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G12RAN Real Analysis

Exercises 4: Solutions to questions 6-10

6 Suppose, for contradiction, that no such s exists. Then f ′(s) 6= 0 for all s ∈ (a, b). (*)

Note that f is differentiable on (a, b), and hence f is also continuous on (a, b).

STAGE I. We show that f must be 1−1 on (a, b). Let x, y ∈ (a, b) with x < y. Then we can apply

the mean value theorem to f on [x, y], and there must be a c in (x, y) with f ′(c) =
f(y) − f(x)

y − x
. By

(*) above, f ′(c) 6= 0, and so f(x) 6= f(y). This shows that f is injective on (a, b).

STAGE II. We saw on an earlier question sheet that every continuous, injective real-valued function
on (a, b) must be strictly monotone. We are given in the question that f ′(c) < 0 and f ′(d) > 0.
This is impossible if f is strictly monotone on (a, b) [do you know how to prove this?] and this gives
us the desired contradiction.

Thus there must, after all, be an s in (a, b) with f ′(s) = 0.

7 In this question you can use the mean value theorem either directly or indirectly!

Method 1. Set f(x) = log(1 + x). Then f is continuous on (−1,∞), and is differentiable there,

with f ′(x) =
1

1 + x
(for x in (−1,∞)). Also, f(0) = log(1) = 0.

Let x > 0. Then, by the mean value theorem, there exists a c in (0, x) with

f(x) − f(0)

x − 0
= f ′(c)

i.e. (from above)
f(x)

x
=

1

1 + c
.

Since c ∈ (0, x), we have
1

1 + x
<

1

1 + c
< 1 and so

1

1 + x
<

f(x)

x
< 1,

i.e.
x

1 + x
< f(x) < x (since x > 0)

as required.

Method 2. Each of the functions
x

1 + x
, log(1 + x) and x are 0 when x = 0.

If you differentiate each of these 3 functions and compare the derivatives, you can use the mean
value theorem to say that, since

d

dx

(

log(1 + x) − x

1 + x

)

> 0 for x > 0
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and
d

dx
(x − log(1 + x)) > 0 for x > 0,

it follows that these two functions are strictly increasing on [0,∞). The result then follows. [Exercise:
check the details of this!]

8 (a) First rewrite
1

sinx
− 1

x
as

x − sinx

x sinx
, and consider the limit as x → 0+. This is indeterminate

of type “0/0” as x → 0+.

Differentiating numerator and denominator gives

1 − cos x

x cos x + sinx
,

which is still indeterminate of type “0/0” as x → 0+.

Differentiating top and bottom again gives

sinx

2 cos x − x sinx
.

This tends to 0 as x → 0+ by the algebra of limits, so l’Hôpital’s rule applied twice gives

lim
x→0+

(

1

sinx
− 1

x

)

= 0.

(b) This is not an indeterminate form! Since 1 + sin(0) 6= 0, the algebra of limits and continuity
of the relevant functions gives

lim
x→0

(

cos x

1 + sinx

)

=
cos(0)

1 + sin(0)
= 1.

Note that l’Hôpital’s rule does not apply.

(c) Substituting y =
1

x
, we must investigate limy→0+(cos(y))1/y2

.

If this limit exists, then so does the original limit, and with the same value. [This is one of
the available definitions of limx→+∞.]

Now the function exp is continuous, so if limy→0+(log((cos(y))1/y2

)) exists, we can take exp
and see that the original limit exists (and is exp of the new limit). We look at the limit os
y → 0+ of

log((cos(y))1/y2

) =
log(cos(y))

y2
.

This is indeterminate of type “0/0” as y → 0+ (note that cos(y) → 1 as y → 0+).

Differentiating top and bottom gives

1

cos(y)
(− sin(y))

2y
. We have cos(y) → 1 as y → 0+ and

sin(y)

y
→ 1 as y → 0+ by l’Hôpital’s rule, or noting that

lim
y→0

(

sin(y) − sin(0)

y

)

= sin′(0) = cos(0) = 1.
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So limy→0+









1

cos(y)
(− sin(y))

2y









= −1

2
.

Applying l’Hôpital’s rule and taking exp, the original limit exists and equals e−
1

2 =
1√
e
.

9 We are required to prove that limx→0

f(x) − f(0)

x − 0
exists and equals L. Set F (x) = f(x) − f(0)

and G(x) = x. Then, since f is continuous, limx→0 F (x) = 0, and of course limx→0 G(x) = 0 too.
However, F ′(x) = f ′(x) (n.b. f(0) is a constant, and the derivative of a constant is 0) and G′(x) = 1,

so limx→0

F ′(x)

G′(x)
exists and equals L (given in question).

So l’Hôpital’s theorem applies to give limx→0

F (x)

G(x)
= L too, i.e. limx→0

f(x) − f(0)

x − 0
= L, as required.

10 By the definition of g′(0), we have

0 = g′(0) = limx→0

g(x) − g(0)

x − 0

= limx→0

g(x)

x
(N.B. g(0) = g′(0) = 0)

= limx→0 f(x) (since f(x) =
g(x)

x
for x 6= 0),

= f(0) (since f is continuous).

So f(0) = 0.

To find f ′(0), note that

f ′(0) = lim
x→0

f(x) − f(0)

x
= lim

x→0

g(x)

x2

(since f(0) = 0 and f(x) =
g(x)

x
for x 6= 0).

To determine this latter limit, we can use l’Hôpital’s rule. Certainly limx→0 g(x) = 0 and limx→0 x2 =

0. So we look at
g′(x)

2x
(differentiating top and bottom). But g ′(0) = 0, so limx→0

g′(x)

x
= g′′(0) = 6,

and so limx→0

g′(x)

2x
= 3. Thus, by l’Hôpital’s rule, limx→0

g(x)

x2
= 3 too, and this gives f ′(0) = 3.
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