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G12RAN Real Analysis

Exercises 2: Solutions to questions 1-5

1 (i) The definition from lectures tells us that we need to check the sequence of function values when
the function is applied to an arbitrary sequence of the relevant type converging to the point
in question. Here we are looking at limx→a+, so we must check sequences (xn) converging to
a and such that each xn > a. Since the functions concerned are defined on (a, b) we should
insist that each xn is in (a, b).

Let (xn) ⊆ (a, b) with xn → a as n → ∞. Then we know that limn→∞ f(xn) = L1 and
limn→∞ g(xn) = L2 (directly from the definitions of the conditions on f and g given in the
question). By the usual algebra of limits for real sequences, limn→∞ (f(xn) + g(xn)) = L1+L2

and limn→∞ (f(xn)g(xn)) = L1L2. Since this holds for all such sequences (xn), the result
follows.

(ii) Similarly, if L2 6= 0 and g(x) is never 0 (for x ∈ (a, b)) then we can define the function f/g as
usual and note that, with (xn) as above, the usual algebra of limits gives us

f(xn)

g(xn)
→

L1

L2

as n → ∞, as required.

NOTES

The following fact is useful in some proofs (see below): given a real-valued function f , and two
sequences (xn), (yn) converging to a point a ∈ R, then if both limits limn→∞ f(xn) and limn→∞ f(yn)
exist and are different, then limx→a f(x) does not exist.

If, in addition, all xn, yn are > a then we can deduce that limx→a+ f(x) does not exist. [A similar
result holds for limx→a− f(x).]

You do not need the full force of these assumptions: for example, if some sequence (xn) converging
to a with xn 6= a has the property that limn→∞ f(xn) does not exist, then limx→a f(x) does not
exist either. [Similar results hold for the other kinds of limit]

2 If a is not an integer, then neither one-sided limit exists: say a ∈ (m,m + 1), where m ∈ Z. Then
for all x ∈ (m,m + 1), [x] = m. So, on this open interval,

f(x) =

{

m if x is irrational,
x if x is rational.

For any sequence of rational numbers (xn) ⊆ (m,m+1) converging to a, and with xn > a, f(xn) → a
as n → ∞. However, for any sequence (yn) of irrational numbers in this interval converging to a and
with yn > a, f(yn) → m 6= a. This shows that limx→a+ f(x) does not exist, and a similar argument
shows that limx→a− f(x) does not exist either.

G12RAN Turn over



2 G12RAN

Now suppose that a = m ∈ Z. For x ∈ (m − 1,m) we have

f(x) =

{

m − 1 if x is irrational,
x if x is rational.

So, as above, limx→a− f(x) does not exist. However, for x ∈ (m,m + 1),

f(x) =

{

m if x is irrational,
x if x is rational.

It is now easy to see that f(x) → m as x → m+: for example you could note that, for x ∈ (m,m+1),
we have m ≤ f(x) ≤ x. Now take a sequence (xn) in (m,m + 1) converging to m and apply the
sandwich theorem to the inequality

m ≤ f(xn) ≤ xn.

So our answers are:

(a) The limit from the left does not exist anywhere.

(b) The limit from the right exists if and only if a is an integer.

(c) In this particular case, when the limit from the right exists (i.e. when a is an integer m) this
limit is equal to f(a) (which is also m).

3 This is similar to question 1.

Let (xn) ⊆ (a, b) with xn → b as n → ∞. We must show that

lim
n→∞

g(xn) = L.

We know that
lim

x→b−

f(x) = lim
x→b−

h(x) = L,

so we have
lim

n→∞

f(xn) = lim
n→∞

h(xn) = L.

But f(xn) ≤ g(xn) ≤ h(xn) for all n, so the usual sandwich theorem for sequences of real numbers
gives us limn→∞ g(xn) = L also, as required.

The result now follows.

4 The only point where the limits exist and are both equal to f(a) is the point a = 1

2
.

Suppose a 6= 1

2
. Then, for any sequence of rational numbers (xn) converging to a with xn > a you

have
f(xn) = xn → a as n → ∞,

while, for any sequence of irrational numbers (yn) converging to a with yn > a we have f(yn) =
1 − yn → 1 − a 6= a. Thus limx→a+ f(x) does not exist. (You can use a similar argument to show
that limx→a− f(x) does not exist either, but this is unnecessary here.)
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However, if a = 1

2
then we see that for all x in R,

∣

∣(1 − x) − 1

2

∣

∣ =
∣

∣x − 1

2

∣

∣, so, for any sequence
(xn) ⊆ R \ {1

2
} with xn → 1

2
as n → ∞, we have

∣

∣f(xn) − f(1

2
)
∣

∣ =
∣

∣f(xn) − 1

2

∣

∣ =
∣

∣xn − 1

2

∣

∣ → 0 as n → ∞,

so f(xn) → f(1

2
) as n → ∞.

5 No, there is no such function. The trick is to prove it! Here are two methods.

Method I: sup and inf. Suppose, for contradiction, that such a function f exists. Set

E1 = {x ∈ R : f(x) < 0}

and set
E2 = {x ∈ R : f(x) > 0}.

By assumption, R = E1 ∪ E2. Clearly E1 ∩ E2 = ∅. Also, since f is non-decreasing we have, for all
x in E1 and y in E2, that x < y. Again, by our assumptions on f , E1 and E2 are non-empty.

Thus E1 is non-empty and bounded above: in fact every element of E2 is an upper bound for E1.
It follows that sup(E1) exists and is a lower bound for E2. Since E2 is non-empty, we have that
sup(E1) ≤ inf(E2).

Set a = sup(E1), b = inf(E2). We have that a ≤ b. Since E1 ⊆ (−∞, a] and E2 ⊆ [b,∞), the fact
that R = E1 ∪ E2 forces a = b.

Now consider two cases:

(a) a ∈ E1. Then, since f is nondecreasing, f(x) ≤ f(a) < 0 for all x in E1, while f(x) > 0 for all
x in E2, so f(x) 6= 1

2
f(a) for all x in R, contradicting the fact that f is onto.

(b) a ∈ E2. But then 0 < f(a) ≤ f(x) for all x in E2 (N.B. a = inf(E2)), and f(x) < 0 for all x
in E1, so f(x) 6= 1

2
f(a) for all x in R, again contradicting the fact that f is onto.

Both cases lead to a contradiction, so no such f can exist.

Method II: nested intervals theorem. This method is probably the slickest! Again, suppose

for contradiction that such a function f does exist. Then, for each n ∈ N we can find real numbers
an, bn such that f(an) = −1/n and f(bn) = 1/n. Since f is nondecreasing, we see immediately that
an < bn, an < an+1 and bn > bn+1. Thus the intervals [an, bn] are nested, and the nested intervals
theorem tells us that there exists (at least one) c in ∩n∈N[an, bn]. (There may be infinitely many
such c.) For any such point c, we have (for all n ∈ N) f(an) ≤ f(c) ≤ f(bn), i.e. −1/n ≤ f(c) ≤ 1/n.
Since this holds for all n ∈ N we must have f(c) = 0, and this contradicts our assumption on f .
Thus no such function f can exist.
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