G12RAN Real Analysis

EXERCISES 4: SOLUTIONS TO QUESTIONS 1-5

- 1 $f'(x) = 3x^2 + 1 + \sin x$. Now $3x^2 \ge 0$ and $1 + \sin x \ge 0$, so it is clear that $f'(x) \ge 0$ for all x. Since the only solution to $3x^2 = 0$ is x = 0, and then $1 + \sin x = 1 > 0$, it follows that f'(x) > 0 for all x, as required. This tells you that the function f must be strictly increasing. (See the printed notes for more details).
- 2 (i) Since f is continuous at 0 and $\lim_{n\to\infty} \left(\frac{1}{n}\right) = 0$, we must have

$$f(0) = \lim_{n \to \infty} f\left(\frac{1}{n}\right) = 0,$$

since we are given that $f\left(\frac{1}{n}\right) = 0$ for all $n \in \mathbb{N}$.

(ii) By part (i) we have f(0) = 0 and so

$$f'(0) = \lim_{x \to 0} \left(\frac{f(x) - f(0)}{x - 0} \right)$$
$$= \lim_{x \to 0} \left(\frac{f(x)}{x} \right).$$

Thus, since $\frac{1}{n} \neq 0$ and $\frac{1}{n} \to 0$ as $n \to \infty$,

$$f'(0) = \lim_{n \to \infty} \left(\frac{f\left(\frac{1}{n}\right)}{\frac{1}{n}} \right) = 0,$$

because $f\left(\frac{1}{n}\right) = 0$ for all $n \in \mathbb{N}$.

3 $f(x) = x \arcsin(x) + \sqrt{1 - x^2}$. The function f is continuous on [-1, 1] and differentiable on (-1, 1), with derivative

$$f'(x) = \arcsin(x) + \frac{x}{\sqrt{1-x^2}} + \frac{1}{2}(-2x)/\sqrt{1-x^2} = \arcsin(x).$$

We check *endpoints* and *stationary points in the range*.

For -1 < x < 1,

$$f'(x) = 0 \quad \Leftrightarrow \quad \arcsin(x) = 0$$
$$\Leftrightarrow \quad x = 0$$

When x = 0, f(x) = 1; when x = -1, $f(x) = \frac{\pi}{2}$ (since $\arcsin(-1) = -\frac{\pi}{2}$); when x = +1, $f(x) = \frac{\pi}{2}$ (since $\arcsin(1) = \frac{\pi}{2}$).

Since $\frac{\pi}{2} > 1$, the greatest value of f(x) in this range is $\frac{\pi}{2}$, and the least value is 1.

[In fact f is strictly increasing on [0, 1] and f(-x) = f(x); f is an "even" function of x. Functions which instead satisfy f(-x) = -f(x) are called "odd" functions of x.]

4 The answer is *no*. To prove this we use the mean value theorem. Let f be a differentiable function from \mathbb{R} to \mathbb{R} such that f'(x) > 1 for all x > 0. Then, by the mean value theorem, for each x > 0there is a $c_x \in (0, x)$ such that

$$f'(c_x) = \frac{f(x) - f(0)}{x - 0}.$$

Now $f'(c_x) > 1$, by assumption, and so $\frac{f(x) - f(0)}{x - 0} > 1$ for all x > 0. Thus it is impossible for us to have $\lim_{x\to 0^+} \frac{f(x) - f(0)}{x - 0} = 0$ and so it is also impossible to have f'(0) = 0. [In fact, since we know f'(0) exists, the above shows that $f'(0) \ge 1$.]

5 We have
$$f(x) = \cos(\log(x)), f'(x) = -\sin(\log(x))/x$$
 and so

$$\left|f'(x)\right| \le 1 \text{ for } x \in (1,\infty). \tag{(*)}$$

Set A = 1. By (*) above and a standard result in the notes (using the MVT) we have, for all $x, y \in (1, \infty)$,

$$|f(x) - f(y)| \le A |x - y|.$$

So f satisfies the condition for Lipschitz continuity on this interval with constant A = 1, as required.