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G12RAN Real Analysis

Exercises 5: Solutions to questions 5-12

5 This is almost immediate from the MVT. Since F ′
1 = F ′

2, we have d
dx(F1 − F2) = 0 on (a, b), and so

the mean value theorem tells us that F1 − F2 is constant on (a, b).

6 Let P = {x0, x1, . . . , xn} be a partition of [a, b], where a = x0 < x1 < · · · < xn = b.

Then mk(f) = Mk(f) = c for 1 ≤ k ≤ n, so

L(P, f) =

n
∑

k=1

mk(f)(xk − xk−1) =

n
∑

k=1

c(xk − xk−1) = c(b − a)

and similarly

U(P, f) = c(b − a).

Then the lower integral
∫ b
a f(x) dx is the supremum (over all partitions) of L(P, f), so this is also

c(b − a), and similarly for the upper integral:
∫ b
a f(x) dx is the infimum (over all possible partitions

P ) of U(P, f), and this is also c(b − a). Thus
∫ b
a f(x) dx =

∫ b
a f(x) dx, so f is Riemann integrable

on [a, b] and
∫ b
a f(x) dx = c(b − a).

[ALTERNATIVELY: When P = {a, b}, U(P, f) = L(P, f) = c(b − a). But any partition of [a, b]
must be a refinement of this one, and the usual inequalities force the lower sum and upper sum to
equal c(b − a) again.]

7 (a)

f (0)(x) = f(x) = log(1 + x),

f (1)(x) = f ′(x) = 1
1+x ,

f (2)(x) = −1
(1+x)2

,

f (3)(x) = 2
(1+x)3

and now an easy induction shows that

f (n)(x) =
(−1)n−1(n − 1)!

(1 + x)n
(n = 1, 2, 3, . . . ).

As stated in the question, you should show in your working that the derivative of (−1)n−1(n−1)!
(1+x)n

is (−1)nn!
(1+x)n+1 : this follows immediately from the fact that the derivative of the function (1+x)−n

is (−n)(1 + x)−n−1.
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(b) The Maclaurin series for f is
∑∞

k=0 akx
k, where ak = f(k)(0)

k! .

So, here,

ak = (−1)k−1 (k − 1)!

k!
=

(−1)k−1

k

for k = 1, 2, . . . .

a0 = f(0) = 0.

Thus the Maclaurin series for log(1 + x) is

∞
∑

k=1

(−1)k−1

k
xk = x − x2

2
+

x3

3
− x4

4
. . . .

[In fact this series does converge to log(1 + x) for −1 < x < 1. See books if interested!]

8 This comes from the fact that the rationals and the irrationals are dense.

(a) Let P = {x0, x1, . . . , xn} be a partition of [0, 1] with 0 = x0 < x1 < · · · < xn = 1. Then because
every interval [xk−1, xk] contains infinitely many rationals and infinitely many irrationals, we
obtain

mk(f) = 0 and Mk(f) = 1 for 1 ≤ k ≤ n.

Thus

L(P, f) =

n
∑

k=1

mk(f)(xk − xk−1) = 0

while

U(P, f) =

n
∑

k=1

Mk(f)(xk − xk−1) =

n
∑

k=1

(xk − xk−1) = 1,

as required.

(b) It follows that
∫ 1
0 f(x) dx = 0 and

∫ 1
0 f(x) dx = 1.

Since the lower and upper integrals are different, f is NOT Riemann integrable on [0, 1].

9 (a) It is clear that every lower sum for f is zero, so the lower integral
∫ 1
−1f(x) dx = 0 also.

The upper sums for f are each > 0, but we show that the inf of the upper sums is 0.

Let ε > 0. Choose m ∈ N with m > 2
ε . Consider the partition {x0, x1, . . . , xn} of [−1, 1] where

n = 2m and xk = −1+ k
m (0 ≤ k ≤ 2m). Then Mk(f) = 0 except for Mm(f) = Mm+1(f) = 1.

So
U(P, f) =

∑n
k=0 Mk(f)(xk − xk−1)

= 2
m < ε.

Thus
∫ 1
−1f(x) dx < ε. Since ε > 0 was arbitrary, we obtain

∫ 1
−1f(x) dx ≤ 0, and we deduce

that we must have
∫ 1
−1f(x) dx =

∫ 1
−1f(x) dx = 0. The result follows.

[An alternative approach is to use Riemann’s criterion.]
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(b) Suppose that F is an antiderivative for f on (−1, 1). (We shall obtain a contradiction.)

Set G(x) = 2F (x) − x. Then for x ∈ (−1, 1)

G′(x) = 2F ′(x) − 1
= 2f(x) − 1

=

{

−1 x 6= 0,
1 x = 0.

But, by sheet 4, question 6, since G′(x) takes positive and negative values on (−1, 1), there
should be a c in (−1, 1) with G′(c) = 0. There is no such c, so we have a contradiction, showing
that no such antiderivative F can exist.

10 We have

0 ≤ F (x) =

∫ x

a
f(t) dt

≤
∫ x

a
f(t) dt +

∫ b

x
f(t) dt

=

∫ b

a
f(t) dt = 0,

for a ≤ x ≤ b, so F (x) = 0 for a ≤ x ≤ b. But, by the fundamental theorem of calculus, for
x ∈ (a, b), f(x) = F ′(x) = 0. Finally, the continuity of f forces f(a) = limx→a+ f(x) = 0, and
similarly f(b) = 0.

11 Since every lower sum L(P, f) is clearly less than or equal to the corresponding lower sum for g,
L(P, g), it follows immediately that

∫ b

a
f(x) dx = sup

P
L(P, f) ≤ sup

P
L(P, g) =

∫ b

a
g(x) dx

(where P runs through all partitions of [a, b]).

Now we have − |f(x)| ≤ f(x) ≤ |f(x)| for all x in [a, b], so

−
∫ b

a
|f(x)| dx ≤

∫ b

a
f(x) dx ≤

∫ b

a
|f(x)| dx

and so
∣

∣

∣

∣

∫ b

a
f(x) dx

∣

∣

∣

∣

≤
∫ b

a
|f(x)| dx,

as claimed.

[Here we used the fact that
∫ b

a
− |f(x)| dx = −

∫ b

a
|f(x)| dx.

In fact it is true that for any real number α and Riemann integrable function h on [a, b] that
∫ b

a
αh(x) dx = α

∫ b

a
h(x) dx.]

[An alternative method for the first part is to look at the function f(x) − g(x).]
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12 From the fundamental theorem of calculus it follows that integration agrees with antidifferentiation,
at least when integrating continuous functions on closed intervals.

(a)
∫ 1

ε

1√
x

dx =
∫ 1
ε x−1/2 dx

=
[

x1/2

1/2

]1

ε
(usual notation)

= 2(1 − ε1/2)

and this tends to 2 as ε → 0+, so

lim
ε→0+

∫ 1

ε

1√
x

dx = 2.

(b)
∫ x
1 e−t dt = [−e−t]x1

= e−1 − e−x

→ e−1 as x → ∞,

so

lim
x→∞

∫ x

1
e−t dt =

1

e
.

So, as “improper Riemann integrals”,

∫ 1

0

1√
x

dx = 2 and

∫ ∞

1
exp(−t) dt =

1

e
.

[See books for more information on improper integrals.]
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