M. But then there must be some
integer ny such that |x,—a| < J for al n > ny, and this means that a < x, < a+d for al n = ny, which
gives us what we need.

To prove the converse, suppose that it's not true that lim f(x) = +c. This means that there must be some
X - a+

M > 0 for which we cannot find any d > 0 with the property that a < x < a+dJ implies that f(x) > M. So
for any positive & you try, there must be some x in (a,a+9) such that f(x) < M. In particular, for each
positive integer n, there must be some x, with a < x, < a+1/n and f(x,) < M. Now x, — a, but f(x,)
doesn’'t tend to + co.

Definitions 3.8
We say lim f(x) =L OR if the following holds. Given any ¢ > 0 we can find a d > 0 such that

X — a-—
|[f()-L| < ¢ for al x with a-J < x < a. Similarly, we say lim f(x) = +o if given any M > 0 we can
X - a—

find & > 0 such that f(x) > M for all x such that a-d < x < a.

There is also a two-sided limit. We say that lim f(xX) = L ( where L can here be finite or infinite ) if
X - a

lim f(x) and lim f(x) both exist and are L.
X - at X - a—

Theorem 3.9 The Algebra of Limits

Let lim stand for any oneof Iim , lim , lim , lim , lim.
X » +0 X » —o0 X - at+ X - a— X - a

Let L,M be real numbers and suppose that limf(x) = L, limg(x) = M. Then
(i) lim (f(x) +g(x)) = L+M

@ii) lim (f(x)9(x)) = LM

(iii) for any real A, lim Af(x) = AL

(iv) if M £ 0, then lim 1/g(x) = 1/M



- 18-

(V) lim [f09[ = |L].
To prove these, we can just take appropriate sequences. If "lim" means lim , take any sequence (X,)

X - +oo

which diverges to +o. Then f(x,) - L, g(X,) — M, and al the results follow from the algebra of limits
for sequences. This isin fact the main reason for including Theorems 3.4 and 3.7.

Example 3.10 A function with no limits at all

Set f(x) = 1if x isrational and f(X) = -1 if x isirrational. Thisis a perfectly good function but it is worth
noting that you cannot draw its graph. If you try to, you end up with what seem to be two horizontal
straight lines, which is clearly not allowed.

To see, for instance, that Iir‘% f(x) doesn’t exist, just put x,, = v1/n. Then x, tends to O from above, but
X —» 0+

f(x,) is 1 for infinitely many n and —1 for infinitely many n. In the opposite direction we have:

3.11 A class of functions for which all one-sided limits exist

Let | be any interval ( it could be [a,b], (a,b], (—,b], any interval at all ), and let f be a real-valued
function defined on |. We say:

f is strictly increasing on | if f(X)<f(y) for all x,y in | with x<y

f is non-decreasing on | if f(x) < f(y) for al x,y in | with x<y

f is non-increasing on | if f(x) = f(y) for al x,y in | with x<y

f is strictly decreasing on | if f(x)>f(y) for al x,y in | with x<y

If any of the above hold, we say that f is monotone on I. Now we show that these functions always have
one-sided limits.

Theorem 3.12
Let f be a non-decreasing function on (a,b). Then lim f(x), Iin’tlJ f(X) both exist.
X - a+ X - b-

Ifa<c<b,then Ilim f(x) < f(c) < Ilim f(x).

X - C— X - C+
Similarly, if f is non-decreasing on (a, +») then lim f(x) exists.
X —» +o0o
Pr oof
These proofs are all easy, once we've decided what the limit should be. For the first part, let
L =sup{ f(x):a <x < b}, with the usual convention that L is +o if the set is not bounded above. Now it
turns out that IirrtlJ f(x) = L.
X - b-

Why? Suppose first that L is +o. Then for any M > 0 there must be some t in (a, b) such that f(t) > M. If
we put § = b-t, then b—-9 < x < b impliest < x < b so that f(x) > f(t) > M, which is exactly what we
need.

Similarly, if L is afinite sup, suppose we are given some € > 0. Because L is a sup, there must be some t
in (a,b) with f(t) > L—¢. Againweput § = b—t, and b-9 < x < b implies that f(x) > f(tf) > L—&. But we
also have f(x) < L, so |f(X)—L| <eforb-J <x<b.

Similarly, lim f(x) = inf{ f(x):a<x<b}. Also,
X - a+

Iim_f(x) = sup{ f(Xpa<x<c} <f(c)< inf{ f(X):c<x<b}= Iim+f(x).
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Note however, that if g(x) = x for x < 0 and g(x) = 1 for x > 0 then Iimog(x) ( the two-sided limit ) fails to
X -

exist.

Definitions 3.13
Let a be areal number. A neighbourhood of a is any open interval (c,d) which contains a.

A real valued function f is called continuous at a if lim f(x) = lim f(x) = f(a).
X - a+ X - a-—

Obviously if f is continuous at a then f must be defined on a neighbourhood of a.

Example

Set f(x) = x? if x is rational, and f(x) = —x? if x is irrational. Then f is continuous at 0. Why? Clearly
f(0) = 0. Suppose € > 0 is given. We will have |f(x)-0| < & provided x? < g, and this is true if
—VE < X < +E.

This example shows that continuity at a point has nothing to do with being able to draw the graph of the
function without a jump. The graph of this function cannot be drawn at all. The example g(x) =
xsin(1/x) , g(0) = O is also interesting.

Theorem 3.14 An alternative definition of continuity

Let f be defined, real-valued, on a neighbourhood of a. Then f is continuous at a if and only if the follow-
ing is true.

For any given positive €, we can find a positive d such that |f(x) - f(a)| < € for al x with |[x-a| < J.

( Thisis sometimes used as the definition of continuity ).

Pr oof

Suppose first that the second statement is true, and we are given some € > 0. Choose a d as in the second
statement. Thena—-90 < x < aora< x < a+d impliesthat |f(x)-f(a)| < ¢, so that Xlimaf(x) = f(a).

To prove the converse, again suppose we are given £ > 0. We know that lim f(x) = f(a) so that there
X - a+

must be some p > 0 such that a < x < a+p implies |f(x)-f(a)| < €. Similarly there must be some o > 0
such that |f(x)-f(a)| <& for a—o<x<a. Put d= min { p,o }. Then |x-a| <J implies that
1f(0-f@)] <e.

Theorem 3.15 Algebra of continuous functions

Suppose that f and g are continuous at a. Then so are f+g, fg, |f|,Af ( for any real A ) and 1/g ( if
g(a) # 0).

So a polynomial is continuous on all of R, and a rational function P/Q is continuous at any point where
Q#0.

These facts just follow from (3.9).

Theorem 3.16
Let lim stand for any of lim , lim etc. Suppose that limf(x) = b OR, and suppose that g is continuous

X - +0 X - a+
at b. Then limg(f(x)) = g(b).
Pr oof
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We can use sequences again. Suppose, for instance, that f(xX) - b as x -~ +o, and suppose (X,) is a
sequence which diverges to +. Then we know that f(x,) — b. Now if £ > 0 there is some § > 0 s.t.
ly—b| < o impliesthat |[g(y)-g(b)| < &. But we will have | f(x,)—b| < J for al n > some n,.

So we've shown that |g(f(x,))-g(b)| <& for al n=>ny. Thus nIimmg(f(xn)) = g(b), which proves the

theorem.

Corollary 3.17
If fiscontinuousat a and g is continuous at f(a) then g(f) is continuous at a.

3.18 Continuity on a closed interval

We often deal with functions which are only defined on a closed interval, and the following definition is
convenient.

We say that f:[a,b] — R iscontinuous on [a,b] if f is continuous at each c in (a, b) and

lerr;+f(x) = f(a), Xlirrg_f(x) = f(b).

If this definition is satisfied, the following is true. If (x,) is a convergent sequence such that a < x, < b for
aln,and g = lim x,, then nIimmf(xn) = f(B).

n- o

Pr oof

We know that B8 is in [a,b]. Suppose € > 0 is given. We need to show that there is some n, such that
[f(x,)—f(B)| < e foralnz=ng.

First suppose that 8 =Db. Then we know there is some J >0 such that b—-Jd < x<b implies
[f(x)—f(b)| < &. But we have |x,—b| < (and hence b—d < x, < b ) for al sufficiently large n, and this
does it.

The proof for g = a isthe same. If g = c O(a,b), the proof is easier. We know there is some J > 0 such
that |[x-c| < J implies | f(x)-f(c)| < &, and we know that |x,—c| < d for al sufficiently large n.

Now we can prove two important theorems. Both use the existence of suprema.

Theorem 3.19
Let f be continuous, real-valued on [a, b]. Then there exist a,3 in [a, b] such that

fa) < f(x) < f(8) Ox O[ab],

that is, f has a maximum and minimum on [a, b].

Pr oof

Let A ={f(x):xO[a,b]}, and let L and M be the inf and sup of A respectively, with the usual convention if
A is not bounded above or not bounded below. Now there must be a sequence of elementsy, of A such that
Yo - Masn - o, When M is a real number, this follows from Theorem 1.4, while if M is +o it is easy
to see that such y,, exist. We choose x,, ([a, b] such that f(x,) =y,. Then (x,) is a sequence in [a,b], and
so has, by the Bolzano-Weierstrass theorem, a subsequence (X, ) converging to a limit 3 in [a,b]. But then

f(x,) - f(B)asn - o and f(x,) - M. Thus f(8)=M. The proof of the existence of a is the same.

Remarks
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1. Theorem 3.19 does not hold for open intervals, as the example of f(x) = 1/x on (0, 1) shows.
2. The function f:[-1,1] - R defined by f(x) = 0 if x isrational and f(x) = x if x isirrational has no max
or min on [-1, 1]. This shows that the hypothesis that f is continuous is necessary in Theorem 3.19.

Theorem 3.20 The intermediate value theorem

Let f be continuous on [a,b]. If f(a) < A < f(b), or f(b) < A < f(a), then there exists ¢ in (a, b) such that
f(c) = A.

Pr oof

We assume that f(a) < A < f(b). In the other case, we can just use —f and —A.

Let A={ x0O[a,b]:f(x) <A }. Now Aisnot empty, asa isin A. Set c = sup A.

First we show that f(c) < A. To see this, we can take a sequence (x,) such that x, JA and x, - ¢ as
n - o. Thus f(x,) < A, but f(x,) - f(c)asn - o,

Now we prove that f(c) = A. Now ¢ < b, because f(b) > A. So we can take the sequence (y,) given by
Y, =c+1/n, and y, O[a,b] for al large enough n. Also, y,, is not in A, since y,, > ¢, which means that
f(y,) > A. But f(y,) —» f(c) asn — o, which gives f(c) = A.

Theorem 3.21

Let | be any interval ( closed, open, half-open etc. ) and suppose that f is continuous and one-one on 1.
Then f is either strictly increasing or strictly decreasing on 1.

Pr oof

We first prove this for | a closed interval [a, b]. Suppose that f(a) < f(b). Then we assert that f is strictly
increasing on |. Suppose that this is not the case, so that there exist x,y with a < x <y < b such that
f(x) = f(y), which implies that f(x) > f(y). We consider two cases.

Casel f(y) < f(a)

Then by (3.20) there must be some c in (y, b) such that f(c) = f(a), contradicting the fact that f is 1-1.
Case 2 f(y) = f(a)

In this case f(y) > f(a), asy # a. Moreover, f(x) > f(y) > f(a), which means that there must be some d
in (a,x) such that f(d) = f(y).

Thus both cases lead to a contradiction and f must be strictly increasing on |.

If f(a) > f(b) we apply the same argument to —f to see that f is strictly decreasing on |.

Now suppose that we have any interval | and f is not strictly increasing or strictly decreasing on I. Then
there must exist t,u,v,winl such thatt < u, v < w, but f(t) < f(u) and f(v) > f(w). Now we just choose a
closed interval J contained in | such that t,u,v,w al belong to J. By the first part this is impossible.

The converse of this theorem is not true, as an increasing function need not be continuous. However, if the
function is aso onto, we can prove the following. It's convenient to work with open intervals here.

Theorem 3.22

Let | and J be open intervals ( not necessarily bounded ) and let f:l — J be non-decreasing and onto. Then
f is continuous on I.

Pr oof
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Choose any B in I, and take ¢ > 0. Because f(f) lies in the open interval J = f(l), we can find x; and X,
such that f(8) —¢ < f(xq) < f(B) < f(x,) < f(B) +¢&. Because f is non-decreasing we must have x; < 8 < Xj.
Now put & = min { B—X;, X—B }. If |x=B| < 3J then x; < X < Xy, s0 that f(x;) < f(X) < f(x5), which
implies that |f(x) - f(B)| < €.

Another way to prove Theorem 3.22 is to look back at Theorem 3.12 and to ask what follows if f is not
continuous at S.

3.23 Inverse functions

Let A be a subset of R and let f:A — R be afunction. Let B = f(A) = { f(X):x JA}. A function g:B - Ais
called the inverse function of f if g(f(x))=x for all x in A. We usually write g = f 1 ( N.B. not the same
as 1/f).

If g = f ! existsthen f is one-one on A, for if f(x;) = f(x,) then g(f(x;)) = g(f(x,)) and 0 X; = Xs.

Also, if f is one-one on A then clearly g will exist, by defining g(y) to be the unique x in A such that
f(x) =y.

Theorem 3.24

Let f be one-one and continuous on an open interval |, where | might be (a,b) or (a,+®) or (-, a) or R.
Then f has an inverse function g = f ! and g is continuous on f(l).

Pr oof

We know already that f ™ exists. Also f is either strictly increasing or strictly decreasing on .

Suppose first that f is strictly increasing on |. Let L and M be the inf and sup of f(l), respectively. Then
f(1) = (L, M), by the intermediate value theorem.

Why? Clearly f(x) < M for all x in |, because if not we could take some t > x in | and we would have
f(t) > M, which is not allowed. So f(I) is contained in (L, M). Also, if cO(L, M), we can take points u,v in
| such that f(u) < ¢ < f(v), so the value c must be taken.

Set J = (L,M). Now g = f ! exists on J and g is an onto function from J to |. Also g is strictly increasing.
Thus g is continuous by 3.22.

If fisstrictly decreasing on I, put h(x) = —f(x), and set J = h(I) = {-f(X):x OI}. By the first part there is a
continuous function g:J — | such that g(h(x)) = x for all x in I. We define G on f(I) by G(y) = g(-y).
Then G is continuous on f(lI) and for each x in I, we have G(f(x)) = g(—f(x)) = g(h(x)) = X, so that
G=f"1

Section 4 Differentiability

Definition 4.1
We say that the real-valued function f is differentiable at a OR if there exists areal number f'(a) such that
fr(a) = lim 1=1@
X -a X—a

Remarks
1. f must be defined on a neighbourhood of a for the definition to make sense.
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2. We also write f'(a) = (df/dx)(a). Our definition defines a new function f' whose domain is the set of
points at which f is differentiable. f' is called the derived function, or derivative, of f. Further,
f"(a) = (f')'(a) or, as an alternative notation, f"*V(a) = (fM)’(a), with f©@ = f.

3. We can rewrite the definition of differentiability as

M0~ @) + e,
X—a

where e(X) — 0 asx — a. Putting e(a) = 0 we get the following.

The real-valued function f is differentiable at a iff there is a function g(x) such that:
(i) e(@) = 0;

(ii) &(x) is continuous at a ( so that XIimas(x) =0);

(iii) for al x in some neighbourhood U of a we have
f(x) = f(a) + f'(a)(x—a) + e(X)(x—a).

The last formula can be interpreted as follows. To approximate f(x) for x near a, we can use the linear
function g(x) = f(a)+f'(a)(x—a), and this approximation will be very good if x is close enough to a.
Thus differentiability is really about whether you can approximate f(x) by a linear function. The graph of
the function g is called the tangent line of f at a. The formulation (iii) also has the advantage that you can
generalise it to higher dimensions.

We also see at once from (iii) that f(x) — f(a) asx - a. So we have proved:
Theorem 4.2 If the real-valued function f is differentiable at a, then f is continuous at a.
The converse is false, as the example f(x) = |x|, a = 0 shows.

More Examples

1. Define f(x) = x2sin(1/x?) for x z 0, with f(0) = 0. For x # 0, the product rule and chain rule ( see below
) give us f'(x) = 2xsin(1/x?) -2x tcos(1/x?). Does f'(0) exist? Yes, because for x # 0 we have
(f(x) - f(0))/(x-0) = xsin(1/x?) - 0 asx — 0. So f'(0) = 0. Note that f'(x) is not bounded as x — 0
and so not continuous at 0 so f"(0) cannot exist.

2. Set f(x) = x?for x > 0 and f(x) = x*for x < 0. For x < 0, we can write

yIimx(y3—x3)/(y—x) = yIimx(y2+xy+x2) = 3x? so f'(x) = 3x? for x < 0. Similarly, f'(x) = 2x for x > 0.
Also, f'(0) = 0 again, as f(0) = 0and f(x)/x - Oasx — O.

For x > Oweget f"(x) = 2, and for x < 0 we get f"(x) = 6x. But f"(0) does not exist, as
Xlirrg)+(f'(x)—f’(0))/x = 2, but XIin?)_(f'(x)— f'(0))/x = 0.

3. A function continuous everywhere and differentiable nowhere. This example was discovered by Weier-

strass. Itis )y 27"cos(21"mx) !
n=0
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4. Another example, due to van der Waerden (1930). Let n be a positive integer. For any real number x,
define f,(x) to be the distance from x to the nearest rational number of the form m/10", with m an integer.
Now we define

09 = 5 100

Note that |f,(x)| < 107" for all x and for all nON. So the sum converges, and gives a non-negative func-
tion f which is positive at a lot of points. Also f is continuous. Why7 Take € > 0 and x OR. We can

(<]

choose N such that 107" < £/4. So, for al real y, we have f(y) = Z fa(y) +h(y), where |h(y)| < /4.
+1

But the function g(y) = 2 fo(y) is continuous, as it is the sum of finitely many continuous functions. So if
n=1
y is close enough to x, then |g(y) —g(x)| < &/2, and this gives | f(y) - f(X)| < e.

Take any real number x. We show that f is not differentiable at x. For each positive integer g, we choose
a new number y, as follows. x belongs to some interval of the form [m/10%, (m+1)/10%), withmOZ, and
this interval can be divided into equal "halves', namey [m/109, (m+1/2)/10% and
[(m+1/2)/109, (m+1)/10%). Now we put y, = x=* 1/109*1 with the # chosen so that Yq lies in the same
"half" as x.

Compare f,(x) and f,(yy). If n>q then since y, is x shifted through +107971 you don’t change this
distance to the nearest point of form ( integer )/10", so f,(x) = fa(Yq)- But if n < g then the nearest point
of form ( integer )/10" is the SAME for x and yg, S0 f,(Yq) = fa(X) = £(yq—X) for n < . This means that

q
(f(yg) —f(X))/(yg—x) = 5 +1. We don't know exactly what this value is, but it is an integer, and it must

n=1
be odd if g is odd and even if g is even. Now let g — . We find that y, — x, but (f(yq) = f(X))/(Yq—X)
cannot tend to a finite limit, as it is alternately even and odd!.

Theorem 4.3 The product rule etc.

Suppose that f and g are differentiable at a, and A OR. Then:

(i) (f+g)'(a) = f'(@+g'(a); (i) (Af)'(a) = Af'(a) ;

(iii) (fg)' () = f'(a)g(a) + f(a)g'(a) ; (iv) if g(a) # O, then (1/g)'(a) = —g'(a)/g(a)* .
Proof (i) and (ii) are easy. (iii) Asx — a, we have

fa-f(@a(@ _ fa-f(@gx) , f@ax)-f(a)g(@
X—-a X—a X—a

f(x) f(a) (x) g(a)

= g~ 2—2) + 1@ LYy L g@)t @)+ f(a)g (a).

(iv) Again, asx — a, we have

(U9 -(Ug@) _ 9@ -gi) e
x-a T agwe@ 9 @@

Theorem 4.4 The chain rule
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If g is differentiable at a and f is differentiable at b = g(a), then h = f(g) is differentiable at a and
h'(a) = g'(a)f'(b).

Pr oof

It's convenient to use the formulation (iii) from 4.1. We can write

9 = 9@ + (x-a)(g'(a) + &(x))

where g(x) is continuous at a and £(a)=0. Similarly,

fly) = f(b) + (y-b)(f'(b) + p(y))

where p(y) is continuous at b and p(b)=0. We put these together as follows.
If x is sufficiently close to a then g(x) will be close to b ( since g is continuous at a ) and so

h(x)-h(@) = f(g())-f(9(@) = (ex)-b)(f'(b) + p(g(x)) =

= (x-a)(g'(@+e())(f'(b) + p(a(x))) = (x-a)g'(a)f'(b) + (x-a)3(x)

where

o(x) = e(q)f'(b) + (x)p(g(x)) + g'(a)p(9(x))
is continuous at a ( using 3.17 ) with 8(a) = 0. By (iii) of 4.1 this proves what we want.

Corollary 4.5

It follows at once that if f is one-one near a and f'(a) = 0, then the inverse function f ! cannot be dif-
ferentiable at f(a), for otherwise we would have 1 = dx/dx = f'(a)(f "1)'(f(a)) = 0. We seek a condition
which ensures that f ™1 is differentiable.

Theorem 4.6

Let f be one-one and continuous and real-valued on the open interval |. Suppose that c isin | and that f is
differentiable at ¢ with f'(c) # 0. Then g = f "t is differentiable at f(c) = d, and g'(d) = 1/f'(c).

Pr oof

We know that g is continuous on f(l), by 3.24. Take any sequence (y,,) such that (y,) converges to d from
above or from below. Then there exist points x,, in | such that f(x,) =y, and x, = d(y,) — ¢ because g is
continuous. Since f is one-one, f is monotone, and x,, tends to c either from above or from below. Thus

a(Yn)—9(d) _ Xn—C

Vood o) -f@ ~ M1

asn — oo, which proves that the limit asy tends to d from above or below of (g(y)—-g(d))/(y-d) is 1/f'(c).

4.7 Local maxima

We say that the real-valued function f has alocal maximum at a if there exists a neighbourhood U of a

( ie. an open interval containing a ) such that f(x) < f(a) for all x in U. A local minimum is defined
similarly. If aisalocal maximum or local minimum and f is differentiable at a, then f'(a) = 0.
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Proof Say a is alocal maximum. If x isin U and x > a, then (f(x)-f(a))/(x-a) < 0, so f'(a) < 0. Simi-
larly, if x isin U and x < a, then (f(x)—f(a))/(x-a) = 0, so f'(a) = 0.
Now we prove a key result.

4.8 The mean value theorem
If f:[a,b] — R iscontinuous on [a,b] and differentiable on (a, b), then there exists ¢ in (a,b) such that

o = 0@

The special case where f(a) = f(b) and f'(c) = 0 is called Rolle’s theorem.

Pr oof

We first prove Rolle’'s theorem. By Theorem 3.19 there exist a and g in [a, b] such that for al x in [a,b],
we have f(a) < f(X) < f(B). Now if f(8) > f(a), then a < 8 < b, so that f has alocal maximum at 8 and
we can take ¢ = B. If f(a) < f(a) then f has a local minimum at a and we can take ¢ = a. Finaly if
f(a) = f(a) = f(B) then f is constant on (a,b) and f'(c) = O for every c in (a, b).

To prove the general case, set

9x) = f(x) - (x—a)(%?).

Then g(a) = g(b) = f(a), and there must be some c (&, b) such that g'(c) = 0.

Theorem 4.9

Let f be differentiable on | = (a,b). Then:

(i) fisstrictly increasing on | if f'(x) > O for all x in|:

(ii) f is non-decreasing on | iff f'(x) > O for al x in I:

(iii) fis constant on | iff f'(x) = O for al x in I:

(iv) fisnon-increasing on | iff f'(x) < Ofor al xinl:

(v) fisdtrictly decreasing on | if f'(x) < O for al xinI:

Pr oof

(i) and (v) follow straight from the mean value theorem.

(i) If f' = 0on |, then f is non-decreasing by the mean value theorem. Conversely, if f is non-decreasing,
then . Iin(1:+(f(x)—f(c))/(x—c) will be = 0, so f'(c) = 0. The proof of (iv) is the same.

(iii) Obvioudy if f is constant then f' = 0. Conversely, if f' is aways zero, f is constant by the mean
value theorem.

Remarks

1. The function f(x) = x3 is strictly increasing but f'(0) = 0. Thus (i) is not "iff".

2. If f'(c) >0 a some point c, it DOESN'T follow that f is increasing near c. For example, set
f(x) = x+x? if x is rational, and f(x) = x otherwise. Then XIimof(x)/x =1,s0 f'(0) =1>0. But fisnot

monotone near zero. To see this, choose a small positive rational y and an irrational x which is close to, but
greater than, y. Then f(y) > f(x).
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The mean value theorem will have many applications later. For now we consider two examples.

Example 1

Show that f(x) = x/(1+x?) is increasing on [0, 1].

This is not obvious, as f is an increasing function divided by an increasing function. But, on (0, 1) we
have f'(x) = (1-x?)/(1+x%)? > 0.

Example 2
Show that (1+x)"*2 > 1-x/2 for x > 0.
Setting g(x) = (1+x)"Y/2-1+x/2, we have g(0)=0. Also, for x positive,

g'(x) = (-1/2)(1+x)"¥2+1/2 = (1 - (1+x)"¥?)/2 > 0.

Remark: it might be tempting to try to do this problem algebraically, but the method above seems easier.

Section 5 Power Series

A power seriesis an object of the form
F(x) = z Q(X—C K ,
( ) o k( )

where the coefficients a, and the "centre" ¢ are real. These have many applications, for example, in approx-
imating functions such as sin, cos etc. They can also be used for solving differential equations: the method
used in Example (ii) of 1.1 does often give valid solutions.

The two key questions to ask about power series are: (@) for which x does the series converge? (b) what
kind of a function F(x) do we obtain? Is F continuous, differentiable?

Example
oo n
If weputa, =1andc=0weget § xX Now ¥ x*=(1-x""1)/(1-x).If [x| < 1weletn - o and find
K=0 K=0
that » xK = 1/(1-x). On the other hand, if |x| = 1 then we know that the terms of the series do not tend
K=0

to zero and so the series must diverge.
To decide where a power series converges we need something called the radius of convergence.

Definitions 5.2
For the series F(x) asin 5.1, we set

Te = {t=0:|alt" - 0Oask — «o}.

Now Tg is non-empty as O isin Tg, so we put Re = sup Tg, with the usual convention that Rg = +o if T
is not bounded above. Now we prove:

Theorem 5.3

If [x=c| < Rg, then the series F(x) converges absolutely, that is, y |a| |x—c|¥ converges.
K=0
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If |[x—c| > Rg, then the series F(x) diverges.

Pr oof

Suppose first that |[x—c| > Re. Then't = [x—c| does not belong to the set T, and so |a,||x—c|¥ does not
tend to 0 as k — o, which means that the series F(x) cannot possibly converge. ( Remember that if the

series § B, converges, then kIim B, must be 0).
K=0 - o

Now suppose that |[x-c| < Rg. Since Rg is a sup, there must be some s in T such that |[x-c| < s < Rg.
So |a|sk — 0 as k — , and so there must be some M = 0 such that |a,|s¥ < M for al k. But then

la||x=c|® = |a|s(|x-c|/9* < M(|x=c|/9)* But we know that the series ¥ M(|x-c|/s)* con-
K=0

verges, being M times a convergent geometric series ( since |[x—-c|/s< 1).

To actually find the radius of convergence, we often use:

The Ratio Test

Suppose that I<Iim |bi+1/by| exists and is L. If L < 1 the series y by converges absolutely. If L > 1 the
- o0 k=0
series diverges. If L = 1 the test is not conclusive.

Examples 5.4

Find all values of x for which the following power series converge.

e (x=1)K

[ .

() kZO k+3

Applying the Ratio Test with b, = (x-1)%/(k+3), we find that if x# 1, then |be,,/bc| =

|x=1|(k+3)/(k+4) - |x-1] ask - . Thusif |x—1| < 1 the power series converges absolutely, and if

|x=1] > 1 the power series diverges. Obviously the series converges if x = 1.

The cases x—1 = +1 must be looked at separately. If x-=1 =1 we have y 1/(k+3) which diverges. Now
k=0

Xx-1= -1givesus y (-1)¥/(k+3) and this converges by the alternating series test, as 1/(k+3) is decreas-
k=0

ing with limit O.
So we have the interval of convergence -1 < x-1 < 1, or [0, 2).

The reason why the end-points are important is the following, known as Abel’s limit theorem. If F, as given
in (5.1), has radius of convergence R such that 0 < R < +o0, and if the power series converges at c+R,
then F(x) - F(c+R) asx — c+R from below. Similarly, if F converges at c—R, then F(x) - F(c—-R) as
X - c—Rfrom above. We do not need this theorem here, so we omit the ( difficult ) proof.

(i) ¥ kIx. Thistime b, = k!x*and the Ratio Test give, for x # 0,
k=0

|beyq1/b] = (k+1)|x] - +o0 ask — o. Thus the power series diverges for all non-zero x. It does, how-
ever, converge when x = 0 ( every power series converges at its centre ).

K
_k.

i) 5 o
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You can use the Ratio Test here, but it's a bit messy. Note that if k is large enough, then |x|/k < 1/2.

Since y (1/ 2)¥ converges, our power series is absolutely convergent for all x.
K=0

5.5 Differentiating a Power Series

We want to know where ( if at all ) the power series F(x) = 3 ak(x—c)" is differentiable. If we differen-
K=0

tiate each term separately ( term-by-term ), we get the series
G = ¥ ka(x=0* ™t = (k+1)ag(x—0)
k=1 k=0

This, however, does not prove anything in itself. As afirst step we prove the following:

Theorem 5.6

With F and G as in 5.5, we have R- = Rg.

Pr oof

First we show that R; < Re. Recall that R- = sup { t = 0: |a|t“ -~ 0 as k - o }. If Rg = 0 the con-
clusion is obvious. Now suppose that 0 <t < Rg. Then as k — o we have |(k+1)ak+1|tk - 0, so that
lag.1 |tk — 0, and so does |a,,1|t“*L. Sot < Re. Since this holds for any t such that 0 < t < Rg, we must
have R; < Rg.

Now we show that Rr < R5. Again if Rz = 0 it's obvious. Now suppose that 0 < t < Rg. Then we can
take s such that t < s < Re and |a,|sX — Oask — . Thisis because Rr is a sup. Now we find that

[(K+D)ag,q [t = [aygq s (k+1)(t/9)"s.
Now, ask — o, |a,,;S**t| — 0. But (k+1)(t/s)*/s also tends to 0. This is because the series
Y (k+ 1)(t/s)¥/s is convergent, as is easily checked by the Ratio Test.
k=0

So we have shown that 0 <t < Rg implies that t belongs to the set T5 ( see 5.2 ) and so t < Rg. Thus
Re < Rg.

Now we can prove:

Theorem 5.7 The differentiation theorem for power series

Suppose that the power series F(x) = 3 a,(x— )X has positive radius of convergence R = R-. Then in the
k=0

openinterval | = (c—-R,c+R) we have
F(0 = G = 3 (k+Dausx-0f = 3 ka(x-0f?.
k=0 K=1

In particular F is continuous on I. Further, F has derivatives of all orderson I, and a, = F®(c)/k! .

Pr oof

We assume without loss of generality that ¢ = 0. We know that the power series G also has radius of
convergence R and that G is obtained from F by differentiating each term a, x* separately with respect to x.
If we do this to G, we obtain
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HX) = 5 (k+Dkaexk ™t = 3 k(k-1)ax<2
k=1 k=2

and this new series H also has radius of convergence R.
Now suppose that x is in I. Then |x| < R, so we choose some S such that |x|] < S<R. So X isin

J = (=S S). Suppose that y isalso in J. Then F(y)-F(x) = f a (yk-x¥).
k=0

We apply the mean value theorem. For each k > 1 there is some t, between x and y such that

yK=xK = (y=-x) ( derivative of the function tXat t, ) = (y-x)kt<"1. This gives

FO=FE) = 3 (y=0kadl ™ = (y=9 3 kao™ + (y=0L) = (y=980 + (y=L()
where

L(y) =
K

11\A1 8

ka (it =Xk = 3 kag(tE o -xkY)
1 k=2

If we can show that L(y) - Oasy — x, wewill have proved that F'(x) = G(X).

Now we do not know what the t, actually are, but we do know that they lie between y and x. Now we use
the mean value theorem again. For each k > 2 we can find an s, between t, and x such that

< 1-xk"1 = (t,—x) ( derivative of the function s Y at s, ) = (t, —x)(k-1)s¥"2. Thus

Ly = 3 K- Datst .

We estimate L(y). Now each s, lies between t, and x, and so in J, and so |s¢| < S. Also t, lies between y
and x, so |t,—X| < |y—x]|. Therefore

ILy)| = nl[mw|kzzk<k—1)ak<tk—x)s,b‘2| < nl[mwkzzk(k—1)|ak||tk—x||sk|k‘2

n [
< lim 3 Kk-Dlaclly-x[S72 = ly-x| 3 k(k-1)|a|s>.

But Sis less than the radius of convergence of the power series H, and so H(S) = k(k—l)akS"‘2 is
K=2

absolutely convergent, and we set M = 'y k(k—1)|ay |S"‘2. Then we have proved that if y and x both lie in
K=2
J=(-SS) wehave |[L(y)| < |[y-Xx|M - Oasy - x.

So we have proved that for all x in |,
F'(x) = G(X) = 3 kax-o.
k=1

Since G also has radius of convergence R, we can differentiate G by the same method, and we obtain, by
induction,
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k!
(k=p)!

FP(x) = g(x—c)k‘pak
K=p

for p in N and for x in I. Putting x = ¢ we get FP)(c) = pla, as required.

Example 5.8
Find the sum of the series ) 2—kk For |x| < 1 we know that
K=1
® 1
k — -
Xt = FXx = —.
kZO ( ) 1-X
So by the differentiation theorem we have, for |x| < 1,
1 k-
—— = F'(x) = § kKt
(1-x)? ¢ k;

So for |x| < 1 we have

< kxX = _X
k; (1-x)?

and setting x = 1/2 the required sum is (1/2)/(1-(1/2))? = 2.

Before proceeding further we now deal with the exponential and logarithm functions.
5.9 The exponential function

We define

f(x) = exp(x) = kZOH .

Obviously this converges if x = 0. If x# 0 we set b, = x*/k!. Then |be.,/bc| = |x|/(k+1) — O as
k — o. So the series has radius of convergence +o. Thus f is continuous and differentiable on R and

) Xk—l

f'(x) = kzl(k—l)! = exp(x) .

Now we prove some facts about exp.

FACT 1

For al real x, we have exp(xX)exp(—x)=1. In particular, exp(x) is never 0, and so exp(x) > O for all real x.
Pr oof

Clearly exp(0)exp(0) = 1.1 = 1. Also, by the product rule,

%(exp(x)exp(—x)) = exp(xX)exp(—x) + exp(xX)exp(—x)((d/dx)(-x)) = 0.

FACT 2
For all real x and y we have exp(x)exp(y) = exp(x+y).
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Pr oof
We take areal y and keep it fixed, and set
9(x) = exp(x+y)exp(-x)exp(-y) .
Then g(0) = 1.1.1 = 1 and the product and chain rules give

g'(x) = exp(-x)exp(-y)((d/dx)exp(x+y)) - exp(-X)exp(-y)exp(x+y) = O.

FACT 3

We have, for each real A, lim gx;p/\(i) = +o0
X —» +oo

Pr oof

Just choose a positive integer k such that k > A. Then for x positive we have exp(x) > (x¥)/k! . But then
(exp())/x} > (x*" M /k! - wasx » +oo,

FACT 4
We have lim exp(x) = 0.
X —» —o0
Pr oof
. 1
lim
y - +oexp(y)

Puty = —=x. Then lim exp(x) =
X —» —oo

FACT 5

exp is strictly increasing on R and exp(R) = (0, + )

Pr oof

The fact that exp is increasing follows from the fact that the derivative is always positive. Also, if ¢ is
positive, then Facts 3 and 4 imply that we can find x and y with exp(x) < ¢ < exp(y), and the intermediate
value theorem gives us some t between x and y such that exp(t) = c.

Now we define the logarithm, as the inverse function of exp . Thus log(exp(x)) = x for all real x, and
exp(log(y)) =y for al y > 0. Our rule for inverse functions gives (d/dy)(logy) = 1/( derivative of exp at

logy ) = 1/ exp(log y) = 1/y.

Powers of x
We assert first that if a is arational number, then x® = exp( a logx) for all x > 0. Why? Write a = p/q
where p and g are integers with g > 0. Then we know that (x®)@ = xP, but there is only one positive
number y such that y9 = xP. This is because the function h(y) = y%is increasing on (0, +®). Now Fact 2
above gives

(exp(alogx))?® = exp(qalogx) = exp( plogx) = (exp(logx))P = xP.

This proves the assertion.
Now if a is any real number, we just set x* = exp( a logx ) for x positive. Then we find that

a-1

(d/dx)(x?) = exp( a logx )(d%( a logx )) = (xN)(alx) = aexp((a-1) logx) = ax



-33-

Now we define the real number e by
e = exp(l) = g L
P Zoki

Then for any real x, we have €* = exp(xlog(e)) = exp(x) as expected.

Examples 5.10

i) Find the sum of the series S —.
ORZ] i kzlkz"

We set

Xk+l
k+1 °

h(x) = éo

If we differentiate h term-by-term we get % x, that is, 1/(1-x). Now the differentiation theorem tells us
k=0

that h has radius of convergence 1, and that h'(x) = 1/(1-x) for |x| < 1. Set g(x) = log(1/(1-x)) —h(x) .

Then g(0) = 0-h(0) = 0. Also, if |x| <1 we have g'(x) = 1/(1-x)-1/(1-x) = 0. So h(x) = log(1/(1-x))
. ® 1 ® 1

for |x| < 1. Putting x = 1/2 we get log2 = kZoW = k;@'

(ii) Estimate log(1.1) so that the error has absolute value less than 1073,

o K+1
From example (i) we know that for |x| <1, we have log(l/(1-x)) = Z)Ii+1 =
k=0
x+x212+x313+ x4 4+ ... So for |x| < 1, we have
log(1+x) = —log(1/(1-(-x))) = x-x%/2+x3/3-x%4+.....

Notice that this is a convergent alternating series, and that the terms have absolute value |x|¥/k, which
decreases as k increases. So for 0 < x < 1, we have

log(1+x) = x—x2/2+(x3/3-x*/4)+(x°/5-x°/6) +..... > x=x?/2.
Also

log(1+x) = x-x2/2+x3/3-(x*/4-x%/5) - (x®/6-x"/7) - ..... < x=-x?/2+x3/3.

x-x2/2 < log(1+x) < x-x2/2+x3/3

and the error which arises if we approximate log(1+x) by x—x2/2 is at most x3/3. For x = 0.1 this gives an
error less than 1072, and our approximation is 19/200.
Thisis a very useful trick for estimating functions which are represented by convergent alternating series.

Section 6 The Trigonometric Functions
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6.1 Introduction
This section will be omitted from the lectures ( and the exam! ). Every student ( hopefully! ) knows that
the derivative of sineis cosine, and that

sinx = x=x3/31+x°/5! =x"[7! +..... €))

To prove the first fact just using trigonometry is quite difficult. Consequently, some books use (1) as the
definition of sine. In this section we will prove both facts, plus some others, using mainly the mean and
intermediate value theorems.

Consider the circle T given by x2+y? = 1, the area of the enclosed region being ( by definition ) . We take
a point on T in the first quadrant, given by (x,y) = (x,\/m), with 0 < x < 1. Consider further the region
enclosed by the positive x-axis, the circle T and the straight line from (0, 0) to (x,y). Let the area of this
region be t/2. This corresponds exactly to the angle enclosed being t radians. Now we have

X =cost , y-=sint )

As x increases from 0 to 1, t decreases from 1/2 to 0. Regarding t as afunctiont = f(x) for 0 < x < 1, we
have

t = f(x) = xV1-x2+2C(X) (3)

where C(x) is the area enclosed by the positive x-axis, the circle T and the straight line from (x,0) to
(x,V1-x?).

Now suppose that 0 < u < v < 1. Then elementary geometric considerations give
(v-upV1l-v? < Cu)-C() < (v-ui-u2
Dividing through by (v —u) we see that by the intermediate value theorem we have

C(v) —C(u)

v—Uu

= -yV1-¢2 (4)

for some s lying between u and v. We also have (4) if 0 <v < u < 1 (just interchange u and v ). Letting

v~ uweseethat's ~ uandsoC'(u) = ~V1-u Thus, using (3),
% = f'(X) = (1-x)Y2 + x(1/2)(1-x?)"Y3(-2x) - 2(1-xD)Y2 = —(1-x®) V2

Using our rule for inverse functions we therefore have, for 0 <t < 1/2,
d dx — .
—(cost) = — = —-y1-x* = -y = -sint.
g (oo0s) = - v y
Also, using the chain rule,
d . dy d fa D, -1/2 .
a(smt) =5 C a(\/l—coszt) = (1/2)(1-cos’t) Y2(-2cost)(-sint) = cost.

We have thus proved the differentiation formulas, but so far only on (0,1/2).
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6.2 The Power Series
We define

S(t) = t=t3/31+t3/5 = t7 /7 + ...

C(t) = 1-t2/21 +t*/41 -t5/6! +......
Both series converge absolutely for all t ( compare with eltl). The differentiation theorem now gives
S'(t) =C(t), C'(t) = -).

We claim that S(t) = sint for 0 <t < /2. To see this, put u = §t)-sint. Then u'(t) = C(t)-cost and
u”(t) = —S(t)+sint = —u. Therefore u’(t)(u”(t) + u(t)) = 0 and so (u'(t))? + u?(t) is constant on (0,1/2).
Letting t — O+ we see that St) and sint both tend to 0. Also C(t) - 1 and cost - 1. So
(u'(t))?+u?t) - Oast — O+ and so must be O for al t on (0,1/2). In particular u(t) = 0, which is what
we wanted to prove.

Moreover, u'(t) = 0, so C(t) = cost on (0,1/2).

Now we want to show that S(t) = sint for all t. Note first that §(—t) = -§(t), C(-t) = C(t), which means
that S(t) = sint, C(t) = cost for —1/2 <t < /2. For t outside this range, sine and cosine are given by the
formulas

sin(t+m = —sint, cos(t+m) = —cost. (5)

In fact, the usual convention is to set sin(m—t) = sint, sin(t+2m) = sint , but both these formulas follow
from (5). So we just need to check that the relations (5) hold for S and C.

6.3 The Addition Formulas
For all real x andy,

S(x+y) = S(X)C(y) + C(x) K(y) (2.1)

Clx+y) = C(x)C(y) =S¥ Xy) (2.2)
We just prove (2.1), the proof of (2.2) being the same. We keep y fixed and set
U(X) = S(x+y) = S(X) C(y) - C(x) Xy).

Then it is easy to check that U"(x)+U(x) = 0 for all x, so that (U'(x))>+U?(x) is constant, by the same
argument as above. But U(0) = U'(0) = 0, as is easy to check. So U(x) = O for all x. These addition for-
mulas easily give

S(n) = 29M/2)C(1/2) = O,
since

C(/2) = Ilim C(xX) = Ilim cosx =0,
X - m/2- X - /2~
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and similarly C(m) = —-1. Further, S(2m) = 0,C(2m) = 1, and all the properties such as S(x+2m) = S(x) are
easy to check. In particular,

Sx+m = -§(x) , C(x+m) = —C(X).

This means that S(t) = sint, C(t) = cost for all t. Moreover, we also now know that the formulas (2.1) and
(2.2) hold with S,C replaced by sine and cosine respectively.

Section 7 Taylor’'s Theorem and the Taylor Series

Theorem 7.1 Taylor’s Theorem, or the n’th Mean Value Theorem

Suppose that n is a positive integer, and that f is a real-valued function which is n times differentiable on
an interval containing the points a and x # a. Then there exists c lying strictly between a and x (i.e. in
(a,x) or in (x,a) ) such that

n- 1f(k)(a)

= ()
fx) = kZO K f(c).

X—a
@) gyt + K" )"
Remarks
1. If weput n=1weget f(x) = f(a)+(x—a)f'(c) which is the ordinary mean value theorem. 2. In gen-
eral, ¢ will depend on f, n and x. 3. There are other versions of this, with different forms for the remainder
term, but this is probably the easiest to remember!

Proof of Taylor’s theorem
We keep x fixed and for y lying between a and x we set

H(y) = (kZO(X y) f(k)(y)) - f(x).

"
Then
H'(y) = —k;(k%)l)!_lf(”(ng(xg—!y’kf‘k”)(y) : %f@(w.
Now we put
6 = H) - 2=

Then G(a) = 0 and G(x) = H(xX) = 0. So by Rolle's theorem there exists a point ¢ lying between a and x

such that G'(c) = 0. This gives
, (x-o"* _ X=9" cmig) 4 nX= )
H'(c)+n (x=a)" H(a) =0, and (n—1) f (c) + (x—a)“

_(x-a)" a)

H(@) = 0.

Therefore H(a) = f(M(c) which is what we need.

As an application we prove
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Theorem 7.2 The Generalised Second Derivative Test

Suppose that n = 2 and that f is a real-valued function such that f'(a) = ...... = f(""D@) = 0, and that
f(W(a) exists and is # 0.

If niseven and f("W(a) > 0, then f has alocal minimum at a.

If niseven and f((a) < 0, then f has alocal maximum at a.

If n isodd then f does not have a local maximum or a local minimum at a.

Pr oof

We suppose first that f(™(a) > 0 (if not, we can look at —f ). Then

lim f(n—l)(x)_f(n—l)(a)
X - a X—a

> 0.

So there is some & > 0 such that f""(s) > 0 for all s in (a,a+d) and f""V(s) < 0 for al sin (a-d,a).
Now suppose that 0 < |x—a| < d. Then by Taylor’'s theorem ( with n replaced by n-1) we have, for some
S between a and x,

(-3

(n=-1)!

If nisodd, this gives f(x) > f(a) if x > a and f(x) < f(a) if X < a.

f(x) = f(a) f(0=1(s).

If niseven, we obtain f(x) > f(a) for x > a and for x < a. So we have a minimum.

Another application of Taylor’s theorem is to estimation.

Example 7.3

Estimate cos(0.1) so that the error has absolute value less than 107°.

We could do this using the power series representation for cosine, which gives an alternating series. How-
ever, we'll use Taylor’'s theorem here. With f(x) = cosx we have, for n 0N,

n-1f (k)(o) o

+ X_nf(n)(s)
k=0 k! n!

f(x) =
for some s between 0 and x. Now |f("(s)| is certainly < 1. So we need to make (0.1)"/n! < 1075, and

(k)
f (O)(o 1)% = 199/200.

n = 4 will do. Our estimate is z
7.4 The Taylor Series

Suppose that f is a real-valued function such that all the derivatives f™ exist at a. Then we can form the
Taylor series

= M)

_ k
T(x,a) = kZO K —(x—a)“.

Remarks

1. The special case where a = 0 is called the Maclaurin series of f. 2. T(x,a) is, of course, a power series.
3. The obvious question to ask is: are T(x,a) and f(x) equal? Obviously T(a,a) = f(a).

Example 1
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Suppose that f(x) is a polynomial. Let the degree of f be n—1. Then f(™(x) is identically 0, and Taylor's
theorem gives
n—1f(k)(a) o f(k)(a)

_ Kk =
S e D

(x-a)* = T(x,a)

so that the answer is always yes in this case.

Example 2

Suppose that f(x) = ) c(x—a)¥ is a power series with positive radius of convergence R and centre a.
K=0
Then we know from Section 5 that ¢, = f®(a)/k! and so f(x) = T(x,a) for |[x-a| < R.

Example 3
The functions sine and cosine equal their Maclaurin series for all x, i.e.

sinx = x=x3/31+x>/51 —..... , COSX = 1—x2/41 +x%41 — ... .

This is proved in Section 6. Alternatively, you can use Taylor's theorem with a = 0, and f either sine or
cosine. We get a remainder term f((c)x"/n!, where ¢ depends on x and n. However, f™(c) has absolute
value at most 1, and so the remainder tendsto 0 asn — oo.

Example 4
Set f(0) = 0 and f(x) = e ¥ if x £ 0. If x # 0 then f(y) = e /¥’ for all y sufficiently close to x. So we
can differentiate repeatedly and it is easy to prove by induction that for x # 0 and n a positive integer,

fW(x) = e V¥ P (1/x),

where each P, is a polynomial. Now, for any integer n,

-1/x° yn/2
lim — = lim = 0.
x -0 X y - +o ey

Using this, we can prove by induction that f((0) = 0. We know this is true for n = 0. Assuming it true for
n, we get

(M) (y) — £(N) 5
f00(0) = lim f—(i))(;i(o) = lim e Py(1/x)x 7! = 0.
X - - X -

Therefore the Maclaurin series of f is identically zero, and so does not equal f(x) for any non-zero x. So,
in general, the answer to our question above is "not necessarily".

7.5 Multiplying Power Series
Suppose that

= < —c)k - d _~\K
F() kzoak(x )", G(X) kzobk(x o,

are two power series with the same centre c, each having radius of convergence at least R > 0. Then we
know that F and G can be differentiated as many times as we like in |x-c| < R, and therefore so can
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H(x) = F(X)G(x). Now for such x and n ON, we have

H() = F®(c)GM"H(c).

zwm K)!

Thisis Leibniz’ formula for the higher derivatives of FG and is easy to prove by induction. This gives
n
HO@) /! = Y ab,_,
K=0

so that the Taylor series of H about c is

nio(kﬁoakbn_k) (x=9", )

which is the series you get if you multiply out F(X) times G(x) by long multiplication, gathering up powers
of x—c.

Theorem

With F and G as above, the series (*) is equal to H(x) = F(x)G(x) for |x-c| < R.

To prove this theorem using just real analysis is difficult. Using complex analysis it is very easy and will be
proved in Semester 3.

Example 7.5

Find a power series which represents the function f(x) = (sinx)/(1-x) for |x| < 1.

We have sinx = x-x3/3!+...... for all x and 1/(1-x) = 1+x+x%+x3+.... for |x| < 1. Sofor |x| <1
we have f(x) = x+x%+x3(1-1/31)+x%1-1/3)+.....

Section 8 Indeterminate Forms

8.1 Introduction
Consider the limit

. x4x-2
lim ———=
x -1 X°-=1

Both numerator and denominator approach 0 as x — 1. However, the limit may still exist. Such a limit is
called an indeterminate form. To develop a quick way to evaluate similar limits, we first need:

Theorem 8.2 Cauchy’s mean value theorem
Suppose that f,g are real-valued functions continuous on [a, b] and differentiable on (a, b). Then there
exists ¢ in (a, b) such that

(f(b) - f(a))g'(c) = (g(b) —g(a))f'(c).

The Proof consists of just taking the function h(x) = (f(b) - f(a))(g(x) —g(a)) - (g(b) —g(a))(f(x) - f(a)).
Since h(a) = h(b) = 0 we obtain a ¢ with h'(c) = 0 from Rolle’s theorem.
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Theorem 8.3 L' Hbpital’s rule, first version

Let "lim" stand for any of lim , lim , lim , Ilim , Ilim . If limf(x) =limg(x) = 0 and
X - at X - a— X—>a X - +ow X —» —oo
lim L0 =
9'(x)

(finite or infinite ) exists, then

lim @
9(x)
exists and is the same.
Pr oof
f'(x)

We first consider the case of lim . Since Ilim =~ exists, there must be some d > 0 such that
X - a+ x - a+Q'(X)

g'(s) # 0 for a<s< a+9, since f'(s)/g'(s) is defined. We set f(a) = g(a) = 0 and this makes f,g con-
tinuous on [a, a+d]. We also have g(x) # 0 for x in (a, a+ 9], for otherwise Rolle’'s theorem would give us
an s between a and x with g'(s) = 0.

Now take x such that a < x < a+d. Then by Theorem 8.2 thereisac, in (a, x) such that

(fO)—f(@)g'(c) = (g —g(@)f'(c) -

This gives f(x)/g(x) = f'(c,)/g'(cy). Now asx — a+ we seethat ¢, — a+ and so f(x)/g(x) — L.

The proof for lim isthe same.
X - a—

Now we consider the case where "lim" is lim . Here we set F(x) = f(1/x) , G(X) = g(1/x). Then

X —» +oo

[im F(x) = lim G(x) = 0. Now
X - 0+ X - 0+

r 1 — 2 r r
L= tim B0 o g DAy, GIDOTAR) iy B9
x - +wg'(X) x - 0+g'(1/x) x - 0+(—1/x%)g'(1/x) x - 0+ G'(X)

By the first part, the last limit is |in’(l) FX)/IG(X) = lim f(x)/g(x).
X - 0+ X - +00

Examples 8.4

. . x¥®+x-2 . . 16x®+1 e
1. Consider lim X ZX—. The rule applies and we can look at |im 6X2X— = 17/2. So the first limit

X -1 X"- X -1

is 17/2.

x—sm_x_ Applying the rule, we look at lim 1__COSX
x - 01-cosx x - 0 Sinx
apply the rule again, and look at Iimoﬁ = 0. So the second limit is O and so is the first. We could
X —

also use power series here. We can write, for x # 0,

2.

. This is again indeterminate, but we can

X—Sinx

= (X331 =x3/51+..)[(x?[21 =x*] 41 +...) = x(1/31-x?/51+..)/(1/2' -x?/4l+..) - O
1-cosx

ax - 0.
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3. lim

X - +oo
convert it to the form covered above, but the computations will be very tricky. Instead, we wait for
L'Hopital’s second rule ( 8.5).

log(1+€9) o . .
— This is slightly different, as numerator and denominator both tend to +e. We could

2
X“+1 . - Lo . .
71 We CANNOT legitimately apply L'Hopital’s rule here, as the limit is NOT an indeterminate

4. lim
X - 1X

form. Thisis because x?+1 — 2 # 0 asx — 1. In fact, the required limit does not exist.

5. Iimoﬁi. Again, we COULD use power series. Applying L'Hopital’s rule, we need to look at
X —

1/(cosx) — 1asx — 0. So therequired limit is 1.

2 .
6. ”mo&sinrfy' This is an indeterminate form. If we apply the rule, we need to look at
X —
lim02xsm(1lc>2$—xcos(1/x). However, this limit does not exist. This is because xsin(1/x)/cosx - 0 as
X -

X — 0, but cos(1/x)/cosx has no limit asx — O.
This does not mean, however, that the required limit does not exist, as the rule says nothing about this case.
In fact, since sin(1/x) is bounded, we see from Example 5 that the required limit is 0.

7. lim (1+1/x)*. If we take logarithms, we need to look at lim xlog(1+1/x) = lim log(1+y) .

X —» +oo X —» +oo y - 0+ y
Applying the rule, we look at |im VQa+y)

y - 0+

= 1. So the required limit is e, since the exponential func-

tion is continuous at 1.

Now we prove the second version of L'Hopital’s rule.

Theorem 8.5
Let "lim" be asin 8.3. Suppose that lim f(x) is +o or —o and lim g(X) is +o or — oo,
If Iimf,(x) exists and is L ( finite or infinite ) then Iimm existsand is L.

9'(x) a(x)

Pr oof
We prove thisonly for lim . For lim we can use the same trick asin 8.3.

X - a+ X - 400
Since limf'(x)/g'(x) is assumed to exist, we see again that there must be some § > 0 such that g'(s) # O
fora<s<a+d.
We prove simultaneously the cases L OR and L = +o (if L = —o look a —f/g ). Take an € > 0 and an
M > 0. We know that there is some p > 0 such that p < d and such that a <y <b =a+p implies that
f'(y)/g'(y) belongsto (L—&/2,L+¢/2) (if Lisfinite) or (2M , +o0) (if L = +00).
Now suppose that a < X < b = a+p. Then there exists ay with x <y < b such that

(f(b) =10 g'(y) = (9(b) =90 (y) -

This gives

(f(b) = f(x))/(a(b)-9(x) = f'(y)/g'(y) -
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Dividing by g(b)-g(x) is legitimate, for if g(b) = g(xX) we would obtain some s with x < s< b and
g'(s) = 0, which we have ruled out. Thus (f(x)-f(b))/(g(x)—g(b)) belongs to (L-¢/2,L+¢&/2) or to
(2M , + ). Now we write

f - f¥ fo) - f(b)  g(x) —g(b)
9 f¥)-f(b) gx)-gb)  a9(x)

Asx — a+, thefirst and last terms tend to 1, while the second term liesin (L—&/2, L+¢&/2) or (2M , + ).

Therefore if x is close enough to a, then f(x)/g(x) liesin (L-g,L+¢) or (M, +), which is exactly what
we needed to show.

Examples 8.6

+ X[ (1+

1. lim Ig;(lTe") Therule 8.5 tellsusto look at  lim M = 1. So the required limit is e.

X —» +oo X - 4o

. logx . 1/x . —sin’x .

2. lim . Weneedtolook a lim ————— = [|im . Thisis, using Example 5 of

x — 0+ COSEC X x - 0+ —COt X COSEC X — 0+ XCOSX
8.3, equal to 0. So the required limit is 0.

loglog x

3. lim (logx)Y*. We take logarithms and look at lim

X - +o X - +oo

Applying 85 we look at

lim

X —» +oo

y()(llix) = 0. The required limit is therefore €° = 1.

, . log(cosx
. We take logarithms and look at |im % The rule tells us to look at
X - 0+ X

2
4. lim (cosx)/*
X - O+

—tan . —sec? i
lim 22X = i X = _1/2. So the required limit is e"%/2.
x - 0+ 2X X — 0+
. . . o i .
5. lim (sinx)¥'°9* We take logarithms and look at lim 709(3””(), and so a lim &% =
X — 0+ x - 0+ logx x — 0+ 1/X
. cos . oo
lim X—_—X = 1. Therequired limit is therefore e.
X - 0+ SINX
Section 9 Integration
Example 9.1

Consider the curvey = x?, 0 < x < 1 and the area A bounded by this curve, the positive x-axis, and the line
from (1, 0) to (1, 1) ( the area "under the curve" ). We determine this area without using calculus. Of
course, calculus tells us to expect the answer 1/3.

We proceed by dividing [0, 1] into n equal sub-intervals, each of length 1/n, this for n ON. Then the part
of the required area between x = (k-1)/n and x = k/n may be enclosed in a rectangle of base 1/n and
height (k/n). Thus

A <

(k/ny?/n = (
k=1

kZ) n~3 = n(n+1)(2n+1)/6n°.
1

M =
TI_M:

( The last fact used is easily proved by induction on n. ) Now n(n+1)(2n+1)/6n® is always greater than
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1/3 and tendsto 1/3asn — oo,
We can also see that the part of the required area between x = (k—1)/n and x = k/n encloses a rectangle of
base 1/n and height ((k—-1)/n)2. Thus

A > (f(k—l)z)n‘3 = (n-1)n(2n—1)/6n°.
k=1

The last quantity is always less than 1/3 and tends to 1/3 asn — o. Thus A must equal 1/3.
X

The main idea of this section is to write, for a continuous function f, F(X) :f f(t) dt and to show that
a

F'(x) = f(x). This will give rise to the familiar method of integrating by using anti-derivatives. To do this,
we need to define what we mean by the integral. It may be tempting to define it as the "area under the
curve", but this would lead to at least 3 difficulties.

1. How do you know that the area exists? f may be a very messy curve, such as the continuous, nowhere
differentiable function in Section 4.

2. What if f changes sign, as, for example, xsin(1/x) does infinitely often?

3. How would you prove that the integral of f+g isthat of f plus that of g?

We shall use a method known as Riemann integration.

Definitions 9.2

Let f be a bounded real-valued function on the closed interval [a, b] = |. Henceforth a < b unless other-
wise explicitly stated. Assume that |f(x)| < M for al x in I.

A PARTITION P of I is a finite set { Xg,.....X, } such that a = Xy < X; < .... < X, = b. The points x; are
called the vertices of P. We say that partition Q of | is a refinement of partition P of | if every vertex of P
isavertex of Q (i.e., crudely speaking, P is a "subset" of Q). For P as above, we define

M (f) =sup{ f(X): X1 < x<x} <Mand m(f) =inf { f(X):x_; <XxX<X } =-M.

Further, we define the UPPER SUM

UP.H) = 3 M(F)(X=%Xc-1)

and the LOWER SUM

LP.H) = 3 m(£)04—%1) -

Notice that L(P,f) < U(P,f). The reason we require f to be bounded is so that al the m, and M, are finite
and the sums exist. Notice also that —M < m, < M, <M for each k, and so -M(b-a) < L(P, f) <
U(P, f) < M(b-a).

Suppose that f is positive on | and that the area A under the curve exists. Reasoning as in 9.1, it is not hard
to see that L(P,f) < A < U(P,f) for every partition P of I. In our Example 9.1, we had f(x) = x? and
P={01/n,...,(n-1)/n,1}, while M, (f) = (k/n)?, m(f) = ((k-1)/n)2.

Further, if you draw for yourself a simple curve, it is not hard to convince yourself that refining P tends to
increase L(P,f) and decrease U(P,f). We prove this as a lemma.

Lemma 9.3



Let f be a bounded real-valued function on | = [a, b].
(i) If P, Q are partitions of | and Q is a refinement of P, then

L(P.f) < L(Q.f) , UP,f) = UQ.T).

(i) If P; and P, are any partitions of |, then L(P;,f) < U(P,,f). Thus any lower sum is < any upper sum.

Pr oof

(i) We first prove this for the case where Q is P plus one extra point. The general case then follows by
adding points one at atime. So suppose that Q is the same as P, except that it has one extra vertex c, where
Xg—1 < € < X. Then

UQ.H)-UP.f) = (sup{ f():x-1sxsc})(Cc—X-1) +(sup{ f(x):c<sx<x})(—c)-

(sup { f():Xe-1 < X <X } ) (= Xg-1)-

This is using the fact that all other terms cancel. Now comparing the sups we see that U(Q,f)-U(P,f) < 0.
The proof for the lower sums is the same idea.

(if) Here we just set P to be the partition obtained by taking al the vertices of P; and all those of P,. We
arrange these vertices in order, and P is a refinement of P, and of P,. Now we can write

L(P,,f) < L(P,f) < U(P,f) < U(P,,T).

Definitions 9.4 The Riemann integral
Let f be bounded, real-valued on | = [a, b] as before, with |f(x)| <M there. We define the UPPER
INTEGRAL of f from atob as

f g f(x) dx = inf{ U(P,f):P apartition of I } .

This exists, because all the upper sums are bounded below by —M(b-a) ( see 9.2 ). Similarly we define
the LOWER INTEGRAL

f b f(x) dx =sup { L(P,f):P a partition of I }.

Again this exists, because all the lower sums are bounded above by M(b-a).
Now we define what it means to be Riemann integrable. We say that f is Riemann integrable on | if

fg f(x) dx = f b f(x) dx

b
and, if so, we denote the common value by f f(x) dx.
a

Notice that the lower integral is always < the upper integral, because of 9.3, (ii). Also, if f is Riemann
integrable and positive on | and the area A under the curve exists, then the fact that L(P,f) < A < U(P,f)

for every partition P of | implies that the lower integral is < A and the upper integral is > A, which means
b

that A equals f f(x) dx. As usual in integration, it does not matter whether you write f(x) dx or f(t) dt

a
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etc.

Example 9.5
Define f on | = [0, 1] by f(x) = 1 if x is rational and f(x) = O otherwise. Let P = { X,,.....X, } be any
partition of I. Then clearly M, (f) = 1 for each k, since each sub-interval [x._q, X,] contains a rational

n
number. Thus U(P,f) = 5 (X—Xc-1) = 1 and so the upper integral is 1. Similarly, we have m(f) = 0

for each k, all lower sums are 0, and the lower integral is 0.

We aim to prove that continuous functions are Riemann integrable, and to do this we need the following
result.

Theorem 9.6 Riemann’s criterion

A bounded real-valued f function on | = [a, b] is Riemann integrable if and only if the following is true.
For any positive number € which is given, we can find a partition P of | ( which may depend on ¢ ) such
that U(P,f) -L(P,f) < &.

Pr oof

b
Suppose first that f is Riemann integrable, and that ¢ > 0. Let L :f f(x) dx. Since L is the inf of the
a

upper sums, we can find a P; such that U(P;,f) < L+&/2. Since L is the sup of the lower sums, we can
find a P, such that L(P,,f) > L—&/2. Asin (9.3), we now define P to be the partition consisting of all
vertices of P; and of P,, so that P is a refinement of both P;. Now, using 9.3,

L-¢&/2 < L(P,,f) < L(P,f) < U(P,f) < U(Py,f) < L+g/2.

Now we prove the converse, and assume that f is NOT Riemann integrable on |I. Then the upper integral
must be > the lower integral, and we can write, for some ¢ > 0,

[Rfd = [ 2 f()dx-e.

But every lower sum is < the lower integral, and every upper sum is > the upper integral. Thus for every
partition P we have U(P,f)-L(P,f) = €. So if f is not Riemann integrable, there is some ¢ > 0 for which
Riemann’s criterion cannot be satisfied. Therefore if Riemann’s criterion can be satisfied for every ¢ > 0,
the function f must be Riemann integrable on I.

Before proving that continuous functions are Riemann integrable, we first deal with the rather easier case of
monotone functions.

Theorem 9.7

Suppose that f is a monotone function on | = [a, b]. Then f is Riemann integrable on I.

Pr oof

We only deal with the case where f is non-decreasing. The non-increasing case is similar. Now if
f(b) = f(a) then f is constant on | and so the result follows from Problem 70. If f(b) > f(a) we proceed as
follows. Let ¢ > 0. If we can find a partition P such that U(P,f)-L(P,f) < ¢, then we have proved that f
is Riemann integrable on I.
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We choose a partition P = { Xg,...,X, } such that for each k we have x, —x,_; < &/(f(b) - f(a)). Now, since
f is non-decreasing we have M, (f) = f(x,) and m(f) = f(xc_;). Thus

UP.f)-L(P,f) = él (M(F) = M £)) = Xe1) = kﬁl(f(xk)—f<xk_1))(xk—xk_1) <

n

< kzl(f(Xk)_f(Xk—l))£/(f(b)—f(a)) = (f(xy)—f(x))e/(f(b)-f(a)) = €.

To handle the case of continuous functions, we need the following.

Theorem 9.8

Let f be a continuous real-valued function on the closed interval | = [a, b] and let € > 0. Then there exists
ad > Osuchthat |f(x)-f(y)| <& foral xandy inl suchthat [x-y| < 9.

Remark

This property is called UNIFORM continuity, because the & does not depend on the particular choice of x
or y. The theorem is NOT true for open intervals, as the example h(x) = 1/x, | = (0, 1) shows. To see this,
just note that h(1/n)-h(1/(n-1)) = 1 for al nON, but |1/n-1/(n-1)| = 1/n(n-1), which we can make as
small as we like.

Proof of 9.8

Suppose that € > 0 and that NO positive d exists with the property in the statement. Then, for each n ON,
1/nis not such a . Thus there are points x, and y,, in | with |x,-y,| < 1/n, but with | f(x,) = f(y,)| = €.
Now (x,) is a sequence in the closed interval |, and so is a bounded sequence, and therefore we can find a
convergent subsequence (X, ), with limit B, say. Since a <X, < b for each n, we have BOI. Now
X =Yk, | - 0 as n - «, and so (y,) aso converges to B. Since F is continuous on |, we have
f(x,) - f(B) asn - o and f(y,) - f(B) asn - c, which contradicts the fact that |f(an)—f(Ykn)| is
always = ¢. This contradiction proves the theorem.

Theorem 9.9

Let f be continuous, real-valued, on | = [a, b] (a <b ). Then f is Riemann integrable on I.

Pr oof

We use 9.6 again. Let £ > 0 be given. We choose a d > 0 such that for al x and y in | with |[x-y| < J we
have |f(x) - f(y)| < e/(b—a). We choose a partition P = { Xg,...,x, } of | such that, for each k, we have
X = X1 < 0. Now take a sub-interval J = [X_1, X]. We know from Section 3 that there exist ¢ and d in
J such that for al x in J we have f(c) < f(x) < f(d). This means that M, (f) = f(d) and m(f) = f(c). But
|[c—d| < d and so M (f)-m(f) = f(d)-f(c) < e/(b—a). This holds for each k. Thus

UPH-LPA = 5 (M)-mD0sHo) < E/0-a) 3 (xen) = ¢

This proves exactly what we need.
Theorem 9.10
Suppose that f and g are Riemann integrable on | = [a, b] and that f(x) < g(x) for al x in I. Then

b b
f f(x) dx < f g(x) dx . Suppose that h is continuous on [a, b]. Then
a a
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b b
|f h(x) dx]| s] [h(x)| dx .

Pr oof

The first part is easy. For any partition P of | we have U(P, f) < U(P, g) and so the upper integral of f,
which is the inf of the upper sums, is < the upper integral of g. But the upper integral of f is the same as
the integral of f, and the same thing is true of g.

The second part is aso easy. Since U(P, —h) = —L(P, h) and L(P, —h) = —U(P, h) for any partition P, we
b b b b

have f -h(x)dx = - f h(x)dx. Therefore, | f h(x) dx| is either f
a a a

a

h(x) dx or f ’ -h(x) dx and

a

b

both of these are, by the first part, less than or equal tof [h(x)| dx .
a

Theorem 9.12

(i) If fiscontinuouson [a, b] and a < ¢ < b then

’ f(x) dx + ’ f(x) dx = ’ f(x) dx .
J. J I,

Pr oof
We just take a partition P of [a, c] and a partition Q of [c, b] and combine them to form a partition R of

[a, b]. Remembering that all upper sums are > the integral, we have U(P, f)+U(Q, f) = U(R, f) =

b
f f(x)dx. This is true for any partition P of [a, c] and any partition Q of [c, b]. Taking the inf over all
a

c b
partitions P of [a, c] we getf f(x)dx+U(Q, f) zj' f(x)dx. Now we take the inf over all partitions Q
a

a

c b b
of [c, b] and we get f f(x)dx + f f(x)dx > f f(x)dx.
a C a
b

Similarly, L(P, f)+L(Q, f) = L(R, f) sj' f(x)dx. Taking the sup over P and Q we get

a

IC f(x)dx+fb f(x)dx sfb f(x)dx.

Definitions 9.13

a b a
If b < a wejust DEFINEI f(x) dx = —f f(x) dx . We also definef f(x) dx = 0.
b a

a
With this convention, Theorem 9.12 gives

fb f(x)dx=fc f(x)dx+fb f(x) dx ,

provided f is continuous on a closed interval containing a, b and c. Now we can prove a key result.
Theorem 9.14

X

(i) Let h be continuous on R and let a OR. Set H(x) :I h(t) dt. Then H'(x) = h(x) for all x OR.

a
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X

(ii) Let f be continuous on | = [a, b]. Set F(x) :f f(t) dt. Then F is continuous on [a, b] and

a
F'(x) = f(x) fora<x<h.
Part (ii) is called the ( first ) fundamental theorem of the calculus. It also explains where the mean value
theorem gets its name from. For the mean value theorem tells us that there is some c in (a, b) such that
(F(b)-F(a))/(b—a) = F'(c) = f(c). But this tells us that f(c) = F(b)/(b-a) = ( average of f on | ).
Proof of 9.14
(i) For x # ¢ we have

X
H(x) — H(c) :f h(t) dt.
Cc
Let £ >0 be given. Then we know that there is some & >0 such that |t-c| < J implies that
|h(t)-h(c)| < e/2. Soif c < x < c+0 we get, using 9.10 and Problem 70,

(x=c)(h(c)—¢/2) = f " (h(c) —&/2)dt < f " h(t)dt < f " (h(c) +&/2)dt = (x—c) (h(c) +&/2)

C

and so

<égl2<e.

‘ HOO=HE©)

X—C

The same thing works for c—9 < x < ¢. Because we can do this for any £ > 0 this shows that
lim (H(x) —H(c))/(x—c) = h(c) and so H'(c) = h(c).
X - C

(ii) To see that F is continuous on I, let M be the maximum of |f(x)| on this interval. Then for y,zOl we
have, using (9.10) and (9.12),
y
IFY)-F@)| = f f() dt
4
To see that F has derivative f, we set h(x) = f(a) for x < a and h(x) = f(x) for a < x < b and h(x) = f(b)

for x > b. Then h is continuous on R. Defining H as in part (i) we have H'(x) = h(x) for al x in R. But for
a < x < b we have H(X) = F(x) and h(x) = f(x), so that F'(x) = f(x).

< M|y-z|, so that obviously F(y) - F(2) asy - z.

Theorem 9.15 The second fundamental theorem of the calculus
Suppose that F, f are real-valued functions on [a, b], that F is continuous and f is Riemann integrable on
[a, b], and that F'(x) = f(x) for al x in (a, b). Then

fb f(x) dx = F(b)-F(a).

Proof .
The proof is based on the mean value theorem. Let P = { Xg,...,X, } be any partition of [a, b]. Then by
the mean value theorem there exist points t, satisfying x,_1 < t, < X, such that

FO-F@ = 3 (F00-FOn) = 3 (06
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But this means that L(P,f) < F(b)-F(a) < U(P,f). Hence the lower integral of f is a most F(b)-F(a),
and the upper integral of f is at least F(b) —F(a). But the lower and upper integrals of f are, by assumption,
the same.

Theorem 9.16 Change of Variables Formula
Let a < b and let g be areal-valued function such that g' is continuous on [a, b]. Let f be real-valued and
continuous on an interval [A, B] containing g([a, b]). Then

g(b) b
f f(u) du = f f(g(t)) g’ (t) dt .
g(a) a

Pr oof
We first extend f to all of R by setting f(x) = f(A) for x < Aand f(x) = f(B) for x > B. Now we set

y
F(y) = f f(u) du . Then by 9.14 we have F'(y) = f(y) for all real y. Thus F is differentiable, and so
g(a)

continuous, on R. Hence H(x) = F(g(x)) is continuous on [a, b] and for a < x < b the chain rule gives us
H'(x) = f(g(x))g’'(x). So by 9.15 we have

b

C)
f f(9())g' () dx = H(b)-H(a) = F(g(b)) -F(9(a)) = fg f(u) du.

g(@)

9.17 Improper integrals

Suppose that we have a function f continuous and real-valued on the interval [a, +). We cannot integrate
f on this interval using the above method, because we would need infinitely many vertices x, in a partition.
However, if a < L < +o the integral of f from a to L certainly exists. So we set

fm f(x) dx = Llinlm(fL f(x) dx)

if thislimit exists AND IS FINITE. In this case, we say that the integral converges, and in all other cases
( no limit, or infinite limit ) we say that the integral diverges. Such an integral is called an improper
integral of the first kind.

+ 00

It is fairly obvious that if a < b < +o thenf

f(x) dx converges iff f f(x) dx converges. Thisis
a b

b fL f(x) d fb
ecause X) X =

a

f(x) dx +IL f(x) dx .
b

Examples 9.18
+ 00 L

1.f e™dx (AOR). Welook at (for A # O)f e™dx = (--1)/A. If A > 0 then this tends to
0 0

+ow aslL — +oo, and so the improper integral diverges. If A < 0then (" -1)/A — -1/AasL - +o and

L
the improper integral converges, its value being —1/A. Clearly A=0 giveﬁf ldx =L and the
0

improper integral diverges.

+ 00 L
2.f 1/xPdx (pOR). If p# 1thenf 1/xPdx = (L'*"P-1)/(1-p) which, asL — +oo, tends to
1 1
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L

+oo if if p<landto -1/(1-p)if p>1 Forp= 1wegetf 1/xdx =logL - +wasl —» +ow, So
1

this improper integral diverges unless p > 1, in which case its value is 1/(p—1).

Theorem 9.19
+ o0

Let f be non-negative and continuous on [a, + ). Thenf f(x) dx converges if and only if the follow-
a

ing is true. There is a positive constant M such that for every L with a<L < +o we have

L
f f(x)dx < M.
a

This is analogous to the theorem that an infinite series with non-negative terms converges iff the partial
L

sums are bounded above. The Proof just consists of noting that h(L) = f f(X) dx is non-decreasing on
a

[a, +o) and so hasalimitasL — +o. Thislimit is finite iff h is bounded above.

Theorem 9.20 The Integral Test

+ oo

Suppose that f is a function continuous, non-negative and non-increasing on [1, +o). Then f f(x) dx
1

converges iff the series E f(k) converges.
k=1

Pr oof
We just note that, if N > 2 is an integer, then

N N k
f f(x) dx = z(f f(x) dx).
1 k=2\Jk-1

Also

f(k) < fkkl f(x) dx < f(k-1).

N

N N-1
2 10 < fl fogdx < 5 (K. (1)

Suppose then that the improper integral converges. Then there is a constant M such that the integral from 1
to Nisaways < M, and so the partial sums of the series are bounded above.

Suppose now that the series converges. Then the partiad sums of the series are bounded above, by K, say.
Take L > 1 and choose an integer N > L. Then we see from (1) that the integra from 1 to L is bounded
above by K, and so the improper integral converges.

As an example, we see at once that 9.19 proves that the series Y kP converges if p > 1 and diverges
k=1

otherwise.

Theorem 9.21 The comparison test
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Suppose that f and g are continuous real-valued functionson | = [a, +c) with |f(t)| < g(t) for al tinI. If

+ oo
f g(t) dt converges, then f
a

a

+ 00

+ o0 + o0
f(t) dt converges, and | f f(t) dt| < f g(t) dt .
a a

Pr oof

L
We know from 9.19 that there is a constant M such thatf gt)ydt < M for dl L >a. Thus, for all
a
L + o0
L > a,f |f(t)| dt < M, and sof | f(t)| dt converges. Also 0 < f(t) + | f(t)| < 2g(t) for al t > a,
a a
so that f f(t) + | f(t)| dt converges.
a

L L
So there are real numbers A and B such that f f)+|ft)| dt - A andf |f(t)| dt — B as
a a

L
L - +oo, Thusf f(t) dt — A-BasL — +o. Here we have used Problem 71.

a

L L L
The last assertion just follows from the fact that |f f(t) dt| sf |f(t)] dt s[ g(t) dt .
a a a

Examples 9.22
+ 00 +oo0

e ' dt. It suffices to Considerf et dt. On the range of integration we now have

1. Consider f
1

0
e < e, So using 9.19 we see that the required improper integral does converge.

+ 00

2. Considerf e/'t"Y2dt. The integrand is here =t 2 the corresponding integral of which
1

diverges. Thus this integral diverges.

T logt

T+00 dt. We can do this one two ways. The first is to note that for t > 1 we have

1
(logt)/(1+t% < (logt)/t* and (logt)/t tends to O as t — +ow. So there is some M such that

3. Consider f

+ oo

(logt)/(1+t% <t 3 for t = M. Thusf (logt)/(1+1% dt converges and therefore so does the required
M

L
integral. The second way is to start as before, and then to CALCULATEI (logt)/t* dt using integration
1

by parts, and finally to look at the limit asL — +oo ( details omitted ).
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