Section 2: Classes of Sets

Notation:

If A, B are subsets of X, then $A \backslash B$ denotes the set difference,

$$
A \backslash B=\{x \in A: x \notin B\}
$$

$A \triangle B$ denotes the symmetric difference.

$$
\begin{aligned}
A \triangle B & =(A \backslash B) \cup(B \backslash A) \\
& =(A \cup B) \backslash(A \cap B) .
\end{aligned}
$$

Remarks :

(i) $A \triangle A=\varnothing$.
(ii) If $A \cap B=\varnothing$, then $A \triangle B=A \cup B$.
(iii) If $B \subseteq A$ then $A \triangle B=A \backslash B$.
(iv) In fact

$$
\begin{aligned}
& A \backslash B=A \triangle(A \cap B) \\
& A \cup B=(A \cap B) \triangle(A \triangle B)
\end{aligned}
$$

Let X be a set. Then $\mathscr{P}(X)$ denotes the set of all subsets of X. If we write

$$
A=\bigcup_{i=1}^{n} A_{i}
$$

we mean that A_{1}, \ldots, A_{n} are pairwise disjoint and

$$
A=\bigcup_{i=1}^{n} A_{i}
$$

Definition 2.1. Let X be a set. Then a collection of sets $\mathscr{\mathscr { S }} \subseteq \mathscr{P}(X)$ is a semi-ring if
(i) $\varnothing \in \mathscr{Y}$,
(ii) if $A, B \in \mathscr{\varphi}$ then $A \cap B \in \mathscr{\mathscr { L }}$,
(iii) if $A, B \in \mathscr{Y}$ then there is an $n \in \mathbb{N}$ and there are sets $A_{1}, A_{2}, \ldots, A_{n} \in \mathscr{Y}$ such that A_{i} are pairwise disjoint and $A \backslash B=\bigcup_{i=1}^{n} A_{i}$.

Example 2.2. Set $P=\{(a, b]: a, b \in \mathbb{R}, a \leqslant b\}$. Then P is a semi-ring of subsets of \mathbb{R}.
[It is not hard to check this. For example, if $a<c<d<b$, then $(a, b] \backslash(c, d]=(a, c] \cup(d, b]$.]

Similarly in \mathbb{R}^{2} or \mathbb{R}^{n} we can consider P^{n}, the collection of all subsets of \mathbb{R}^{n} of the form

$$
\left(a_{1}, b_{1}\right] \times\left(a_{2}, b_{2}\right] \times \ldots \times\left(a_{n}, b_{n}\right]
$$

e.g. $P^{2}=\{(a, b] \times(c, d]: a, b, c, d \in \mathbb{R}, a \leqslant b$ and $c \leqslant d\}$.

Then P^{n} is a semi-ring of subsets of \mathbb{R}^{n}. This is not as obvious as in the case $n=1$. For example, for P^{2} note that the set difference of two half-open rectangles is the disjoint union of (at most) four half-open rectangles.

Other examples of semi-rings of subsets of X :
(i) $\quad \mathcal{P}(X)$ is a semi-ring;
(ii) $\{\varnothing\}$ is a semi-ring;
(iii) $\{\varnothing\} \cup\{\{x\}: x \in X\}=$ collection of all subsets of X containing $\leqslant 1$ point.

Definition 2.3. Let X be a set, let $R \subseteq \mathscr{P}(X)$. Then R is a ring of subsets of X if
(i) $\varnothing \in R$;
(ii) if $A, B \in R$ then $A \cap B, A \cup B$ and $A \backslash B$ are all in R.

Remarks

(i) Every ring is a semi-ring.
(ii) Rings are closed under finite intersection and union: if $A_{1}, A_{2}, \ldots, A_{n} \in R$, then

$$
\bigcap_{i=1}^{n} A_{i} \in R \quad \text { and } \quad \bigcup_{i=1}^{n} A_{i} \in R
$$

Examples

(i) $\mathcal{P}(X),\{\varnothing\}$ are both rings of subsets of X.
(ii) $\quad R=\{A \subseteq X: A$ is finite $\}$.
(iii) $R=\{A \subseteq \mathbb{R}: A$ is bounded $\}$.

In this course, our main example of a ring will be the following.

Example 2.4. Set

$$
\mathscr{E}=\{A \subseteq \mathbb{R}: A \text { is a finite union of half open intervals in } \mathbb{R}, \text { each of the form }(a, b]\}
$$

\mathscr{E} is called the collection of elementary figures in \mathbb{R}.

$$
\left.\left.(------] \quad \underset{b_{1}}{(-------]} \quad \underset{a_{2}}{(------------]} \quad \underset{b_{3}}{(-------]} \quad(----]\right) \quad \underset{a_{n}}{b_{n}}\right)
$$

\mathscr{E} contains all sets of form $\bigcup_{i=1}^{n}\left(a_{i}, b_{i}\right]$.

The fact that \mathscr{E} is a ring follows from Lemma 2.6 below. First we give a definition.

Definition 2.5. Let \mathscr{Y} be a semi-ring of subsets of a set X. Then $R(\mathscr{Y})$ is defined to be the collection of all finite disjoint unions of sets in φ.

Lemma 2.6. Let \mathscr{Y} be a semi-ring of subsets of a set X. Then $R(\varphi)$ is a ring, and for any ring R^{\prime}

Remarks. It will follow that $R(\mathscr{\varphi})$ is also the collection of all finite unions of sets in $\mathscr{\varphi}$. $R(\mathscr{\varphi})$ is the smallest ring containing φ.

Proof. First note $\mathscr{\mathscr { G }} \subseteq(\mathscr{}$. .

Next note that if $A, B \in \mathscr{S}$, then $A \backslash B$ is a finite disjoint union of sets in \mathscr{S} (by property (iii) of semi-rings). Thus $A \backslash B \in R(\varphi)$. Suppose now that $A, B \in R(\varphi)$ and $A \cap B=\varnothing$.

Then $A=\bigcup_{i=1}^{n} A_{i}, B=\bigcup_{j=1}^{m} B_{j}$ with all A_{i}, B_{j} in \mathscr{S}.
Then $A \cup B=\bigcup_{i=1}^{n} A_{i} \smile \bigcup_{j=1}^{m} B_{j}$, a finite disjoint union of sets in φ. Thus $A \cup B \in R(\mathscr{Y})$. Hence if $A_{1}, A_{2}, \ldots, A_{n} \in R(\mathscr{Y})$ and A_{i} are pairwise disjoint then $\bigcup_{i=1}^{n} A_{i} \in R(\mathscr{\varphi})$.

Now suppose that $A, B \in R(\mathscr{)}$ with

$$
A=\bigcup_{i=1}^{n} A_{i}, \quad B=\bigcup_{j=1}^{m} B_{j}, \quad A_{i}, A_{j} \in \mathscr{Y}
$$

Set $C_{i j}=A_{i} \cap B_{j}$. Then $C_{i j} \in \mathscr{\mathscr { S }}(1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m)$, and

$$
A \cap B=\left(\bigcup_{i=1}^{n} A_{i}\right) \cap\left(\bigcup_{j=1}^{m} B_{j}\right)=\bigcup_{\substack{i, j \\ 1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant m}}\left(A_{i} \cap B_{j}\right)=\bigcup_{i, j} C_{i j}
$$

The sets $C_{i j}$ are pairwise disjoint, so $A \cap B \in R(\varphi)$. Hence $R(\varphi)$ is closed under finite intersec tions.

Suppose A, B are as above in $R(\varphi)$. Then

$$
\begin{aligned}
A \backslash B & =\left(\bigcup_{i=1}^{n} A_{i}\right) \backslash\left(\bigcup_{j=1}^{m} B_{j}\right) \\
& =\bigcup_{i=1}^{n}\left(A_{i} \backslash \bigcup_{j=1}^{m} B_{j}\right) \\
& =\bigcup_{i=1}^{n}\left(\bigcap_{j=1}^{m}\left(A_{i} \backslash B_{j}\right)\right) \\
& \in R(\varphi) .
\end{aligned}
$$

Finally, if $A, B \in R(\varphi)$, then

$$
\begin{aligned}
A \cup B & =(A \backslash B) \bigcup B \\
& \in R(\mathscr{Y}) .
\end{aligned}
$$

Hence $R(\varphi)$ is a ring.
The rest of the result is obvious, since any ring containing φ must also contain all finite unions of sets in φ.

In particular, with P as in Example 2.2, we see that $R(P)=\mathscr{E}$, and so \mathscr{E} is a ring. Similarly in \mathbb{R}^{n}, the ring generated by P^{n} is the set of elementary figures in $\mathbb{R}^{n}, \mathscr{E}_{n}$ consisting of all finite (disjoint) unions of sets in P^{n}.

There is an alternative definition of ring, equivalent to ours, R is a ring if
(i) $\varnothing \in R$,
(ii) for $A, B \in R, A \cap B$ is in R, and $A \triangle B \in R$.

With Operations \cap as multiplication, \triangle as addition, R really is a ring in the algebraic sense.
This is not true for fields: fields of sets are not usually really fields in the algebraic sense.
Definition 2.7. Let X be a set. A collection of sets $\mathscr{F} \subseteq \mathscr{P}(X)$ is a field of subsets of X if \mathscr{F} is a ring and $X \in \mathscr{F}$.

Examples

(i) $\{\varnothing, X\}$ is the smallest possible field of subsets of X.
(ii) $\mathscr{P}(X)$ is a field of subsets of X.
(iii) Let $A \subseteq X$. Then $\{\varnothing, A, X \backslash A, X\}$ is a field of subsets of X.
(iv) Set $\mathscr{F}=\{A \subseteq X$: either A or $X \backslash A$ are finite (or both) $\}$.

Exercise: Check this is a field.
Fields are also called algebras of sets.
The next type of collection of sets is the σ-field (also known as σ-algebra or Borel algebra or Borel family).

σ-fields

A σ-field of subsets of X is a field of subsets of X which is closed under countable unions.

In full, the definition of a σ-field is:

Definition 2.8. Let X be a set and let $\mathscr{F} \subseteq \mathscr{P}(X)$. Then \mathscr{F} is a σ-field of subsets of X if \mathscr{F} satis fies
(i) $\varnothing, X \in \mathcal{F}$,
(ii) for all $A, B \in \mathcal{F}, A \backslash B \in \mathcal{F}$,
(iii) whenever $A_{1}, A_{2}, A_{3}, \ldots \in \mathscr{F}$, then $\bigcup_{n=1}^{\infty} A_{n} \in \mathscr{F}$.

Since

$$
\bigcap_{n=1}^{\infty} A_{n}=X \backslash\left(\bigcup_{n=1}^{\infty}\left(X \backslash A_{n}\right)\right),
$$

\mathscr{F} is closed under infinite intersections. Finite unions and intersections then follow, since ϕ and X are in \mathscr{F}.

Examples

(i) $\quad\{\varnothing, X\}, \mathcal{P}(X)$ are both σ-fields of subsets of X.
(ii) If \mathscr{F} is a field and \mathscr{F} has only finitely many elements, then \mathscr{F} is always a σ-field. This is because only finitely many sets are involved in the countable union.
(iii) Set $X=\mathbb{R}$. Set $\mathscr{F}=\{A \subseteq \mathbb{R}: A$ or $\mathbb{R} \backslash A$ is countable $\}$ (here countable means finite or countably infinite).

Exercise. Show that \mathscr{F} is a σ-field.

The following lemma remains true if ' σ-field' is replaced throughout by 'field', 'ring' but NOT 'semi-ring'.

Lemma 2.9. Let $\left\{\mathscr{F}_{\gamma}: \gamma \in \Gamma\right\}$ be a set of σ-fields on a set X, where Γ is a non-empty indexing set. Then $\bigcap_{\gamma \in \Gamma} \mathscr{F}_{\gamma}$ is also a σ-field on X.

Proof

(i) For each γ, \varnothing and X are in \mathscr{F}_{γ}. Thus $\varnothing \in \bigcap_{\gamma \in \Gamma} \mathscr{F}_{\gamma}$ and $X \in \bigcap_{\gamma \in \Gamma} \mathscr{F}_{\gamma}$.
(ii) Let $A, B \in \bigcap_{\gamma \in \Gamma} \mathscr{F}_{\gamma}$. Then, for all $\gamma \in \Gamma, A$ and B are in \mathscr{F}_{γ}.

Since \mathscr{F}_{γ} is a σ-field, $A \backslash B \in \mathscr{F}_{\gamma}$ for all γ, and so $A \backslash B \in \bigcap_{\gamma \in \Gamma} \mathscr{F}_{\gamma}$.
(iii) Let $A_{1}, A_{2}, A_{3}, \ldots$ be a sequence of sets in $\bigcap_{\gamma \in \Gamma} \mathscr{F}_{\gamma}$. Then, just as before, $\bigcup_{n=1}^{\infty} A_{n} \in \mathscr{F}_{\gamma}$ for every γ and so $\bigcup_{n=1}^{\infty} A_{n} \in \bigcap_{\gamma \in \Gamma} \mathscr{F}_{\gamma}$.

Definition 2.10. Suppose that X is a set and \mathscr{C} is any set of subsets of X. There is at least one σ-field on X containing \mathscr{C}, namely, $\mathcal{P}(X)$. Now define

$$
\mathscr{H}(\mathscr{C})=\cap\{\mathscr{B} \text { a } \sigma \text {-field on } X: \mathscr{C} \subseteq \mathscr{B}\}
$$

the intersection of all the σ-fields on X containing \mathscr{C}. By Lemma 2.9, $\mathscr{F}(\mathscr{C})$ is a σ-field on X. Any σ-field on X which contains \mathscr{C} must contain $\mathscr{F}(\mathscr{C})$ also.
$\mathscr{F}(\mathscr{C})$ is called the σ-field generated by \mathscr{C}.
Definition 2.11. Let (X, d) be a metric space. Let \mathscr{C} be the collection of all open subsets of X. Then the Borel subsets of X are the sets in $\mathscr{F}(\mathscr{C})$.

Thus the collection of Borel sets on X is the σ-field generated by the set of open subsets of X.
We are interested mainly in \mathbb{R} and $\overline{\mathbb{R}}$.
Let \mathscr{B} denote the collection of Borel subsets of \mathbb{R}. So \mathscr{B} is a σ-field which includes all open sets. Since fields are closed under complement, all closed subsets of \mathbb{R} are also in \mathscr{B}. Since \mathscr{F} is closed under countable unions and intersections, we see that every countable subset of \mathbb{R} is in \mathcal{B}, in particular $\mathbb{Q} \in \mathscr{B}$. There are very many sets in \mathscr{B} but we shall see later that $\mathscr{R} \neq \mathscr{P}(\mathbb{R})$.

We have, for example, the Cantor middle thirds set is in \mathscr{B}.
Example 2.12 (the Cantor Middle Thirds Set). Start with $X_{0}=[0,1]$. Delete the middle third ($\frac{1}{3}, \frac{2}{3}$) to form $X_{1}=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right]$. X_{1} consists of two closed intervals. Form X_{2} by deleting the middle third of both intervals to leave four closed intervals.

X_{n} consists of 2^{n} closed intervals, each with length $\frac{1}{3^{n}}$ obtained by deleting the middle third of all the intervals forming X_{n-1}.

Set

$$
\begin{aligned}
C & =\bigcap_{n=0}^{\infty} X_{n} \\
& =\text { those points in none of the deleted open intervals, but in }[0,1] .
\end{aligned}
$$

Then C is a closed subset of $[0,1]$, called the Cantor middle thirds set.
In fact C consists of all x in $[0,1]$ which have a base 3 expansion of the form

$$
0 \cdot a_{1} a_{2} a_{3} \ldots
$$

where all a_{i} are 0 or 2.
C is an example of a metric space with no isolated points but such that the only connected subsets are single points. Although C contains no intervals of positive length, C has the same cardinality as \mathbb{R}.

Every half-open interval $(a, b]$ is a Borel set. This is because

$$
(a, b]=\bigcup_{n=1}^{\infty}\left[a+\frac{(b-a)}{n}, b\right]
$$

Thus $(a, b]$ is a countable union of closed sets and hence $(a, b] \in \mathscr{B}$.
We have $P \subseteq \mathscr{B}$. Since \mathscr{B} is a ring we have $\mathscr{E} \subseteq \mathscr{B}$, i.e. every elementary figure is a Borel set. Also, since \mathscr{B} is a σ-field containing P, we have $\mathscr{F}(P) \subseteq \mathscr{B}$.

However, every open interval (a, b) is a countable union of sets in P.

$$
(a, b)=\bigcup_{n=1}^{\infty}\left(a, b-\frac{(b-a)}{n}\right]
$$

Thus $(a, b) \in \mathscr{F}(P)$ for all $a<b$ in \mathbb{R}. But any open set $U \subseteq \mathbb{R}$ is a countable union of open intervals, e.g. $U=\cup\{(p, q): p, q \in \mathbb{Q}$ and $(p, q) \subseteq U\}$. Thus $\mathscr{F}(P)$ is a σ-field containing all open subsets of \mathbb{R}. Since \mathscr{B} is the smallest σ-field containing all the open sets, it follows that $\mathscr{B} \subseteq \mathscr{F}(P)$. We already had $\mathscr{F}(P) \subseteq \mathscr{B}$. Thus $\mathscr{F}(P)=\mathscr{B}$. We have thus proven the following.

Proposition 2.13. The σ-field generated by P is precisely the set of Borel subsets of \mathbb{R}.

