Section 2: Classes of Sets

Notation:

If A, B are subsets of X, then $A \setminus B$ denotes the set difference,

$$A \setminus B = \{ x \in A : x \notin B \}.$$

 $A \triangle B$ denotes the symmetric difference.

$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$
$$= (A \cup B) \setminus (A \cap B).$$

Remarks :

- (i) $A \triangle A = \emptyset$.
- (ii) If $A \cap B = \emptyset$, then $A \triangle B = A \cup B$.
- (iii) If $B \subseteq A$ then $A \triangle B = A \setminus B$.
- (iv) In fact

$$A \setminus B = A \triangle (A \cap B),$$
$$A \cup B = (A \cap B) \triangle (A \triangle B).$$

Let X be a set. Then $\mathcal{P}(X)$ denotes the set of all subsets of X. If we write

$$A = \bigcup_{i=1}^{n} A_i$$

we mean that A_1, \ldots, A_n are pairwise disjoint and

$$A = \bigcup_{i=1}^{n} A_i.$$

Definition 2.1. Let X be a set. Then a collection of sets $\mathscr{G} \subseteq \mathscr{P}(X)$ is a semi-ring if

- (i) $\emptyset \in \mathcal{G}$,
- (ii) if $A, B \in \mathcal{S}$ then $A \cap B \in \mathcal{S}$,
- (iii) if $A, B \in \mathcal{S}$ then there is an $n \in \mathbb{N}$ and there are sets $A_1, A_2, \dots, A_n \in \mathcal{S}$ such that A_i are pairwise disjoint and $A \setminus B = \bigcup_{i=1}^n A_i$.

Example 2.2. Set $P = \{(a, b]: a, b \in \mathbb{R}, a \le b\}$. Then P is a semi-ring of subsets of \mathbb{R} .

[It is not hard to check this. For example, if a < c < d < b, then $(a, b] \setminus (c, d] = (a, c] \cup (d, b]$.]

Similarly in \mathbb{R}^2 or \mathbb{R}^n we can consider P^n , the collection of all subsets of \mathbb{R}^n of the form

$$[a_1, b_1] \times (a_2, b_2] \times \ldots \times (a_n, b_n],$$

e.g. $P^2 = \{(a, b] \times (c, d] : a, b, c, d \in \mathbb{R}, a \le b \text{ and } c \le d\}.$

Then P^n is a semi-ring of subsets of \mathbb{R}^n . This is not as obvious as in the case n = 1. For example, for P^2 note that the set difference of two half-open rectangles is the disjoint union of (at most) four half-open rectangles.

Other examples of semi-rings of subsets of X:

- (i) $\mathcal{P}(X)$ is a semi-ring;
- (ii) $\{\emptyset\}$ is a semi-ring;
- (iii) $\{\emptyset\} \cup \{\{x\}: x \in X\}$ = collection of all subsets of X containing ≤ 1 point.

Definition 2.3. Let X be a set, let $R \subseteq \mathcal{P}(X)$. Then R is a ring of subsets of X if

- (i) $\emptyset \in R$;
- (ii) if $A, B \in R$ then $A \cap B, A \cup B$ and $A \setminus B$ are all in R.

Remarks

- (i) Every ring is a semi-ring.
- (ii) Rings are closed under finite intersection and union: if $A_1, A_2, \dots, A_n \in \mathbb{R}$, then

$$\bigcap_{i=1}^{n} A_i \in R \quad \text{and} \quad \bigcup_{i=1}^{n} A_i \in R.$$

Examples

- (i) $\mathcal{P}(X)$, $\{\emptyset\}$ are both rings of subsets of X.
- (ii) $R = \{A \subseteq X : A \text{ is finite}\}.$
- (iii) $R = \{A \subseteq \mathbb{R} : A \text{ is bounded } \}.$

In this course, our main example of a ring will be the following.

Example 2.4. Set

 $\mathscr{E} = \{A \subseteq \mathbb{R}: A \text{ is a finite union of half open intervals in } \mathbb{R}, \text{ each of the form } (a,b]\}.$

 \mathscr{E} is called the collection of *elementary figures* in \mathbb{R} .

$$\begin{pmatrix} ----- \\ a_1 \end{pmatrix} \begin{pmatrix} ----- \\ a_2 \end{pmatrix} \begin{pmatrix} ----- \\ a_3 \end{pmatrix} \begin{pmatrix} ----- \\ b_3 \end{pmatrix} \begin{pmatrix} ----- \\ \cdots \end{pmatrix} \begin{pmatrix} ----- \\ a_n \end{pmatrix} \begin{pmatrix} ----- \\ a_n \end{pmatrix}$$

 \mathscr{E} contains all sets of form $\bigcup_{i=1}^{n} (a_i, b_i]$.

The fact that \mathcal{E} is a ring follows from Lemma 2.6 below. First we give a definition.

Definition 2.5. Let \mathscr{S} be a semi-ring of subsets of a set X. Then $R(\mathscr{S})$ is defined to be the collection of all finite *disjoint* unions of sets in \mathscr{S} .

Lemma 2.6. Let \mathscr{S} be a semi-ring of subsets of a set X. Then $R(\mathscr{S})$ is a ring, and for any ring R' satisfying $\mathscr{S} \subseteq R'$, we have $R(\mathscr{S}) \subseteq R'$ also.

Remarks. It will follow that $R(\mathcal{S})$ is also the collection of all finite unions of sets in \mathcal{S} . $R(\mathcal{S})$ is the smallest ring containing \mathcal{S} .

Proof. First note $\mathscr{S} \subseteq R(\mathscr{S})$.

Next note that if $A, B \in \mathcal{S}$, then $A \setminus B$ is a finite disjoint union of sets in \mathcal{S} (by property (iii) of semi-rings). Thus $A \setminus B \in R(\mathcal{S})$. Suppose now that $A, B \in R(\mathcal{S})$ and $A \cap B = \emptyset$.

Then
$$A = \bigcup_{i=1}^{n} A_i$$
, $B = \bigcup_{j=1}^{m} B_j$ with all A_i, B_j in \mathcal{S} .

Then $A \cup B = \bigcup_{i=1}^{n} A_i \bigcup_{j=1}^{m} B_j$, a finite disjoint union of sets in \mathcal{S} . Thus $A \cup B \in R(\mathcal{S})$. Hence if

 $A_1, A_2, \dots, A_n \in R(\mathcal{S})$ and A_i are pairwise disjoint then $\bigcup_{i=1}^n A_i \in R(\mathcal{S})$.

Now suppose that $A, B \in R(\mathcal{S})$ with

$$A = \bigcup_{i=1}^{n} A_{i}, \quad B = \bigcup_{j=1}^{m} B_{j}, \quad A_{i}, A_{j} \in \mathcal{S}.$$

Set $C_{ij} = A_i \cap B_j$. Then $C_{ij} \in \mathcal{G}$ $(1 \le i \le n, 1 \le j \le m)$, and

$$A \cap B = \left(\bigcup_{i=1}^{n} A_{i}\right) \cap \left(\bigcup_{j=1}^{m} B_{j}\right) = \bigcup_{\substack{i,j \\ 1 \le i \le n \\ 1 \le j \le m}} (A_{i} \cap B_{j}) = \bigcup_{i,j} C_{ij}.$$

The sets C_{ij} are pairwise disjoint, so $A \cap B \in R(\mathcal{S})$. Hence $R(\mathcal{S})$ is closed under finite intersections.

Suppose A, B are as above in $R(\mathcal{S})$. Then

$$A \setminus B = \left(\bigcup_{i=1}^{n} A_{i}\right) \setminus \left(\bigcup_{j=1}^{m} B_{j}\right)$$
$$= \bigcup_{i=1}^{n} \left(A_{i} \setminus \bigcup_{j=1}^{m} B_{j}\right)$$
$$= \bigcup_{i=1}^{n} \left(\bigcap_{j=1}^{m} (A_{i} \setminus B_{j})\right)$$
$$\in R(\mathcal{S}).$$

Finally, if $A, B \in R(\mathcal{G})$, then

$$A \cup B = (A \setminus B) \bigcup B$$
$$\in R(\mathcal{S}).$$

Hence $R(\mathcal{S})$ is a ring.

The rest of the result is obvious, since any ring containing \mathcal{S} must also contain all finite unions of sets in \mathcal{S} .

In particular, with *P* as in Example 2.2, we see that $R(P) = \mathcal{E}$, and so \mathcal{E} is a ring. Similarly in \mathbb{R}^n , the ring generated by P^n is the set of elementary figures in \mathbb{R}^n , \mathcal{E}_n consisting of all finite (disjoint) unions of sets in P^n .

There is an alternative definition of ring, equivalent to ours, R is a ring if

- (i) $\emptyset \in R$,
- (ii) for $A, B \in R$, $A \cap B$ is in R, and $A \triangle B \in R$.

With Operations \cap as multiplication, \triangle as addition, R really is a ring in the algebraic sense.

This is NOT true for *fields*: fields of sets are not usually really fields in the algebraic sense.

Definition 2.7. Let X be a set. A collection of sets $\mathcal{F} \subseteq \mathcal{P}(X)$ is a *field* of subsets of X if \mathcal{F} is a ring and $X \in \mathcal{F}$.

Examples

(i) $\{\emptyset, X\}$ is the smallest possible field of subsets of X.

- (ii) $\mathcal{P}(X)$ is a field of subsets of X.
- (iii) Let $A \subseteq X$. Then $\{\emptyset, A, X \setminus A, X\}$ is a field of subsets of X.
- (iv) Set $\mathcal{F} = \{A \subseteq X : \text{ either } A \text{ or } X \setminus A \text{ are finite (or both)} \}.$

Exercise: Check this is a field.

Fields are also called algebras of sets.

The next type of collection of sets is the σ -field (also known as σ -algebra or Borel algebra or Borel family).

σ-fields

A σ -field of subsets of X is a field of subsets of X which is closed under countable unions.

In full, the definition of a σ -field is:

Definition 2.8. Let X be a set and let $\mathcal{F} \subseteq \mathcal{P}(X)$. Then \mathcal{F} is a σ -field of subsets of X if \mathcal{F} satisfies

- (i) $\emptyset, X \in \mathcal{F},$
- (ii) for all $A, B \in \mathcal{F}, A \setminus B \in \mathcal{F}$,

(iii) whenever
$$A_1, A_2, A_3, \dots \in \mathcal{F}$$
, then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$

Since

$$\bigcap_{n=1}^{\infty} A_n = X \setminus \left(\bigcup_{n=1}^{\infty} (X \setminus A_n) \right),$$

 \mathcal{F} is closed under infinite intersections. Finite unions and intersections then follow, since ϕ and X are in \mathcal{F} .

Examples

- (i) $\{\emptyset, X\}, \mathcal{P}(X)$ are both σ -fields of subsets of X.
- (ii) If \mathcal{F} is a field and \mathcal{F} has only finitely many elements, then \mathcal{F} is always a σ -field. This is because only finitely many sets are involved in the countable union.
- (iii) Set $X = \mathbb{R}$. Set $\mathcal{F} = \{A \subseteq \mathbb{R} : A \text{ or } \mathbb{R} \setminus A \text{ is countable} \}$ (here countable means finite or countably infinite).

Exercise. Show that \mathcal{F} is a σ -field.

The following lemma remains true if ' σ -field' is replaced throughout by 'field', 'ring' but **NOT** 'semi-ring'.

Lemma 2.9. Let $\{\mathcal{F}_{\gamma}: \gamma \in \Gamma\}$ be a set of σ -fields on a set *X*, where Γ is a non-empty indexing set. Then $\bigcap_{\gamma \in \Gamma} \mathcal{F}_{\gamma}$ is also a σ -field on *X*.

Proof

- (i) For each γ , \emptyset and X are in \mathcal{F}_{γ} . Thus $\emptyset \in \bigcap_{\gamma \in \Gamma} \mathcal{F}_{\gamma}$ and $X \in \bigcap_{\gamma \in \Gamma} \mathcal{F}_{\gamma}$.
- (ii) Let $A, B \in \bigcap_{\gamma \in \Gamma} \mathcal{F}_{\gamma}$. Then, for all $\gamma \in \Gamma$, A and B are in \mathcal{F}_{γ} .

Since \mathscr{F}_{γ} is a σ -field, $A \setminus B \in \mathscr{F}_{\gamma}$ for all γ , and so $A \setminus B \in \bigcap_{\gamma \in \Gamma} \mathscr{F}_{\gamma}$.

(iii) Let $A_1, A_2, A_3, ...$ be a sequence of sets in $\bigcap_{\gamma \in \Gamma} \mathcal{F}_{\gamma}$. Then, just as before, $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}_{\gamma}$ for every γ and so $\bigcup_{n=1}^{\infty} A_n \in \bigcap_{\gamma \in \Gamma} \mathcal{F}_{\gamma}$. **Definition 2.10.** Suppose that X is a set and \mathscr{C} is any set of subsets of X. There is at least one σ -field on X containing \mathscr{C} , namely, $\mathscr{P}(X)$. Now define

$$\mathcal{F}(\mathcal{C}) = \bigcap \{ \mathcal{B} \text{ a } \sigma \text{-field on } X \colon \mathcal{C} \subseteq \mathcal{B} \}$$

the intersection of all the σ -fields on X containing \mathcal{C} . By Lemma 2.9, $\mathcal{F}(\mathcal{C})$ is a σ -field on X. Any σ -field on X which contains \mathcal{C} must contain $\mathcal{F}(\mathcal{C})$ also.

 $\mathcal{F}(\mathcal{C})$ is called the σ -field generated by \mathcal{C} .

Definition 2.11. Let (X, d) be a metric space. Let \mathcal{C} be the collection of all open subsets of X. Then the *Borel subsets* of X are the sets in $\mathcal{F}(\mathcal{C})$.

Thus the collection of Borel sets on X is the σ -field generated by the set of open subsets of X.

We are interested mainly in \mathbb{R} and \mathbb{R} .

Let \mathcal{B} denote the collection of Borel subsets of \mathbb{R} . So \mathcal{B} is a σ -field which includes all open sets. Since fields are closed under complement, all closed subsets of \mathbb{R} are also in \mathcal{B} . Since \mathcal{F} is closed under countable unions and intersections, we see that every countable subset of \mathbb{R} is in \mathcal{B} , in particular $\mathbb{Q} \in \mathcal{B}$. There are very many sets in \mathcal{B} but we shall see later that $\mathcal{B} \neq \mathcal{P}(\mathbb{R})$.

We have, for example, the Cantor middle thirds set is in \mathcal{B} .

Example 2.12 (the Cantor Middle Thirds Set). Start with $X_0 = [0, 1]$. Delete the middle third $(\frac{1}{3}, \frac{2}{3})$ to form $X_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$. X_1 consists of two closed intervals. Form X_2 by deleting the middle third of both intervals to leave four closed intervals.

e.g.

X_0		
X_1		
X_2		

 X_n consists of 2^n closed intervals, each with length $\frac{1}{3^n}$ obtained by deleting the middle third of all the intervals forming X_{n-1} .

Set

$$C = \bigcap_{n=0}^{\infty} X_n$$

= those points in none of the deleted open intervals, but in [0, 1].

Then C is a closed subset of [0, 1], called the Cantor middle thirds set.

In fact C consists of all x in [0, 1] which have a base 3 expansion of the form

$$0 \cdot a_1 a_2 a_3 \dots$$

where all a_i are 0 or 2.

C is an example of a metric space with no isolated points but such that the only connected subsets are single points. Although C contains no intervals of positive length, C has the same cardinality as \mathbb{R} .

Every half-open interval (a, b] is a Borel set. This is because

$$(a,b] = \bigcup_{n=1}^{\infty} \left[a + \frac{(b-a)}{n}, b \right].$$

Thus (a, b] is a countable union of closed sets and hence $(a, b] \in \mathcal{B}$.

We have $P \subseteq \mathcal{B}$. Since \mathcal{B} is a ring we have $\mathcal{E} \subseteq \mathcal{B}$, i.e. every elementary figure is a Borel set. Also, since \mathcal{B} is a σ -field containing P, we have $\mathcal{F}(P) \subseteq \mathcal{B}$.

However, every open interval (a, b) is a countable union of sets in P.

$$(a,b) = \bigcup_{n=1}^{\infty} \left(a, b - \frac{(b-a)}{n} \right].$$

Thus $(a, b) \in \mathcal{F}(P)$ for all a < b in \mathbb{R} . But any open set $U \subseteq \mathbb{R}$ is a countable union of open intervals, e.g. $U = \bigcup \{(p, q): p, q \in \mathbb{Q} \text{ and } (p, q) \subseteq U\}$. Thus $\mathcal{F}(P)$ is a σ -field containing all open subsets of \mathbb{R} . Since \mathcal{B} is the *smallest* σ -field containing all the open sets, it follows that $\mathcal{B} \subseteq \mathcal{F}(P)$. We already had $\mathcal{F}(P) \subseteq \mathcal{B}$. Thus $\mathcal{F}(P) = \mathcal{B}$. We have thus proven the following.

Proposition 2.13. The σ -field generated by *P* is precisely the set of Borel subsets of \mathbb{R} .