G12RAN Real Analysis

Exercises 5: Solutions to questions 1-4

With $f(x)=\sin (x)$, we have $f^{\prime}(x)=\cos (x), f^{\prime \prime}(x)=-\sin (x), f^{(3)}(x)=-\cos (x)$.
We take the first 3 terms of the Taylor series for f about the point 0 (i.e. the Maclaurin series for f). Taylor's theorem gives

$$
f(x)=f(0)+f^{\prime}(0) x+\frac{f^{(2)}(0)}{2} x^{2}+\frac{f^{(3)}(c)}{6} x^{3}
$$

for some c between 0 and x.
But $f(0)=0, f^{\prime}(0)=1, f^{(2)}(0)=0$ and $f^{(3)}(c)=-\cos (c)$, so

$$
f(x)=x-\frac{\cos (c)}{6} x^{3}
$$

which gives

$$
\begin{aligned}
|f(x)-x| & =\left|\frac{\cos (c)}{6} x^{3}\right| \\
& \leq \frac{\left|x^{3}\right|}{6}
\end{aligned}
$$

as required.
[You could treat $x=0$ as a special case, or accept the above argument with $0=c=x$.]
(i) Here $f(x)=\sqrt{x}=x^{1 / 2}$ so $f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}}$. [Remember that you can justify this by noting that $x^{a}=\exp (a \log x)$, as on question sheet 4 . Do you know a direct way to prove that the derivative of \sqrt{x} is as claimed?]
(ii) Since $f^{\prime}(x)$ diverges to $+\infty$ as $x \rightarrow 0+$, the derivative is unbounded and so, by a standard result in the notes, f is not Lipschitz continuous.
(iii) This follows immediately from squaring both sides. (Remember that we always take the nonnegative square root in this module!)
(iv) When $0<y \leq x$, set $a=y, b=x-y$ and then (iii) gives

$$
\sqrt{x}=\sqrt{a+b} \leq \sqrt{a}+\sqrt{b}=\sqrt{y}+\sqrt{x-y}
$$

Clearly $\sqrt{x} \geq \sqrt{y}$, so we have, in this case, $0 \leq f(x)-f(y) \leq \sqrt{x-y}$. Obviously, if $0<x \leq y$ we obtain similarly $0 \leq f(y)-f(x) \leq \sqrt{y-x}$. Thus, in all cases, we have

$$
|f(x)-f(y)| \leq \sqrt{|x-y|}
$$

Now suppose that $\left(x_{n}\right),\left(y_{n}\right)$ are sequences in $(0, \infty)$ with $\lim _{n \rightarrow \infty}\left|x_{n}-y_{n}\right|=0$. Then we also have $\lim _{n \rightarrow \infty} \sqrt{\left|x_{n}-y_{n}\right|}=0$, and we know that

$$
0 \leq\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \leq \sqrt{\left|x_{n}-y_{n}\right|}
$$

By the sandwich theorem we must have $\lim _{n \rightarrow \infty}\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|=0$. Thus f is uniformly continuous on $(0, \infty)$, as claimed.
The above used the definition of uniform continuity in terms of sequences. An alternative approach, using ε and δ, is to note that given $\varepsilon>0$ you can take $\delta=\delta(\varepsilon)=\varepsilon^{2}$. Then the above calculations show that if x and y are positive real numbers with $|x-y|<\delta$ then $|f(x)-f(y)|<\varepsilon$, as required for uniform continuity. (Note that δ depends on ε but does not depend on x and y.)

3 This time $f(x)=\cos (x), f^{\prime}(x)=-\sin (x), f^{(2)}(x)=-\cos (x), f^{(3)}(x)=\sin (x), f^{4}(x)=\cos (x)$, etc. Since $\cos \left(\frac{\pi}{4}\right)=\sin \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$, and $a_{n}=\frac{f^{(n)}\left(\frac{\pi}{4}\right)}{n!}$, we see that

$$
a_{0}=\frac{1}{\sqrt{2}}, \quad a_{1}=\frac{-1}{\sqrt{2}}, \quad a_{2}=\frac{-1}{2!\sqrt{2}}, \quad a_{3}=\frac{1}{3!\sqrt{2}}, \quad a_{4}=\frac{1}{4!\sqrt{2}} \quad \text { etc }
$$

giving

$$
T\left(x, \frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\left(x-\frac{\pi}{4}\right)-\frac{1}{2!\sqrt{2}}\left(x-\frac{\pi}{4}\right)^{2}+\frac{1}{3!\sqrt{2}}\left(x-\frac{\pi}{4}\right)^{3}+\ldots .
$$

[This series does, in fact, converge to $\cos (x)$ for all x.]

4 To see how this works, let us start by checking the first derivative.
For $x \neq 0$ there is no problem differentiating f by the chain rule, to obtain

$$
f^{\prime}(x)=\left(\frac{2}{x^{3}}\right) \exp \left(-\frac{1}{x^{2}}\right) .
$$

So take $p_{1}(t)=2 t^{3}$, and then $f^{\prime}(x)=p_{1}\left(\frac{1}{x}\right) \mathrm{e}^{-\frac{1}{x^{2}}}$ for $x \neq 0$. However we need to check that $f^{\prime}(0)$ exists and is 0 .

For $x \neq 0$ we have

$$
\frac{f(x)-f(0)}{x-0}=\frac{\exp \left(-\frac{1}{x^{2}}\right)}{x} .
$$

Now $\exp \left(\frac{1}{x^{2}}\right)>\frac{1}{x^{2}}\left(\right.$ since $\left.\exp (y)=1+y+\frac{y^{2}}{2!}+\cdots\right)$ so

$$
\left|\frac{1}{x} \exp \left(-\frac{1}{x^{2}}\right)\right| \leq \frac{1}{|x|} \times \frac{1}{\left(\frac{1}{x^{2}}\right)}=|x| .
$$

Hence $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=0$ by the sandwich theorem and $f^{\prime}(0)=0$, as claimed, so the result of the question is true when $n=1$.
A slight variation in the above argument shows that, for all $k \in \mathbb{N}$,

$$
\lim _{x \rightarrow 0} \frac{\exp \left(-\frac{1}{x^{2}}\right)}{x^{k}}=0
$$

and so, for any polynomial $p(t)$

$$
\lim _{x \rightarrow 0} p\left(\frac{1}{x}\right) \exp \left(-\frac{1}{x^{2}}\right)=0 .
$$

Now suppose that $n>1$ and the result of the question is true for $n-1$, so that $f^{(n-1)}(0)=0$, while $f^{(n-1)}(x)=p_{n-1}\left(\frac{1}{x}\right) \exp \left(-\frac{1}{x^{2}}\right)$ for $x \neq 0$, where p_{n-1} is a polynomial.
Then, for $x \neq 0$, we can differentiate $f^{(n-1)}$ by the chain rule, and

$$
\left(f^{(n-1)}\right)^{\prime}(x)=\left[\left(\frac{2}{x^{3}}\right) p_{n-1}\left(\frac{1}{x}\right)-\left(\frac{1}{x^{2}}\right) p_{n-1}^{\prime}\left(\frac{1}{x}\right)\right] \exp \left(-\frac{1}{x^{2}}\right)
$$

so that $f^{(n)}(x)=p_{n}\left(\frac{1}{x}\right) \exp \left(-\frac{1}{x^{2}}\right)$, where $p_{n}(t)=2 t^{3} p_{n-1}(t)-t^{2} p_{n-1}^{\prime}(t)$, which is a polynomial because p_{n-1} is.
It remains to check that $f^{(n)}(0)$ exists and is 0 . But this is true because, by our remarks above,

$$
\lim _{x \rightarrow 0}\left(\frac{1}{x}\right) p_{n-1}\left(\frac{1}{x}\right) \exp \left(-\frac{1}{x^{2}}\right)=0
$$

and so

$$
\lim _{x \rightarrow 0}\left(\frac{f^{(n-1)}(x)-f^{(n-1)}(0)}{x-0}\right)=0
$$

as required.
The induction may now proceed, and the result holds for all $n \in \mathbb{N}$.

