
G12RAN Real Analysis: Exercises 5

You should attempt questions 1 to 3 in the fifth problem class. If you finish early then try question 4.
You should make sure that you are familiar with all the concepts mentioned in questions

1-4 before the problem class.

Answers to questions 7 and 12 should be handed in to Dr Feinstein’s pigeonhole at the top of the main
stairs by the end of term (Wednesday 11/12/01)

1. Apply Taylor’s theorem to the function f(x) = sin(x) to show that | sin(x)− x| ≤ |x|3/6 for all x ∈ R.
[You should find the remainder term after using the terms in the Taylor series up to and including the
term in x2.]

2. Define f : (0,∞) → R by f(x) =
√

x.

(i) You should know that this function is differentiable. What is its derivative?

(ii) Show that the function f is not Lipschitz continuous on (0,∞). [Hint: by a standard result in the
notes, this is the same as showing that f ′(x) is unbounded on this interval.]

(iii) Show that, for all a, b in [0,∞), we have

√
a + b ≤

√
a +

√
b.

(iv) Prove that f is uniformly continuous on (0,∞). [Hint: use (iii) to show that when x ≥ y > 0 we
have 0 ≤ f(x) − f(y) ≤ √

x − y. Deduce that for all x, y in (0,∞) we have

|f(x) − f(y)| ≤
√

|x − y|. (∗)

Now take sequences (xn), (yn) in (0,∞) with limn→∞ |xn − yn| = 0. What does (∗) tell you about
|f(xn) − f(yn)|?]

(Because of (∗), the function f(x) =
√

x is said to satisfy a Lipschitz condition of order 1/2.)

3. Find the Taylor series T (x, π/4) for cos(x) (this means the Taylor series for cos(x) in powers of (x−π/4)
and has the form

a0 + a1(x − π/4) + a2(x − π/4)2 + . . .

so you just need to find the coefficients an. Use the formula in the notes. Remember: you must work in
radians).

4. Define f from R to R by f(x) = exp(−1/x2) when x 6= 0, while f(0) = 0. Prove by induction on
n that, for each n ∈ N, f is n-times differentiable on R, and that there is a polynomial pn such that
f (n)(x) = pn(1/x) exp(−1/x2) for x 6= 0, while f (n)(0) = 0.

5. Let f be a real-valued function on (a, b) and suppose that F1, F2 are both antiderivatives (primitives)
for f on (a, b) (i.e. F ′

1 = F ′

2 = f on (a, b)). Prove that F1 − F2 is constant on (a, b). (Hint: apply the
MVT or some similar standard result to the function F1 − F2.)

6. Just using the definitions of upper sum, lower sum etc., and NOT using calculus, prove that if c is a

constant then, for a < b ∈ R,
∫ b

a
c dx = c(b − a) [Strictly speaking, define f on [a, b] by f(x) = c: prove

that
∫

b

a
f(x) dx = c(b − a).]



7. For x > −1, let f(x) = log(1 + x).
(a) For each n ∈ N, find a formula for the nth derivative of f , f (n)(x). [You need not give a full proof by
induction, but you should show in your working that if you differentiate what you claim is f (n)(x) that
you do get what you claim is f (n+1)(x).]
(b) Find the Maclaurin series for f .

8. Let f be the restriction to [0, 1] of the characteristic function of Q, so that, for x ∈ [0, 1], f(x) = 1 if
x ∈ Q, and f(x) = 0 otherwise.
(i) Prove that every Riemann upper sum for f is 1 and that every Riemann lower sum for f is 0.
(ii) Deduce that f is not Riemann integrable on [0, 1].
[To integrate this function a more powerful integration method is needed. In G1CMIN you will see that,
using the Lebesgue integral, the integral of f is zero because f is only non-zero at countably many points]

9. Define f : [−1, 1] −→ R by f(0) = 1, while f(x) = 0 for x 6= 1. (i) Show that f is Riemann integrable

on [−1, 1], and that
∫ 1

−1 f(x) dx = 0. (ii) Show that there is no antiderivative (primitive) for f on (−1, 1),
i.e. there is no differentiable function F on (−1, 1) such that F ′ = f on (−1, 1).

10. Let a < b ∈ R and let f be a non-negative, continuous function defined on [a, b]. Suppose that
∫ b

a
f(x) dx = 0. Prove that f must be constantly 0 on [a, b]. [Note: this is only true because f is

continuous, as question 8 shows. Hint: look at F (x) =
∫ x

a
f(t) dt].

11. Let f , g be Riemann integrable functions on a closed interval [a, b]. Suppose that f(x) ≤ g(x) for

all x ∈ [a, b]. Prove that
∫

b

a
f(x) dx ≤

∫

b

a
g(x) dx. Deduce that |

∫

b

a
f(x) dx| ≤

∫

b

a
|f(x)| dx. (You may

assume that the functions |f(x)| and −|f(x)| are Riemann integrable on [a, b]).

12. Show that the following limits exist, and evaluate them. (You may assume the Fundamental Theorem
of Calculus, which allows you to integrate continuous functions on closed intervals in the usual way, but
does not directly tell you about other types of integrals.)

(i) limε→0+

∫ 1

ε
1/

√
x dx; (ii) limx→∞

∫

x

1
exp(−t) dt.

[When such limits exist they are called convergent improper Riemann integrals. The first is often denoted

by
∫ 1

0 1/
√

x dx, even though 1/
√

(x) is not defined when x = 0. The second is often denoted by
∫

∞

1
exp(−t) dt].


