G12RAN Real Analysis

Exercises 4: Solutions to questions 1-5

$1 \quad f^{\prime}(x)=3 x^{2}+1+\sin x$. Now $3 x^{2} \geq 0$ and $1+\sin x \geq 0$, so it is clear that $f^{\prime}(x) \geq 0$ for all x. Since the only solution to $3 x^{2}=0$ is $x=0$, and then $1+\sin x=1>0$, it follows that $f^{\prime}(x)>0$ for all x, as required. This tells you that the function f must be strictly increasing. (See the printed notes for more details).

2 (i) Since f is continuous at 0 and $\lim _{n \rightarrow \infty}\left(\frac{1}{n}\right)=0$, we must have

$$
f(0)=\lim _{n \rightarrow \infty} f\left(\frac{1}{n}\right)=0,
$$

since we are given that $f\left(\frac{1}{n}\right)=0$ for all $n \in \mathbb{N}$.
(ii) By part (i) we have $f(0)=0$ and so

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{x \rightarrow 0}\left(\frac{f(x)-f(0)}{x-0}\right) \\
& =\lim _{x \rightarrow 0}\left(\frac{f(x)}{x}\right)
\end{aligned}
$$

Thus, since $\frac{1}{n} \neq 0$ and $\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$,

$$
f^{\prime}(0)=\lim _{n \rightarrow \infty}\left(\frac{f\left(\frac{1}{n}\right)}{\frac{1}{n}}\right)=0,
$$

because $f\left(\frac{1}{n}\right)=0$ for all $n \in \mathbb{N}$.
$3 \quad f(x)=x \arcsin (x)+\sqrt{1-x^{2}}$. The function f is continuous on $[-1,1]$ and differentiable on $(-1,1)$, with derivative

$$
\begin{aligned}
f^{\prime}(x) & =\arcsin (x)+\frac{x}{\sqrt{1-x^{2}}}+\frac{1}{2}(-2 x) / \sqrt{1-x^{2}} \\
& =\arcsin (x) .
\end{aligned}
$$

We check endpoints and stationary points in the range.
For $-1<x<1$,

$$
\begin{aligned}
f^{\prime}(x)=0 & \Leftrightarrow \arcsin (x)=0 \\
& \Leftrightarrow x=0
\end{aligned}
$$

When $x=0, f(x)=1$; when $x=-1, f(x)=\frac{\pi}{2}\left(\right.$ since $\left.\arcsin (-1)=-\frac{\pi}{2}\right)$; when $x=+1, f(x)=\frac{\pi}{2}$ (since $\left.\arcsin (1)=\frac{\pi}{2}\right)$.

Since $\frac{\pi}{2}>1$, the greatest value of $f(x)$ in this range is $\frac{\pi}{2}$, and the least value is 1 .
[In fact f is strictly increasing on $[0,1]$ and $f(-x)=f(x) ; f$ is an "even" function of x. Functions which instead satisfy $f(-x)=-f(x)$ are called "odd" functions of x.]

4 The answer is no. To prove this we use the mean value theorem. Let f be a differentiable function from \mathbb{R} to \mathbb{R} such that $f^{\prime}(x)>1$ for all $x>0$. Then, by the mean value theorem, for each $x>0$ there is a $c_{x} \in(0, x)$ such that

$$
f^{\prime}\left(c_{x}\right)=\frac{f(x)-f(0)}{x-0} .
$$

Now $f^{\prime}\left(c_{x}\right)>1$, by assumption, and so $\frac{f(x)-f(0)}{x-0}>1$ for all $x>0$. Thus it is impossible for us to have $\lim _{x \rightarrow 0+} \frac{f(x)-f(0)}{x-0}=0$ and so it is also impossible to have $f^{\prime}(0)=0$. [In fact, since we know $f^{\prime}(0)$ exists, the above shows that $f^{\prime}(0) \geq 1$.]

5 We have $f(x)=\cos (\log (x)), f^{\prime}(x)=-\sin (\log (x)) / x$ and so

$$
\begin{equation*}
\left|f^{\prime}(x)\right| \leq 1 \text { for } x \in(1, \infty) \tag{*}
\end{equation*}
$$

Set $A=1$. By (*) above and a standard result in the notes (using the MVT) we have, for all $x, y \in(1, \infty)$,

$$
|f(x)-f(y)| \leq A|x-y| .
$$

So f satisfies the condition for Lipschitz continuity on this interval with constant $A=1$, as required.

