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G12RAN Real Analysis

Exercises 1: Solutions to questions 6-10

There are many possible correct proofs of all these results and also many which are incorrect!

6 If either A or B is empty, then A × B is also empty, and so is countable.

Otherwise, there are sequences (an) ⊆ A, (bn) ⊆ B such that each element of A appears at least
once in the sequence (an) [(an) “uses up” the elements of A] and each element of B appears at least
once in the sequence (bn).

But then each element of A × B appears at least once in the sequence

(a1, b1), (a1, b2), (a2, b1), (a1, b3), (a2, b2), (a3, b1), . . . .

(as in the proof that N × N is countable) and so A × B is countable.

NOTE: The sets A,B may be finite here.

Alternatively, you can quote the result that N×N is countable, and argue as follows: with (an), (bn)
as above, define

f : N × N −→ A × B

by
f ((m,n)) = (am, bn).

Then f is a surjection from N × N onto A × B. Since N × N is countable the standard theory tells
us that A × B is also countable.

7 Note: it is not enough to prove (by induction) that each of the finite unions A1 ∪ A2 ∪ · · · ∪ An is
countable. (After all, each of the sets {1, 2, . . . , n} is finite but N = {1, 2, 3, . . . } is not a finite set, so
why should the corresponding argument be valid using the word countable instead of finite? Some
things can change when you look at the union of ALL of the sets and comparing with properties of
the finite unions).

Strictly speaking, you should not assume that all of the sets An are infinite (though this is the main
case of interest). Some may even be empty! To avoid any problems, you can set Bn = An ∪ N.
Then, by Question 5, Bn is countable and infinite. Since

⋃

n∈N
An ⊆

⋃

n∈N
Bn, it is enough to prove

that
⋃

n∈N
Bn is countable (the result then follows, for every subset of a countable set is countable).

We know that N × N is countable. For each n ∈ N let fn be a surjection (or a bijection if you like)
from N onto Bn. Now define

f : N × N −→
⋃

n∈N

Bn

by
f ((i, j)) = fi(j)
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(for all (i, j) in N × N).

Then, by the choice of the functions fn, f is a surjection from N×N onto
⋃

n∈N
Bn, and so

⋃

n∈N
Bn

is countable, as claimed.

[As usual, there are many alternatives using sequences.]

8 Since h(x) = 0 for all x 6= 0, (N.B. the value h(0) is NOT relevant!) we have, clearly,

lim
x→0−

h(x) = lim
x→0+

h(x) = 0.

Thus limx→0 h(x) exists and = 0.

To find limx→0 h (h(x)), we should carefully establish what h (h(x)) is.

For x 6= 0, h(x) = 0, so h (h(x)) = h(0) = 1.

For x = 0, h(x) = 1, so h (h(x)) = h(1) = 0.

Thus,

h (h(x)) =

{

1 if x 6= 0,
0 if x = 0.

This gives us, clearly, limx→0 h (h(x)) = 1.

Note: this is not equal to h (h(0)), but (by chance) is equal to h (limx→0 (h(x))) (this does not always
happen either).

Note also that although h(x) → 0 as x → 0, limx→0 h (h(x)) 6= limx→0 h(x). So the following
argument is FALSE:

Set y = h(x). Then, as x → 0 we also have y → 0. Thus limx→0(h(h(x)) = limy→0(h(y)) = 0.

The error here is that although y does indeed tend to zero (as x tends to zero), y does not tend to
zero through values unequal to zero, and so the substitution is not valid.

9 This result is intuitively obvious, but it is good practice to write down a formal proof. Probably the
easiest way to do this is using one of our standard versions of convergence for sequences: a sequence
of real numbers (xn) converges to the real number x if and only if, for all ε > 0, there are at most
finitely many n with xn 6∈ (x − ε, x + ε). We prove separately that (a)→(b) and (b)⇒(a).

((a)⇒(b)) Given that (a) holds, we prove that b holds. Let ε > 0. We show that there are at most
finitely many n with cn 6∈ (c− ε, c+ ε). We already know that there are only finitely many k with ak

outside (c − ε, c + ε), so (by the definition of cn) at most finitely odd numbers n such that cn is not
in (c − ε, c + ε). Similarly, there are only finitely many k with bk outside (c − ε, c + ε), and so there
are at most finitely many even numbers n such that cn is outside this open interval. Putting these
together we see that there are at most finitely many n with cn outside the open interval (c−ε, c+ε),
as required.

((b)⇒(a)) This time we are given that (cn) converges to c. Let ε > 0. We know that there are at
most finitely many n with cn 6∈ (c − ε, c + ε). Thus there are at most finitely many odd numbers n
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with cn 6∈ (c − ε, c + ε), and so there are at most finitely many k with ak not in (c − ε, c + ε). It
follows that (an) converges to c. The proof for (bn) is the same, looking instead at the even numbers
n where cn is not in (c − ε, c + ε).

10 Suppose, for contradiction, that limx→0+ f(x) does not exist. Under the conditions of this question,
this means that there must be two different sequences (xn), (yn) of positive real numbers both
converging to 0 and such that the two sequences of images, (f(xn)), (f(yn)), converge to two different
real numbers, say a and b. Now look at the sequence of positive real numbers x1, y1, x2, y2, . . . . By
question 9 this sequence also converges to 0. By the assumption in this question, the sequence
f(x1), f(y1), f(x2), f(y2), . . . should converge to some real number. However, this is impossible
because of question 9 again: our above choice gave us that (f(xn)), (f(yn)) converge to two different
real numbers. This contradiction proves the result.
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