G12RAN Real Analysis

Exercises 4: Solutions to questions 6-10

Suppose, for contradiction, that no such s exists. Then $f^{\prime}(s) \neq 0$ for all $s \in(a, b)$. (*) Note that f is differentiable on (a, b), and hence f is also continuous on (a, b).

STAGE I. We show that f must be $1-1$ on (a, b). Let $x, y \in(a, b)$ with $x<y$. Then we can apply the mean value theorem to f on $[x, y]$, and there must be a c in (x, y) with $f^{\prime}(c)=\frac{f(y)-f(x)}{y-x}$. By $\left(^{*}\right)$ above, $f^{\prime}(c) \neq 0$, and so $f(x) \neq f(y)$. This shows that f is injective on (a, b).

STAGE II. We saw on an earlier question sheet that every continuous, injective real-valued function on (a, b) must be strictly monotone. We are given in the question that $f^{\prime}(c)<0$ and $f^{\prime}(d)>0$. This is impossible if f is strictly monotone on (a, b) [do you know how to prove this?] and this gives us the desired contradiction.

Thus there must, after all, be an s in (a, b) with $f^{\prime}(s)=0$.
$7 \quad$ In this question you can use the mean value theorem either directly or indirectly!
Method 1. Set $f(x)=\log (1+x)$. Then f is continuous on $(-1, \infty)$, and is differentiable there, with $f^{\prime}(x)=\frac{1}{1+x}($ for x in $(-1, \infty))$. Also, $f(0)=\log (1)=0$.
Let $x>0$. Then, by the mean value theorem, there exists a c in $(0, x)$ with

$$
\frac{f(x)-f(0)}{x-0}=f^{\prime}(c)
$$

i.e. (from above)

$$
\frac{f(x)}{x}=\frac{1}{1+c}
$$

Since $c \in(0, x)$, we have $\frac{1}{1+x}<\frac{1}{1+c}<1$ and so $\frac{1}{1+x}<\frac{f(x)}{x}<1$,

$$
\text { i.e. } \quad \frac{x}{1+x}<f(x)<x \quad(\text { since } x>0)
$$

as required.
Method 2. Each of the functions $\frac{x}{1+x}, \log (1+x)$ and x are 0 when $x=0$.
If you differentiate each of these 3 functions and compare the derivatives, you can use the mean value theorem to say that, since

$$
\frac{d}{d x}\left(\log (1+x)-\frac{x}{1+x}\right)>0 \quad \text { for } \quad x>0
$$

and

$$
\frac{d}{d x}(x-\log (1+x))>0 \quad \text { for } \quad x>0
$$

it follows that these two functions are strictly increasing on $[0, \infty)$. The result then follows. [Exercise: check the details of this!]
(a) First rewrite $\frac{1}{\sin x}-\frac{1}{x}$ as $\frac{x-\sin x}{x \sin x}$, and consider the limit as $x \rightarrow 0+$. This is indeterminate of type " $0 / 0$ " as $x \rightarrow 0+$.
Differentiating numerator and denominator gives

$$
\frac{1-\cos x}{x \cos x+\sin x},
$$

which is still indeterminate of type " $0 / 0$ " as $x \rightarrow 0+$.
Differentiating top and bottom again gives

$$
\frac{\sin x}{2 \cos x-x \sin x} .
$$

This tends to 0 as $x \rightarrow 0+$ by the algebra of limits, so l'Hôpital's rule applied twice gives

$$
\lim _{x \rightarrow 0+}\left(\frac{1}{\sin x}-\frac{1}{x}\right)=0
$$

(b) This is not an indeterminate form! Since $1+\sin (0) \neq 0$, the algebra of limits and continuity of the relevant functions gives

$$
\lim _{x \rightarrow 0}\left(\frac{\cos x}{1+\sin x}\right)=\frac{\cos (0)}{1+\sin (0)}=1
$$

Note that l'Hôpital's rule does not apply.
(c) Substituting $y=\frac{1}{x}$, we must investigate $\lim _{y \rightarrow 0+}(\cos (y))^{1 / y^{2}}$.

If this limit exists, then so does the original limit, and with the same value. [This is one of the available definitions of $\lim _{x \rightarrow+\infty}$.]
Now the function exp is continuous, so if $\lim _{y \rightarrow 0+}\left(\log \left((\cos (y))^{1 / y^{2}}\right)\right)$ exists, we can take exp and see that the original limit exists (and is exp of the new limit). We look at the limit os $y \rightarrow 0+$ of

$$
\log \left((\cos (y))^{1 / y^{2}}\right)=\frac{\log (\cos (y))}{y^{2}}
$$

This is indeterminate of type " $0 / 0$ " as $y \rightarrow 0+$ (note that $\cos (y) \rightarrow 1$ as $y \rightarrow 0+$).
Differentiating top and bottom gives $\frac{\frac{1}{\cos (y)}(-\sin (y))}{2 y}$. We have $\cos (y) \rightarrow 1$ as $y \rightarrow 0+$ and $\frac{\sin (y)}{y} \rightarrow 1$ as $y \rightarrow 0+$ by l'Hôpital's rule, or noting that

$$
\lim _{y \rightarrow 0}\left(\frac{\sin (y)-\sin (0)}{y}\right)=\sin ^{\prime}(0)=\cos (0)=1 .
$$

So $\lim _{y \rightarrow 0+}\left(\frac{\frac{1}{\cos (y)}(-\sin (y))}{2 y}\right)=-\frac{1}{2}$.
Applying l'Hôpital's rule and taking exp, the original limit exists and equals $\mathrm{e}^{-\frac{1}{2}}=\frac{1}{\sqrt{\mathrm{e}}}$.

9 We are required to prove that $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}$ exists and equals L. Set $F(x)=f(x)-f(0)$ and $G(x)=x$. Then, since f is continuous, $\lim _{x \rightarrow 0} F(x)=0$, and of course $\lim _{x \rightarrow 0} G(x)=0$ too. However, $F^{\prime}(x)=f^{\prime}(x)$ (n.b. $f(0)$ is a constant, and the derivative of a constant is 0) and $G^{\prime}(x)=1$, so $\lim _{x \rightarrow 0} \frac{F^{\prime}(x)}{G^{\prime}(x)}$ exists and equals L (given in question).
So l'Hôpital's theorem applies to give $\lim _{x \rightarrow 0} \frac{F(x)}{G(x)}=L$ too, i.e. $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=L$, as required.

By the definition of $g^{\prime}(0)$, we have

$$
\begin{aligned}
0=g^{\prime}(0) & =\lim _{x \rightarrow 0} \frac{g(x)-g(0)}{x-0} & & \\
& =\lim _{x \rightarrow 0} \frac{g(x)}{x} & & \text { (N.B. } g(0)=g^{\prime}(0)=0 \text {) } \\
& =\lim _{x \rightarrow 0} f(x) & & \text { (since } f(x)=\frac{g(x)}{x} \text { for } x \neq 0 \text {), } \\
& =f(0) & & \text { (since } f \text { is continuous). }
\end{aligned}
$$

So $f(0)=0$.
To find $f^{\prime}(0)$, note that

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}=\lim _{x \rightarrow 0} \frac{g(x)}{x^{2}}
$$

(since $f(0)=0$ and $f(x)=\frac{g(x)}{x}$ for $x \neq 0$).
To determine this latter limit, we can use l'Hôpital's rule. Certainly $\lim _{x \rightarrow 0} g(x)=0$ and $\lim _{x \rightarrow 0} x^{2}=$ 0 . So we look at $\frac{g^{\prime}(x)}{2 x}$ (differentiating top and bottom). But $g^{\prime}(0)=0$, so $\lim _{x \rightarrow 0} \frac{g^{\prime}(x)}{x}=g^{\prime \prime}(0)=6$, and so $\lim _{x \rightarrow 0} \frac{g^{\prime}(x)}{2 x}=3$. Thus, by l'Hôpital's rule, $\lim _{x \rightarrow 0} \frac{g(x)}{x^{2}}=3$ too, and this gives $f^{\prime}(0)=3$.

