G12RAN Real Analysis

Exercises 5: Solutions to questions 5-12

This is almost immediate from the MVT. Since $F_{1}^{\prime}=F_{2}^{\prime}$, we have $\frac{d}{d x}\left(F_{1}-F_{2}\right)=0$ on (a, b), and so the mean value theorem tells us that $F_{1}-F_{2}$ is constant on (a, b).

Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a partition of $[a, b]$, where $a=x_{0}<x_{1}<\cdots<x_{n}=b$.
Then $m_{k}(f)=M_{k}(f)=c$ for $1 \leq k \leq n$, so

$$
L(P, f)=\sum_{k=1}^{n} m_{k}(f)\left(x_{k}-x_{k-1}\right)=\sum_{k=1}^{n} c\left(x_{k}-x_{k-1}\right)=c(b-a)
$$

and similarly

$$
U(P, f)=c(b-a)
$$

Then the lower integral $\underline{\int_{a}^{b}} f(x) d x$ is the supremum (over all partitions) of $L(P, f)$, so this is also $c(b-a)$, and similarly for the upper integral: $\overline{\int_{a}^{b}} f(x) d x$ is the infimum (over all possible partitions P) of $U(P, f)$, and this is also $c(b-a)$. Thus $\underline{\int_{a}^{b}} f(x) d x=\overline{\int_{a}^{b}} f(x) d x$, so f is Riemann integrable on $[a, b]$ and $\int_{a}^{b} f(x) d x=c(b-a)$.
[ALTERNATIVELY: When $P=\{a, b\}, U(P, f)=L(P, f)=c(b-a)$. But any partition of $[a, b]$ must be a refinement of this one, and the usual inequalities force the lower sum and upper sum to equal $c(b-a)$ again.]
(a)

$$
\begin{aligned}
& f^{(0)}(x)=f(x)=\log (1+x) \\
& f^{(1)}(x)=f^{\prime}(x)=\frac{1}{1+x} \\
& f^{(2)}(x)=\frac{-1}{(1+x)^{2}} \\
& f^{(3)}(x)=\frac{2}{(1+x)^{3}}
\end{aligned}
$$

and now an easy induction shows that

$$
f^{(n)}(x)=\frac{(-1)^{n-1}(n-1)!}{(1+x)^{n}} \quad(n=1,2,3, \ldots)
$$

As stated in the question, you should show in your working that the derivative of $\frac{(-1)^{n-1}(n-1) \text { ! }}{(1+x)^{n}}$ is $\frac{(-1)^{n} n!}{(1+x)^{n+1}}$: this follows immediately from the fact that the derivative of the function $(1+x)^{-n}$ is $(-n)(1+x)^{-n-1}$.
(b) The Maclaurin series for f is $\sum_{k=0}^{\infty} a_{k} x^{k}$, where $a_{k}=\frac{f^{(k)}(0)}{k!}$.

So, here,

$$
a_{k}=(-1)^{k-1} \frac{(k-1)!}{k!}=\frac{(-1)^{k-1}}{k}
$$

for $k=1,2, \ldots$.
$a_{0}=f(0)=0$.
Thus the Maclaurin series for $\log (1+x)$ is

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^{k}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4} \ldots .
$$

[In fact this series does converge to $\log (1+x)$ for $-1<x<1$. See books if interested!]

This comes from the fact that the rationals and the irrationals are dense.
(a) Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a partition of $[0,1]$ with $0=x_{0}<x_{1}<\cdots<x_{n}=1$. Then because every interval $\left[x_{k-1}, x_{k}\right]$ contains infinitely many rationals and infinitely many irrationals, we obtain

$$
m_{k}(f)=0 \quad \text { and } \quad M_{k}(f)=1 \quad \text { for } \quad 1 \leq k \leq n .
$$

Thus

$$
L(P, f)=\sum_{k=1}^{n} m_{k}(f)\left(x_{k}-x_{k-1}\right)=0
$$

while

$$
U(P, f)=\sum_{k=1}^{n} M_{k}(f)\left(x_{k}-x_{k-1}\right)=\sum_{k=1}^{n}\left(x_{k}-x_{k-1}\right)=1,
$$

as required.
(b) It follows that $\underline{\int_{0}^{1}} f(x) d x=0$ and $\overline{\int_{0}^{1}} f(x) d x=1$.

Since the lower and upper integrals are different, f is NOT Riemann integrable on $[0,1]$.

9 (a) It is clear that every lower sum for f is zero, so the lower integral $\underline{\int_{-1}^{1}} f(x) d x=0$ also. The upper sums for f are each >0, but we show that the inf of the upper sums is 0 .
Let $\varepsilon>0$. Choose $m \in \mathbb{N}$ with $m>\frac{2}{\varepsilon}$. Consider the partition $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ of $[-1,1]$ where $n=2 m$ and $x_{k}=-1+\frac{k}{m}(0 \leq k \leq 2 m)$. Then $M_{k}(f)=0$ except for $M_{m}(f)=M_{m+1}(f)=1$. So

$$
\begin{aligned}
U(P, f) & =\sum_{k=0}^{n} M_{k}(f)\left(x_{k}-x_{k-1}\right) \\
& =\frac{2}{m}<\varepsilon .
\end{aligned}
$$

Thus $\overline{\int_{-1}^{1}} f(x) d x<\varepsilon$. Since $\varepsilon>0$ was arbitrary, we obtain $\overline{\int_{-1}^{1}} f(x) d x \leq 0$, and we deduce that we must have $\underline{\int_{-1}^{1}} f(x) d x=\overline{\int_{-1}^{1}} f(x) d x=0$. The result follows.
[An alternative approach is to use Riemann's criterion.]
(b) Suppose that F is an antiderivative for f on $(-1,1)$. (We shall obtain a contradiction.) Set $G(x)=2 F(x)-x$. Then for $x \in(-1,1)$

$$
\begin{aligned}
G^{\prime}(x) & =2 F^{\prime}(x)-1 \\
& =2 f(x)-1 \\
& =\left\{\begin{array}{cc}
-1 & x \neq 0, \\
1 & x=0
\end{array}\right.
\end{aligned}
$$

But, by sheet 4 , question 6 , since $G^{\prime}(x)$ takes positive and negative values on $(-1,1)$, there should be a c in $(-1,1)$ with $G^{\prime}(c)=0$. There is no such c, so we have a contradiction, showing that no such antiderivative F can exist.

We have

$$
\begin{aligned}
0 \leq F(x) & =\int_{a}^{x} f(t) d t \\
& \leq \int_{a}^{x} f(t) d t+\int_{x}^{b} f(t) d t \\
& =\int_{a}^{b} f(t) d t=0,
\end{aligned}
$$

for $a \leq x \leq b$, so $F(x)=0$ for $a \leq x \leq b$. But, by the fundamental theorem of calculus, for $x \in(a, b), f(x)=F^{\prime}(x)=0$. Finally, the continuity of f forces $f(a)=\lim _{x \rightarrow a+} f(x)=0$, and similarly $f(b)=0$.

11
Since every lower sum $L(P, f)$ is clearly less than or equal to the corresponding lower sum for g, $L(P, g)$, it follows immediately that

$$
\int_{a}^{b} f(x) d x=\sup _{P} L(P, f) \leq \sup _{P} L(P, g)=\int_{a}^{b} g(x) d x
$$

(where P runs through all partitions of $[a, b]$).
Now we have $-|f(x)| \leq f(x) \leq|f(x)|$ for all x in $[a, b]$, so

$$
-\int_{a}^{b}|f(x)| d x \leq \int_{a}^{b} f(x) d x \leq \int_{a}^{b}|f(x)| d x
$$

and so

$$
\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x
$$

as claimed.
[Here we used the fact that

$$
\int_{a}^{b}-|f(x)| d x=-\int_{a}^{b}|f(x)| d x
$$

In fact it is true that for any real number α and Riemann integrable function h on $[a, b]$ that

$$
\left.\int_{a}^{b} \alpha h(x) d x=\alpha \int_{a}^{b} h(x) d x .\right]
$$

[An alternative method for the first part is to look at the function $f(x)-g(x)$.]

From the fundamental theorem of calculus it follows that integration agrees with antidifferentiation, at least when integrating continuous functions on closed intervals.
(a)

$$
\begin{aligned}
\int_{\varepsilon}^{1} \frac{1}{\sqrt{x}} d x & =\int_{\varepsilon}^{1} x^{-1 / 2} d x \\
& =\left[\frac{x^{1 / 2}}{1 / 2}\right]_{\varepsilon}^{1} \quad \text { (usual notation) } \\
& =2\left(1-\varepsilon^{1 / 2}\right)
\end{aligned}
$$

and this tends to 2 as $\varepsilon \rightarrow 0+$, so

$$
\lim _{\varepsilon \rightarrow 0+} \int_{\varepsilon}^{1} \frac{1}{\sqrt{x}} d x=2
$$

(b)

$$
\begin{aligned}
\int_{1}^{x} \mathrm{e}^{-\mathrm{t}} \mathrm{dt} & =\left[-\mathrm{e}^{-\mathrm{t}}\right]_{1}^{\mathrm{x}} \\
& =\mathrm{e}^{-1}-\mathrm{e}^{-\mathrm{x}} \\
& \rightarrow \mathrm{e}^{-1} \quad \text { as } \mathrm{x} \rightarrow \infty,
\end{aligned}
$$

so

$$
\lim _{x \rightarrow \infty} \int_{1}^{x} \mathrm{e}^{-\mathrm{t}} \mathrm{dt}=\frac{1}{\mathrm{e}}
$$

So, as "improper Riemann integrals",

$$
\int_{0}^{1} \frac{1}{\sqrt{x}} d x=2 \quad \text { and } \quad \int_{1}^{\infty} \exp (-t) d t=\frac{1}{\mathrm{e}}
$$

[See books for more information on improper integrals.]

