Section 2: Classes of Sets

Notation:

If A, B are subsets of X, then A\B denotes the set difference,
A\B = {x OA: x(B}.
AAB denotes the symmetric difference.
AAB = (A\B) O (B\A)
= (AOB)\(An B).
Remarks:
(i) ArA=[.
(i) 1f AnB =0, then AAB = AOB.
(iii) 1f B O Athen AAB = A\B.
(iv) In fact
A\B = AA(AN B),
AOB = (An B)A(AAB).

Let X be aset. Then £(X) denotes the set of all subsets of X. If we write
A= |j A
i=1

we mean that A,..., A, are pairwise disjoint and

Definition 2.1. Let X be aset. Then a collection of sets.y 0 P(X) is a semi-ring if
)y 00O,
@iy if ABOY then An BOY,

(iii) if A,B 0O then there is an nON and there are sets A, A,,..., A, 0% such that A, are pair-

wise disjoint and A\B = D A
i=1

Example 2.2. Set P = {(a,b]: a,b0R, a < b}. Then P is a semi-ring of subsets of R.
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[It is not hard to check this. For example, if a < ¢ < d < b, then (a,b] \(c,d] = (a,c] O(d,b].]

Similarly in R? or k" we can consider P", the collection of all subsets of R" of the form
(a1, b1]x(az, bl x... x(ay, by,
e.g. P2 = {(a,b] x(c,d] : a,b,c,d OR, a< b and ¢ < d}.
Then P" is a semi-ring of subsets of R". Thisis not as obvious as in the case n = 1. For exam-

ple, for P? note that the set difference of two half-open rectangles is the disjoint union of (at most)
four half-open rectangles.

Other examples of semi-rings of subsets of X:
(i) 2(X) is asemi-ring;
(i) {0O} is a semi-ring;

@ii) {0} O{{x}: xOX} = collection of al subsets of X containing < 1 point.

Definition 2.3. Let X be aset, let R 0 #(X). Then Risaring of subsets of X if
() DOOR
(i) if ABORthen AnB, ADBand A\B are dl inR.

Remarks
(i) Every ring is a semi-ring.
(i) Rings are closed under finite intersection and union: if A, A,,..., A, OR, then

n
A OR and || A OR
=1 =1

Examples

(i) 2»(X), {0} are both rings of subsets of X.

(i) R={A DO X: Aisfinite}.

(iii) R={A O R: Ais bounded}.

In this course, our main example of aring will be the following.

Example 2.4. Set

& ={A O R: Aisafinite union of half open intervals in R, each of the form (a,b]}.

& is caled the collection of elementary figures in R.

& contains all sets of form |j (&,b].
i=1
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The fact that ¢ is aring follows from Lemma 2.6 below. First we give a definition.

Definition 2.5. Let ¥ be a semi-ring of subsets of a set X. Then R(¥) is defined to be the collection of
all finite digoint unions of sets in .

Lemma 2.6. Let ¥ be a semi-ring of subsets of a set X. Then R(¥) is a ring, and for any ring R’
satisfying ¥ 00 R', we have R(¥) 0O R’ aso.

Remarks. It will follow that R(¥) is aso the collection of al finite unions of sets in . R(Y) is the
smallest ring containing .

Proof. First note ¥ O R(Y).

Next note that if A B 0¥, then A\B is a finite disjoint union of sets in ¥ (by property (iii) of
semi-rings). Thus A\B OR(Y). Suppose now that A,BOR(¥) and An B = [O.

Then A = DA,,B DBWlthaIIA,,BmJ”
=1 j=1

Then AOB = Ij A D D B;, afinite disjoint union of setsin #. Thus AU B UR(¥). Hence if
i=1 j=1

AL A, A OR(Y) and A; are pairwise disjoint then |j A OR(Y).
i=1

Now suppose that A, B OR(Y) with
A= DA,, =D B, ALA DY

%tcij:AiﬂBj. ThenCiij"(lﬁiSn,l§j§m),and

AnB = (gAi) n (,Dl Bj) = Q (A nB) = Q Cj.

1<i<n
1sjsm

The sets C;; are pairwise disjoint, so An BUR(¥). Hence R() is closed under finite intersec-
Suppose A, B are as above in R(¥). Then
A\B = ( A)
1=

A2
B e)
(3

(A\B))

I
I

OR(Y).



Finally, if A, B OR(Y), then
AOB = (A\B) || B
OR®).

Hence R(¥) is aring.

The rest of the result is obvious, since any ring containing & must also contain al finite unions
of sets in 4. 0

In particular, with P as in Example 2.2, we see that R(P) = &, and so & is aring. Similarly in
R", the ring generated by P" is the set of elementary figuresin R", &, consisting of all finite (disjoint)
unions of setsin P".

There is an alternative definition of ring, equivalent to ours, Ris aring if
(i) DOOR,
(i) for ABOR, AnBisinR, and AABOR.

With Operations n as multiplication, A as addition, Rrealy is aring in the agebraic sense.
This is NoOT true for fields: fields of sets are not usually really fields in the algebraic sense.

Definition 2.7. Let X be aset. A collection of sets O P(X) is a field of subsets of X if 7 is aring
and X 0.

Examples

() {0O,X} isthe smallest possible field of subsets of X.

(i) 2(X)is afield of subsets of X.

(iii) Let A O X. Then {O,A X\A, X} is afield of subsets of X.

(iv) Set 7 ={A O X: either A or X\ A are finite (or both)}.
Exercise: Check this is afield.

Fields are also called algebras of sets.

The next type of collection of sets is the o-field (also known as g-algebra or Borel algebra or
Borel family).

o-fields

A o-field of subsets of X is afield of subsets of X which is closed under countable unions.



In full, the definition of a o-field is;

Definition 2.8. Let X beaset and let # O 2(X). Then 7 is a o-field of subsets of X if 7 satisfies
(i 0O,X0%,
(i) fordl A/ BOZ A\BOYZ,

(iii) whenever A;, Ay, Ag,... 0F, then D A, 0%.

n=1

Since
A A= X\(m (X\An)),
n=1 n=1

F is closed under infinite intersections. Finite unions and intersections then follow, since ¢ and X are
inZ.
Examples

() {0O,X}, P(X) are both o-fields of subsets of X.

(i) If 7 isafiedd and # has only finitely many elements, then 7 is always a o-field. This is because
only finitely many sets are involved in the countable union.

(iii) Set X =R. Set  ={A 0 R: A or R\A is countable} (here countable means finite or countably
infinite).

Exercise. Show that % is a o-field.

The following lemma remains true if ‘o-field’ is replaced throughout by ‘field’, ‘ring’ but NOT
‘semi-ring’.

Lemma 2.9. Let {7,: yOrI} be a set of o-fields on a set X, where /" is a non-empty indexing set.

Then | 7, isaso ao-field on X
yar

Pr oof

(i) Foreachy, O andXarein7,. ThusOO (| 7, and XO | 7,.
yar yar

(i) LetA,BO Qr F,. Then, foral yOr, Aand B arein 7,.
y

Since 7, isa o-field, A\BO%, foral y,andso A\ABO | 7,.
yor

(iii) Let A;, Ay, Ag,... be asequence of setsin () 7,. Then, just as before, D A, 07, for every y
yar n=1

andsoDAnDﬂ F,. O
n=1 yor
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Definition 2.10. Suppose that X isa set and € is any set of subsets of X. There is at least one o-field
on X containing €, namely, £(X). Now define

F(8) = n{B ao-fieldon X: ¢ O %}

the intersection of al the o-fields on X containing €. By Lemma 2.9, %(¢) is a o-field on X. Any
o-field on X which contains ¢ must contain %(¢) aso.

F(86) is caled the o-field generated by ©.

Definition 2.11. Let (X, d) be a metric space. Let € be the collection of al open subsets of X. Then
the Borel subsets of X are the sets in %(8).

Thus the collection of Borel sets on X is the o-field generated by the set of open subsets of X.
We are interested mainly in R and R.

Let B denote the collection of Borel subsets of R. So & is a o-field which includes all open sets.
Since fields are closed under complement, all closed subsets of R are also in . Since % is closed
under countable unions and intersections, we see that every countable subset of R isin 3, in particular
Q O%B. There are very many sets in 3 but we shall see later that 3 # P(R).

We have, for example, the Cantor middle thirds set isin 3.

Example 2.12 (the Cantor Middle Thirds Set). Start with X, = [0,1]. Delete the middle third (3, 5
to form X; = [0,3] 0[5,1]. X; consists of two closed intervals. Form X, by deleting the middle
third of both intervals to leave four closed intervals.

eg XO | ————————————————— |

X == I==1 == |-~
X, consists of 2" closed intervals, each with length % obtained by deleting the middle third of all the
intervals forming X, _;.

Set

C=N X
n=0

those points in none of the deleted open intervals, but in [0, 1].

Then C is a closed subset of [0, 1], called the Cantor middle thirds set.
In fact C consists of all x in [0, 1] which have a base 3 expansion of the form
0' a1a2a3 s

where all & are 0 or 2.
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C is an example of a metric space with no isolated points but such that the only connected sub-
sets are single points. Although C contains no intervals of positive length, C has the same cardinality
as R.

Every half-open interval (a,b] is a Borel set. This is because

(a,b] = D [a+(b—_i),b].
n=1

n

Thus (a, b] is a countable union of closed sets and hence (a, b] 0%.

We have P 0 #. Since B is aring we have & 00 B, i.e. every elementary figure is a Borel set.
Also, since 3 is a o-field containing P, we have Z(P) O 3.

However, every open interval (a, b) is a countable union of sets in P.
(ab) = [I (a!b_(_b—;a) _
n
n=1

Thus (a,b) O%(P) for all a< b in R. But any open set U 0 R is a countable union of open intervals,
eg. U= 0O{(p,g): p,g00 and (p,q) O U}. Thus #(P) is a o-field containing all open subsets of R.
Since 3 is the smallest o-field containing all the open sets, it follows that 8 O Z(P). We aready had
F(P) O #. Thus #(P) = . We have thus proven the following.

Proposition 2.13. The o-field generated by P is precisely the set of Borel subsets of R. O



