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The following material has been covered in lectures so far.

Lecture 1: Chapter 1. Properties of the real numbers I. Review of notation, definitions and results from earlier

modules The sets of natural numbers, integers, rational numbers. The irrational numbers. Other subsets of R

including intervals. Convergence of sequences.
Lecture 2: Divergence of sequences. Further revision of results about sequences including the Algebra of Limits and the

Sandwich Theorem. The completeness of R (existence of supremum/infimum for non-empty, bounded sets).
Lecture 3: Monotone sequences and the Monotone Sequence Theorem (MST). Density of the rationals and the irrationals in

R: (as in G1ALIM) every open interval (a, b) in R contains infinitely many rational numbers and infinitely many
irrational numbers. II. Further properties The nested intervals theorem: Given non-empty closed intervals
[an, bn] such that, for all n ∈ N, [an, bn] ⊇ [an+1, bn+1], then there must be at least one point c common to all
of these closed intervals. If the lengths of the intervals involved tend to 0, then there is exactly one such point
c. Failure of the nested intervals theorem for open intervals (exercise in first problem class). Intersections and
unions of infinitely many sets: notation.

Lecture 4: Examples of infinite intersections and unions.
Chapter 2. Functions and sets: Functions, graphs and Cartesian products. Examples of functions between
subsets of R including characteristic functions. Injections (injective/1-1 functions), surjections (surjective/onto
functions) and bijections (bijective functions) revised. Addition and multiplication for real-valued functions
(pointwise operations). Composition of functions (f ◦ g or f(g)). Inverse functions for bijections. Two sets
have the same cardinality if there is a bijection between them. An example of a bijection between N and Z: Z

is countable. Uncountable sets include R, [0, 1], [0, 1) (proofs next time). Working definition for first problem
class: a set is countable if it is empty or else there is a sequence of elements which includes (uses up) all of the
elements of the set. Equivalence of this definition to the standard definition.

Lecture 5: Which real numbers have two different decimal expansions? Uncountability of [0, 1) (Cantor diagonalization
argument). Uncountability of R follows. Unions of two countable sets and countability of Q were covered in the
first problem class (solutions available from module web page). Uncountability of R \ Q.

Lecture 6: Other standard results about countability: images under functions of countable sets are countable (i.e. if X
is a countable set, Y is a set and f is a surjection from X to Y then Y must also be countable, proof left as
an exercise); if there is an injection f from a set Y into a countable set X then Y must also be countable; in
particular, subsets of countable sets are countable (details an exercise). N×N is countable. The product of two
countable sets and countable unions of countable sets are done as the first homework assignment.
Chapter 3. Limit values for functions: Punctured neighbourhoods. Introductory examples illustrating the two
types of one-sided limits for functions (formal definitions next lecture): limx→a− f(x) and limx→a+ f(x). These
one-sided limits may or may not exist. When both exist, they may be different. The value of the function at
the point a is irrelevant here, and need not even be defined.

Lecture 7: Definition in terms of sequences of two-sided limits for functions defined on punctured neighbourhoods of a
point. Careful consideration of the function sin(1/x) to show two methods of establishing when limits do not
exist: finding one suitable convergent sequence (xn) where the sequence of function values (f(xn)) does not
converge at all, or finding two different appropriate sequences (xn) giving different values for limn→∞(f(xn)).
Definition in terms of sequences of the one-sided limit limx→a+.

Lecture 8: Definition in terms of sequences of the one-sided limit limx→b−. Example of standard proof structure: direct
proof that limx→3−(x2) = 9 using the algebra of limits for sequences. Connection between one-sided and two-
sided limits. Defininitions and examples of some further concepts: convergence of f(x) as x → ±∞. Divergence
of functions to ±∞ as x approaches a in the various possible ways.

Lecture 9: Feedback on student homework. Brief discussion of the four kinds of monotone functions.
Chapter 4. Sequences and continuous functions: Motivation: why do we need to prove intuitively obvious facts?
Continuity and discontinuity of real-valued functions defined on intervals in terms of one/two sided limits.

Lecture 10: Continuity in terms of sequences. Discussion of the different ways in which a function can fail to be continuous
at a point. Standard functions are continuous where they are defined. Sequences of points in the interval I
which converge to some point outside I are not important when checking continuity. Subsequences of sequences.
Statement ond discussion of the Bolzano-Weierstrass theorem and some related examples.

Lecture 11: Proof of the Bolzano-Weierstrass theorem. Discussion and proof of the boundedness theorem.
Lecture 12: New continuous functions from old: sums, products and quotients of continuous functions. Composition of

continuous functions. Discussion and proof of the the intermediate value theorem.
Lecture 13: Feedback on student homework. Further discussion of the implications of the boundedness theorem and the

intermediate value theorem: The continuous image of an interval is an interval. The continuous image of a
closed and bounded interval is a closed and bounded interval.
Chapter 5. Differentiability: Differentiability at a point, interpretation in terms of limiting gradients. Problems
with the function f(x) = |x|. Functions which are differentiable on intervals, including closed intervals [a, b]
(one-sided derivatives defined at the endpoints) and R (n.b. R is an interval).
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Lecture 14: Differentiable functions must be continuous, but continuous functions need not be differentiable. In fact there
are functions which are continuous everywhere but differentiable nowhere. All the usual standard functions
(constant functions, polynomials, rational functions, trigonometric functions etc.) are differentiable where they
are defined. (See books for details: standard facts about these functions may be assumed.) The algebra of
derivatives: sums, products and quotients of differentiable functions are differentiable (avoiding division by 0).
Proof of product rule. Proofs of sum rule and quotient rule left as an exercise. The chain rule for differentiation:
standard false proof given. Exercise: find the mistake!

Lecture 15: Chord functions. Correct proof of the chain rule. Statement, discussion and proof of Rolle’s Theorem. Reminder:
how to find the greatest and least values of a function on a closed interval (example in problem class). Statement
and brief discussion of the Mean Value Theorem.

Lecture 16: Proof of the MVT. Implications of the MVT, including connections with monotonicity. Definition of Lipschitz
continuity. Boundedness of f ′ on an interval implies that f is Lipschitz continuous there. For differentiable
functions, the converse is also true.

Lecture 17: Feedback on student homework.
Chapter 6. L’Hôpital’s rule and Taylor’s theorem: Higher order derivatives: n times differentiable functions, n
times continuously differentiable functions. Infinitely differentiable functions. Limits of quotients of functions
f(x)/g(x). When possible, use the algebra of limits! Indeterminate forms of type ‘0/0’ and of type ‘∞/∞’.
Various forms of L’Hôpital’s rule stated. Examples of applications of L’Hôpital’s rule, and some alternative
methods for easy cases.

Lecture 18: More general statement of L’Hôpital’s rule (in terms of generalised notion of limit, ‘lim’, which includes possible
divergence of the function to ∞). Proof of one easy version of L’Hôpital’s rule. Students should know statements
of all versions of L’Hôpital’s rule and be able to use them, but the only version whose proof is examinable is
the one proved in lectures. Taylor series and Maclaurin series. Examples of functions where the Taylor (or
Maclaurin) series gives: (i) the original function, as hoped (e.g. exp(x)) (ii) the constant function 0 (an infinitely
differentiable which is not constant but all of whose derivatives at 0 are 0).

Lecture 19: Taylor’s theorem and its application to error estimates (e.g. estimation of cos(0.1)). The proof of Taylor’s
theorem is not examinable, but the statement is, as are its applications. The generalized second derivative test.

Lecture 20: ε−δ definitions and Uniform Continuity: Short additional section, including the definition of uniform continuity
and the connections between continuity, uniform continuity and Lipschitz continuity. Proof of the fact that every
continuous function on a closed and bounded interval is uniformly continuous.

Lecture 21: Student opinion forms issued.
Chapter 7. Integration: The statements and applications of results in this section are all examinable

but the only proofs which are examinable are the ones given in lectures. Brief discussion of antideriva-
tives (also called primitives) and the informal notion of area under the curve. The main result of this section is
the Fundamental Theorem of Calculus which implies that every continuous function has an antiderivative. Area
under the curve does not appear to make much sense for the characteristic function of Q. Brief discussion of
the idea behind Riemann integration: using rectangles to estimate areas from above and below. Partitions of
intervals. Riemann upper and lower sums for a bounded function f corresponding to a given partition P .

Lecture 22: Refinements of partitions. Each Riemann lower sum L(P, f) is less than or equal to every Riemann upper
sum U(Q, f). The Riemann upper and lower integrals. Riemann integrable functions (where the lower and
upper Riemann integrals are the same) and the Riemann integral of such functions (equal to both the Riemann
upper and lower integrals in this case). Riemann’s criterion for integrability. Continuous real-valued functions
on closed and bounded intervals are Riemann integrable. Other elementary facts about Riemann integration.
Statement and brief discussion (but not proof) of the (first) fundamental theorem of calculus: if f is continuous
on [a, b], define F (x) by

F (x) =

∫
x

a

f(t) dt.

Then F ′(x) = f(x) for all x ∈ (a, b). (For the proof, which is fairly straightforward, see, for example, Profes-
sor Langley’s notes.) Thus continuous functions on intervals always have antiderivatives. Improper Riemann
integrals: see final question sheet.
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