You should attempt questions 1 to 3 in the fourth problem class. If you finish these questions early you can look at questions 4 and 5. You should make sure that you are familiar with all the concepts mentioned in questions 1-5 before the problem class.

Answers to questions 7 and 8 should be handed in at the end of the lecture on Friday 29th November.

Note that quality of exposition is very important: poor exposition/expression in the examination will cost marks. You must always justify your answers.

1. Set $f(x)=x^{3}+x-\cos x$. Show that for all $x \in \mathbb{R}$ we have $f^{\prime}(x)>0$. What does this tell you about the function f ?
2. Let f be a continuous function from \mathbb{R} to \mathbb{R} such that f is differentiable at 0 . Suppose that $f(1 / n)=0$ for all $n \in \mathbb{N}$.
(i) Prove that $f(0)=0$. (This fact does not requires the differentiability of f.)
(ii) Prove that $f^{\prime}(0)=0$. (This uses all the assumptions above along with the conclusion of part (i).)

For the next question, you may assume that $\arcsin (x)$ is continuous on $[-1,1]$, and differentiable on $(-1,1)$ with derivative $1 / \sqrt{1-x^{2}}$ there. (The function $\arcsin (x)$ is also denoted by $\left.\sin ^{-1}(x)\right)$.
3. Find the greatest and least values taken by the function $x \arcsin (x)+\sqrt{1-x^{2}}$ in the range $-1 \leq x \leq 1$. [You should check endpoints and any stationary points in the relevant range.]
4. Does there exist a differentiable function $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that $f^{\prime}(0)=0$ and yet $f^{\prime}(x)>1$ for all $x>0$?
Hint: Suppose that f is such a function. For $x>0$, apply the mean value theorem with $a=0$ and $b=x$ to show that

$$
\frac{f(x)-f(0)}{x-0}>1
$$

(NB you are not allowed to assume that f^{\prime} is continuous.)
5. Using the mean value theorem or otherwise, show that the function $f(x)=\cos (\log (x))$ is Lipschitz continuous on $(1, \infty)$.
6. Let f be a differentiable, real-valued function on an open interval (a, b). Suppose that there exist points c, d in (a, b) such that $f^{\prime}(c)<0$ and $f^{\prime}(d)>0$. Prove that there must be some point s in (a, b) such that $f^{\prime}(s)=0$. [Hint: again you can not assume that f^{\prime} is continuous. But suppose that there is no such s : you should be able to use the mean value theorem to show that f is injective, and so obtain a contradiction (see also question 12 from the second question sheet).]
7. Apply the mean value theorem to the function $f(t)=\log (1+t)$ (choosing suitable endpoints a and b, for example $a=0$ and $b=x$) to prove that for all $x>0$,

$$
x /(1+x)<\log (1+x)<x
$$

8. Determine the following limits if they exist. Show clearly how you obtain your answers.

$$
\begin{aligned}
& \text { (a) } \lim _{x \rightarrow 0+}\left(\frac{1}{\sin x}-\frac{1}{x}\right) \text { (b) } \lim _{x \rightarrow 0}\left(\frac{\cos x}{1+\sin x}\right) \\
& \text { (c) } \lim _{x \rightarrow+\infty}(\cos (1 / x))^{x^{2}}
\end{aligned}
$$

[Hint for (c): substitute $y=1 / x$ and take logs. Use L'Hôpital's rule to find the new limit and then work out what the original limit must have been.]
9. Suppose that the real-valued function f is continuous on \mathbb{R} and differentiable on $\mathbb{R} \backslash\{0\}$, and that $\lim _{x \rightarrow 0} f^{\prime}(x)=L \in \mathbb{R}$. Prove that f is differentiable at 0 and that $f^{\prime}(0)=L$. (Hint: use L'Hôpital's rule to investigate $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}$, and use the definition of differentiability.)
10. Let f, g be twice-differentiable functions from \mathbb{R} to \mathbb{R}, and suppose that $f(x)=$ $g(x) / x$ for all $x \neq 0$. Given that $g(0)=g^{\prime}(0)=0$ and that $g^{\prime \prime}(0)=6$, determine $f(0)$ and $f^{\prime}(0)$.

