G12RAN Real Analysis

EXERCISES 5: SOLUTIONS TO QUESTIONS 1-4

1 With f(z) = sin(z), we have f'(z) = cos(z), f"(z) = —sin(z), f®)(z) = — cos(z).

We take the first 3 terms of the Taylor series for f about the point 0 (i.e. the Maclaurin series for
f). Taylor’s theorem gives

fO) 2 SO0

fl@) = £(O) + F(O) + -

for some ¢ between 0 and z.

But £(0) =0, f/(0) =1, f@(0) =0 and f®(c) = — cos(c), so

Fla)=a— cos(c) 5
6
which gives
@) -z = |2
< =2l
= 76

as required.

[You could treat x = 0 as a special case, or accept the above argument with 0 = ¢ = z.]

x
noting that z* = exp(alog x), as on question sheet 4. Do you know a direct way to prove that
the derivative of \/z is as claimed?]

(ii) Since f'(x) diverges to 400 as © — 0+, the derivative is unbounded and so, by a standard
result in the notes, f is not Lipschitz continuous.

1
2 (i) Here f(z) = z = /2 so f'(z) = %x_lm = NG [Remember that you can justify this by

(iii) This follows immediately from squaring both sides. (Remember that we always take the non-
negative square root in this module!)

(iv) When 0 <y <z, set a =y, b =2 —y and then (iii) gives
Vi=vVa+b<vVa+ Vb= y+Vz—y.

Clearly \/x > \/y, so we have, in this case, 0 < f(x) — f(y) < y/z —y. Obviously, if 0 <z <y
we obtain similarly 0 < f(y) — f(z) < y/y — x. Thus, in all cases, we have

[f (@) = fW)l < Ve =yl

Now suppose that (x,,), (y,) are sequences in (0, 00) with lim,,_,o |2, — yn| = 0. Then we also
have lim,, 0 \/|Zn — yn| = 0, and we know that

0 <|f(wn) = f(yn)| < V]Tn — yul-
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By the sandwich theorem we must have lim,, o |f(2,) — f(yn)] = 0. Thus f is uniformly
continuous on (0,00), as claimed.

The above used the definition of uniform continuity in terms of sequences. An alternative

approach, using € and §, is to note that given ¢ > 0 you can take § = J(¢) = 2. Then

the above calculations show that if z and y are positive real numbers with |z —y| < J then
|f(x) — f(y)| < &, as required for uniform continuity. (Note that ¢ depends on & but does not
depend on x and y.)

3 This time f(z) = cos(z), f'(z) = —sin(z), f@(z) = — cos(x), f®)(z) = sin(x), f4(z) = cos(z), etc.

f(n)(ﬂ)

Since cos (%) = sin (%) = %, and a, = n,z , we see that

—1 -1 1 1
= az = - /= a3 = o = 4 = ——=
V2 T a2 PR Tt anR

ao a] = etc

1

V2

giving T ™ 1 1 s 1 T2 1 T3
<x’Z>_ﬁ_ﬁ<x_Z>_m(m_Z) +ﬁ(m_1) T

[This series does, in fact, converge to cos(z) for all z.]

4 To see how this works, let us start by checking the first derivative.

For = # 0 there is no problem differentiating f by the chain rule, to obtain

o= (3 (-5

So take pi(t) = 2t3, and then f’(z) = p1 (2) e for x # 0. However we need to check that f’(0)
exists and is 0.

For z # 0 we have
fl@) = F(0) _exp(=52)

z—0 T

Now exp (=z) > =3 (sinceexp(y)zl—i-y%—%—?—k---)so

‘1 ( 1>'< 1 y 1 »
“exp|—-= )| < — = |x|.

Hence lim, o Lg(o) = 0 by the sandwich theorem and f’(0) = 0, as claimed, so the result of the

o
question is true when n = 1.

A slight variation in the above argument shows that, for all k£ € N,

lim P Le7) (;x%)
z—0 T

=0,
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and so, for any polynomial p(t)

1 1
li - —— ] =0.
Now suppose that n > 1 and the result of the question is true for n — 1, so that f ("_1)(0) = 0, while

fO=D(z) = pp_y (1) exp (—#) for x # 0, where p,,_1 is a polynomial.

Then, for x # 0, we can differentiate f(~1) by the chain rule, and

2 1 1 1 1
n—1 _
@ = [(F) e () - () s (5)] o (-35)
so that f((z) = p, (1) exp (—#), where p,(t) = 2t3p,_1(t) — t?pl,_;(t), which is a polynomial

because p,_1 is.

It remains to check that f(")(0) exists and is 0. But this is true because, by our remarks above,

. 1 1 1
lim | — Jpp—1| = |Jexp|—— | =0
z—0 \ & xT x

<f("‘”(92 - g<"—1><0>> _o,

and so

lim
rz—0

as required.

The induction may now proceed, and the result holds for all n € N.
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