G12RAN Real Analysis

Exercises 2: Solutions to questions 6-12

$6 \quad$ Let f be the function defined in question 2. Since, for all $a \in \mathbb{R}$, the limit from the left $\lim _{x \rightarrow a-} f(x)$ does not exist, there are no points of \mathbb{R} at which this function is continuous. [For f to be continuous at a both one-sided limits must exist and must be equal to $f(a)$.]
$7 \quad$ The only possible problems are at the points $x=-1$ and $x=1$. This is because it is standard that polynomials are continuous, and on each one of the open intervals $(-\infty,-1),(-1,1)$ and $(1, \infty)$ the function is equal to the same polynomial throughout the open interval. We must make the values at the points -1 and 1 match up correctly. Since $f(-1)=f(1)=2$, we are led to the equations

$$
\begin{aligned}
a \times(-1)+b & =2 \\
\text { and } \quad-a \times(1)+2 b & =2
\end{aligned}
$$

giving $b=0, a=-2$. The function is thus

$$
f(x)=\left\{\begin{array}{cl}
-2 x & \text { if } x<-1 \\
x^{2}+1 & \text { if }-1 \leq x \leq 1, \\
2 x & \text { if } x>1
\end{array}\right.
$$

Note (again using the continuity of polynomials) that we really do have $\lim _{x \rightarrow-1-} f(x)=2$ and $\lim _{x \rightarrow 1+} f(x)=2$.

Easy exercise: Sketch this function!

There are many examples. The easiest is probably

$$
f(x)=\left\{\begin{array}{cl}
x & (x \in \mathbb{Q}), \\
x+1 & (x \in \mathbb{R} \backslash \mathbb{Q}) .
\end{array}\right.
$$

Certainly $f: \mathbb{R} \rightarrow \mathbb{R}$. To see that f is surjective, let $y \in \mathbb{R}$. Then
Case (i) $\quad y \in \mathbb{Q}$: then $f(y)=y$,
Case (ii) $\quad y \in \mathbb{R} \backslash \mathbb{Q}$: then $f(y-1)=y$.
Thus every $y \in \mathbb{R}$ is in the image of f, i.e. f is surjective from \mathbb{R} onto \mathbb{R}.
To see that f is discontinuous at every point of \mathbb{R}, we use the same method as in questions 2 and 4 .
Let $a \in \mathbb{R}$. Take a sequence $\left(x_{n}\right) \subseteq \mathbb{Q}$ with $\lim _{n \rightarrow \infty} x_{n}=a$, and a sequence $\left(y_{n}\right) \subseteq \mathbb{R} \backslash \mathbb{Q}$ with $\lim _{n \rightarrow \infty} y_{n}=a$. Then $f\left(x_{n}\right)=x_{n} \rightarrow a$ as $n \rightarrow \infty$ but $f\left(y_{n}\right)=y_{n}-1 \rightarrow a-1$ as $n \rightarrow \infty$. Since $\left(x_{n}\right),\left(y_{n}\right)$ both converge to a, the above shows that f is discontinuous at $a(f(a)$ cannot equal both a and $a-1)$.

Thus f is discontinuous at every point of \mathbb{R}, as required.

9 Say $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ where n is odd and $a_{n} \neq 0$. Dividing by a_{n} does not change the result, so we may assume that $p(x)$ has the form $a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+x^{n}$. When $|x|$ is large, $p(x)$ has the same sign as x (can you prove this?) so choose $a<0$ with $p(a)<0$ and $b>0$ with $p(b)>0$. Then, by the Intermediate Value Theorem (IVT), there exists $c \in[a, b]$ with $p(c)=0$.

To see that f is discontinuous at rationals is easy. Let $x=p / q$ where p, q are positive integers with no common factor (and with $p<q$ so that $x \in(0,1)$). Then $f(x)=1 / q>0$.
Let $\left(x_{n}\right)$ be a sequence of irrational numbers in $(0,1)$ with $x_{n} \rightarrow x$ as $n \rightarrow \infty$. Then $f\left(x_{n}\right)=0$ for all n, so $f\left(x_{n}\right) \nrightarrow f(x)$ as $n \rightarrow \infty$. This proves that f is discontinuous at x.

Trickier is to see that f is continuous at irrational x. Here I think that $\varepsilon-\delta$ is the best way: here is an example of such a proof. (We will look at $\varepsilon-\delta$ methods further in Chapter 7.)
Given $x \in(\mathbb{R} \backslash \mathbb{Q}) \cap(0,1)$, and given $\varepsilon>0$, choose $N \in \mathbb{N}$ with $1 / N<\varepsilon$.
Then set

$$
E=\left\{\frac{p}{q}: p, q \in \mathbb{N}, 1 \leq q \leq N, 1 \leq p \leq q\right\} \cup\{0\} .
$$

E is a finite set, so we can set $\delta=\min \{|x-y|: y \in E\}$.
Claim: For all y in $(x-\delta, x+\delta)$ we have $f(y) \in(f(x)-\varepsilon, f(x)+\varepsilon)$. To see this, let $y \in(x-\delta, x+\delta)$.
Case (i): $y \in \mathbb{R} \backslash \mathbb{Q}$. Then $f(y)=0$, so

$$
|f(y)-f(x)|=0<\varepsilon .
$$

Case (ii): $y \in \mathbb{Q}$. Then $y=p / q$ for some $p, q \in \mathbb{N}$ with p, q having no common factors, and $1 \leq p<q$. But since $|y-x|<\delta, y$ cannot be in E, and so q must be $>N$. Thus

$$
|f(y)-f(x)|=|f(y)|=\frac{1}{q}<\frac{1}{N}<\varepsilon .
$$

In both cases, we have $|f(y)-f(x)|<\varepsilon$, so this holds for all y in $(x-\delta, x+\delta)$. Thus f is continuous at x, as claimed.

Set $g(x)=f(x)-x$. Then $f(x)=x \Longleftrightarrow g(x)=0$. But g is continuous $[0,1] \rightarrow \mathbb{R}, g(0) \geq 0$ and $g(1) \leq 0$. (N.B. $f:[0,1] \rightarrow[0,1]$.) Thus, by the intermediate value theorem there must be an $x \in[0,1]$ with $g(x)=0$. For such x we have $f(x)=x$, as required.
[Points where $f(x)=x$ are called "fixpoints" or "fixed points" for f. This question shows that every continuous map from $[0,1]$ to itself has at least one fixed point.]

There are many ways to prove this. One is to prove the result first for closed intervals, and then deduce the result for open intervals. Others involve careful case-by-case analysis of several cases.

We are given: $f:(a, b) \rightarrow \mathbb{R}, f$ is continuous, and f is injective. So for all x, y in (a, b) with $x \neq y$ we have $f(x) \neq f(y)$. [Thus $f(x)<f(y)$ or $f(x)>f(y)$. This will be used frequently below.] We are asked to prove that f is monotone. Now f is not monotone if and only if there are points $c_{1}, c_{2}, d_{1}, d_{2} \in(a, b)$ such that

$$
\begin{equation*}
c_{1}<c_{2}, d_{1}<d_{2}, f\left(c_{1}\right)<f\left(c_{2}\right), \text { and } f\left(d_{1}\right)>f\left(d_{2}\right) \tag{*}
\end{equation*}
$$

(However, we do not know whether or not $c_{i}<d_{j}, 1 \leq i, j \leq 2$). We are required to show that $(*)$ never happens. Case by case analysis using the intermediate value theorem shows that no such $c_{1}, c_{2}, d_{1}, d_{2}$ can exist, but there are a lot of cases! Perhaps better is to prove successively:
(A) f is strictly monotone on every subset of (a, b) consisting of 3 points;
(B) f is strictly monotone on every finite subset of (a, b);
(C) f is (strictly) monotone on (a, b).
N.B. For $E \subseteq(a, b), f$ is strictly monotone on E if f is strictly increasing on E or f is strictly decreasing on E.

To prove (A). (A) says that for $a<x_{1}<x_{2}<x_{3}<b$ we must have either $f\left(x_{1}\right)<f\left(x_{2}\right)<f\left(x_{3}\right)$ or $f\left(x_{1}\right)>f\left(x_{2}\right)>f\left(x_{3}\right)$, or in other words $f\left(x_{2}\right)-f\left(x_{1}\right)$ and $f\left(x_{3}\right)-f\left(x_{2}\right)$ have the same sign, + or - . Suppose this is false. Then we can find $a<x_{1}<x_{2}<x_{3}<b$ with $f\left(x_{2}\right)-f\left(x_{1}\right)$ and $f\left(x_{3}\right)-f\left(x_{2}\right)$ having opposite signs. By symmetry we may assume that $f\left(x_{1}\right)<f\left(x_{2}\right)>f\left(x_{3}\right)$.
[Exercise: draw a sketch to illustrate this situation.]
Set

$$
y=\frac{1}{2}\left(\max \left\{f\left(x_{1}\right), f\left(x_{3}\right),\right\}+f\left(x_{2}\right)\right)
$$

so that
$f\left(x_{1}\right)<y<f\left(x_{2}\right)$ and $f\left(x_{3}\right)<y<f\left(x_{2}\right)$. By the intermediate value theorem there must be $c_{1} \in\left(x_{1}, x_{2}\right)$ with $f\left(c_{1}\right)=y$ and also $c_{2} \in\left(x_{2}, x_{3}\right)$ with $f\left(c_{2}\right)=y$. But this contradicts the fact that f is injective on (a, b). This contradiction proves (A).
(B) Now suppose that $a<x_{1}<x_{2}<\ldots<x_{n}<b$ with $n \geq 3$. By (A) we know that for $1 \leq i \leq n-2, f\left(x_{i+1}\right)-f\left(x_{i}\right)$ has the same sign as $f\left(x_{i+2}\right)-f\left(x_{i}\right)$. So all of these must have the same sign, and f is strictly monotone on $\left\{x_{1}, \ldots, x_{n}\right\}$. The cases where $n \leq 2$ are trivial.
(C) It now follows (from the cases $n \leq 4$ of (B)) that no $c_{1}, c_{2}, d_{1}, d_{2}$ can be found satisfying (*) above. (C) follows.

