G12RAN Real Analysis

EXERCISES 2: SOLUTIONS TO QUESTIONS 6-12

6 Let f be the function defined in question 2. Since, for all a € R, the limit from the left lim,_,, f(z)
does not exist, there are no points of R at which this function is continuous. [For f to be continuous
at a both one-sided limits must exist and must be equal to f(a).]

7 The only possible problems are at the points * = —1 and x = 1. This is because it is standard that
polynomials are continuous, and on each one of the open intervals (—oo, —1), (—1,1) and (1, c0) the
function is equal to the same polynomial throughout the open interval. We must make the values
at the points —1 and 1 match up correctly. Since f(—1) = f(1) = 2, we are led to the equations

ax(-1)+b=2
and —ax (1)+2b=2

giving b = 0, a = —2. The function is thus

—2r ifx< -1,
flx)y=¢ 22+1 if —1<x <1,
20 ifx > 1.

Note (again using the continuity of polynomials) that we really do have lim,_,_1_ f(z) = 2 and
lim, 14 f(z) = 2.

Easy exercise: Sketch this function!

8 There are many examples. The easiest is probably

_ =z (zeQ),
f(x)_{x—kl (z € R\Q).

Certainly f: R — R. To see that f is surjective, let y € R. Then

Case (i) y € Q: then f(y) =y,
Case (ii) y € R\Q: then f(y—1) =1y

Thus every y € R is in the image of f, i.e. f is surjective from R onto R.
To see that f is discontinuous at every point of R, we use the same method as in questions 2 and 4.

Let a € R. Take a sequence (x,) C Q with lim, .. x, = a, and a sequence (y,) C R\Q with
lim, oy, = a. Then f(z,) =z, — aas n — oo but f(y,) =yn —1 — a—1as n — oo. Since
(zn), (yn) both converge to a, the above shows that f is discontinuous at a (f(a) cannot equal both
a and a —1).

Thus f is discontinuous at every point of R, as required.

G12RAN



10

11

Say p(z) = ag + a1z + - - - + a,x™ where n is odd and a,, # 0. Dividing by a,, does not change the
result, so we may assume that p(z) has the form ag + a1z + - + ap—12" "1 + 2. When |z is large,
p(x) has the same sign as = (can you prove this?) so choose a < 0 with p(a) < 0 and b > 0 with
p(b) > 0. Then, by the Intermediate Value Theorem (IVT), there exists ¢ € [a,b] with p(c) = 0.

To see that f is discontinuous at rationals is easy. Let © = p/q where p, ¢ are positive integers with
no common factor (and with p < ¢ so that = € (0,1)). Then f(z) =1/¢ > 0.

Let (z,,) be a sequence of irrational numbers in (0,1) with z,, — x as n — oo. Then f(z,) = 0 for
all n, so f(zy) /4 f(x) as n — oo. This proves that f is discontinuous at z.

Trickier is to see that f is continuous at irrational x. Here I think that € — § is the best way: here
is an example of such a proof. (We will look at € — § methods further in Chapter 7.)

Given z € (R\Q) N (0,1), and given £ > 0, choose N € N with 1/N < e.
Then set
E:{gzp,qEN, 1<¢<N, 1§p§q}u{0}.
E is a finite set, so we can set 6 = min{|z —y| : y € E}.
Claim: For all y in (z—6,z+9) we have f(y) € (f(z)—e, f(z)+¢€). To see this, let y € (x—9,z+9).
Case (i): y € R\Q. Then f(y) =0, so

[f(y) = flx)] =0 <e.

Case (ii): y € Q. Then y = p/q for some p, ¢ € N with p, ¢ having no common factors, and 1 < p < q.
But since |y — x| < 4, y cannot be in E, and so ¢ must be > N. Thus

<1<
— <e&.
N

[f(y) = f(@)| = [f(y)| =

| =

In both cases, we have |f(y) — f(x)| < e, so this holds for all y in (z — 0,z +¢). Thus f is continuous
at x, as claimed.

Set g(z) = f(x) — x. Then f(z) = x <= g(x) = 0. But g is continuous [0,1] — R, ¢g(0) > 0 and
g(1) < 0. (NB. f:[0,1] — [0,1].) Thus, by the intermediate value theorem there must be an
x € [0,1] with g(z) = 0. For such x we have f(x) = z, as required.

[Points where f(z) = x are called “fixpoints” or “fixed points” for f. This question shows that every
continuous map from [0, 1] to itself has at least one fixed point.]
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There are many ways to prove this. One is to prove the result first for closed intervals, and then
deduce the result for open intervals. Others involve careful case-by-case analysis of several cases.

We are given: f: (a,b) — R, f is continuous, and f is injective. So for all z,y in (a,b) with x # y
we have f(z) # f(y). [Thus f(z) < f(y) or f(z) > f(y). This will be used frequently below.]
We are asked to prove that f is monotone. Now f is not monotone if and only if there are points
c1,¢2,dy,ds € (a,b) such that

c1 < cg,dy < dg, fe1) < f(e2), and f(dy) > f(da). (%)

(However, we do not know whether or not ¢; < dj, 1 < 4,5 < 2). We are required to show that
() never happens. Case by case analysis using the intermediate value theorem shows that no such
c1,¢2,dy,ds can exist, but there are a lot of cases! Perhaps better is to prove successively:

(A) f is strictly monotone on every subset of (a,b) consisting of 3 points;
(B) f is strictly monotone on every finite subset of (a, b);
(C) f1is (strictly) monotone on (a,b).

N.B. For E C (a,b), f is strictly monotone on E if f is strictly increasing on E or f is strictly
decreasing on FE.

To prove (A). (A) says that for a < x1 < x9 < x3 < b we must have either f(x1) < f(z2) < f(z3)
or f(z1) > f(x2) > f(x3), or in other words f(z2) — f(z1) and f(x3) — f(x2) have the same sign,
+ or —. Suppose this is false. Then we can find a < 1 < z9 < x3 < b with f(x3) — f(x1) and
f(x3) — f(x2) having opposite signs. By symmetry we may assume that f(z1) < f(x2) > f(z3).

[Exercise: draw a sketch to illustrate this situation.]
Set )

y = 5(max{f(z1), f(23), } + f(22))
so that

f(z1) <y < f(x2) and f(z3) < y < f(x2). By the intermediate value theorem there must be
c1 € (x1,22) with f(c1) =y and also co € (22, 23) with f(ce) = y. But this contradicts the fact that
f is injective on (a,b). This contradiction proves (A).

(B) Now suppose that a < 21 < 2 < ... < 2, < b with n > 3. By (A) we know that for
1 <i<n-—2, f(zrit1) — f(x;) has the same sign as f(zit2) — f(x;). So all of these must have the
same sign, and f is strictly monotone on {z1,...,x,}. The cases where n < 2 are trivial.

(C) It now follows (from the cases n < 4 of (B)) that no ¢1,c2,dy,ds can be found satisfying (x)
above. (C) follows.
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