G12RAN Real Analysis

Exercises 1: Solutions to questions 1-5

(a) There are many examples. A polynomial which does the trick is

$$
f(x)=x^{3}-x
$$

This is not injective, since for example

$$
f(-1)=f(0)=f(1)=0
$$

Can you prove that f is surjective? For now a sketch of $y=f(x)$ is good enough, but the "real reason" that f is surjective is the Intermediate Value Theorem coming up later in the module.
(An alternative is to use part (c), or even easier, take

$$
f(x)=\left\{\begin{array}{cc}
x & \text { if } x \geq 0 \\
x+1 & \text { if } x<0
\end{array}\right.
$$

You should check the properties of this function.)
(b) One standard example is the function

$$
f(x)=e^{x}
$$

As a function from \mathbb{R} to $(0, \infty)$, this is a bijection. But as a function from \mathbb{R} to \mathbb{R} it is injective but not surjective. (You can assume the standard properties of these standard functions.) An alternative is to use the function f defined by

$$
f(x)=\left\{\begin{array}{cc}
x & (x \geq 0) \\
x-1 & (x<0)
\end{array}\right.
$$

Again, you should check the properties of this function.
(c) The function $f_{1}(x)=\frac{1}{x}$ is clearly a bijection from $(0,1)$ to $(1, \infty)$. So the function

$$
f_{2}(x)=\frac{1}{x}-1 \quad\left[=\frac{1-x}{x}\right]
$$

has the required properties.

2 For example, take $a_{n}=0, b_{n}=\frac{1}{n}(n \in \mathbb{N})$. Then $\left(a_{n}, b_{n}\right)=\left(0, \frac{1}{n}\right)$. These intervals are clearly nested, with $\left(a_{1}, b_{1}\right) \supseteq\left(a_{2}, b_{2}\right) \supseteq \ldots$ However there is no point of \mathbb{R} common to all these intervals, for if $c>0$ then $\exists n$ with $\frac{1}{n}<c$ and then $c \notin\left(0, \frac{1}{n}\right)$. [Any $n>\frac{1}{c}$ will do.] Clearly no c in $(-\infty, 0$] is in any of the intervals.

In terms of infinite intersections we have

$$
\bigcap_{n \in \mathbb{N}}\left(0, \frac{1}{n}\right)=\bigcap_{n=1}^{\infty}\left(0, \frac{1}{n}\right)=\emptyset
$$

3 We are given that A, B are countable.
If either A or B is empty then the result is trivial. Otherwise we can find a sequence $\left(a_{n}\right)$ using up all the elements of A (there may be repeats) and a sequence $\left(b_{n}\right)$ using up all the elements of B. But then the sequence $a_{1}, b_{1}, a_{2}, b_{2}, \ldots$ uses up all the elements of $A \cup B$, and so $A \cup B$ is countable.
[We have made use of the fact that a set X is countable if and only if X is empty or there is a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ which uses up all the elements of X.]

4 There are many ways to do this. One way is to use the fact that $\mathbb{N} \times \mathbb{N}$ is countable, and \mathbb{Z} is countable.

Choose a surjection $f: \mathbb{N} \longrightarrow \mathbb{Z}$, and define $g: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{Q}$ by

$$
g((i, j))=\frac{f(i)}{j} \quad((i, j) \in \mathbb{N} \times \mathbb{N})
$$

Then g is a surjection from $\mathbb{N} \times \mathbb{N}$ on \mathbb{Q}. Since $\mathbb{N} \times \mathbb{N}$ is countable, so is \mathbb{Q}.
Alternatively, consider the following array:

every rational number appears (many times) in this array. The path shown shows one of many ways to form a sequence which includes all rational numbers: the sequence starts

$$
\frac{0}{1}, \frac{1}{1}, \frac{0}{2}, \frac{-1}{1}, \frac{-2}{1}, \frac{-1}{2}, \frac{0}{3}, \cdots .
$$

Note that the second method is similar to the proof that $\mathbb{N} \times \mathbb{N}$ is countable given in lectures.
(a) Set $S=\max \{\sup A$, $\sup B\}$. We show that $S=\sup (A \cup B)$. To prove this we must show (i) S is an upper bound for $A \cup B$ and (ii) whenever $t<S$, then t is not an upper bound for $A \cup B$.
(i) Let $x \in A \cup B$. Then $x \in A$ or $x \in B$. Suppose that $x \in A$. Then $x \leq \sup A \leq S$, so $x \leq S$. Similarly, if $x \in B$ then $x \leq \sup B \leq S$. Thus in all cases, $x \leq S$ and so S is an upper bound for $A \cup B$.
(ii) Let $t<S$. We show that t is not an upper bound for $A \cup B$. We know $S=\sup A$ or $S=\sup B$. First suppose that $S=\sup A$. Then $t<\sup A$, so, by the definition of sup, there is an x in A with $t<x \leq S$. But then $x \in A \cup B$ and $x>t$, so t is not an upper bound for $A \cup B$. The case where $S=\sup B$ is similar.
(b) No. For a counterexample, consider e.g. $A=\{0,1\}, B=\{0,2\}$. Then $A \cap B=\{0\}$, so $\sup (A \cap B)=0$, while $\min (\sup A, \sup B)=\min (1,2)=1$.

