
Section 2: Classes of Sets

Notation:

If A, B are subsets of X, then A \ B denotes the set difference,

A \ B = {x ∈A : x∉B}.

A B denotes the symmetric difference .

A B = (A \ B ) ∪ (B \ A)

= (A ∪ B ) \ (A ∩ B ).

Remarks :

(i) A A = ∅.

(ii) If A ∩ B = ∅, then A B = A ∪ B.

(iii) If B ⊆ A then A B = A \ B.

(iv) In fact

A \ B = A (A ∩ B ),

A ∪ B = (A ∩ B ) (A B ).

Let X be a set. Then (X ) denotes the set of all subsets of X. If we write

A = .
i =1
∪n

Ai

we mean that A1 , . . . , An are pairwise disjoint and

A =
i =1
∪n

Ai .

Definition 2.1. Let X be a set. Then a collection of sets ⊆ (X ) is a semi-ring if

(i) ∅ ∈ ,

(ii) if A, B ∈ then A ∩ B ∈ ,

(iii) if A, B ∈ then there is an n ∈ and there are sets A1 , A2 , . . . , An ∈ such that Ai are pair-

wise disjoint and A \ B =
i =1
∪n

Ai .

Example 2.2. Set P = {(a, b]: a, b ∈ , a b}. Then P is a semi-ring of subsets of .



- 2 -

[It is not hard to check this. For example, if a < c < d < b , then (a, b] \ (c, d] = (a, c] ∪ (d, b].]

Similarly in 2 or n we can consider Pn, the collection of all subsets of n of the form

(a1 , b1 ] × (a2 , b2 ] × . . . × (an , bn ],

e.g. P2 = {(a, b] × (c, d] : a, b, c, d ∈ , a b and c d}.

Then Pn is a semi-ring of subsets of n. This is not as obvious as in the case n = 1. For exam-

ple, for P2 note that the set difference of two half-open rectangles is the disjoint union of (at most)

four half-open rectangles.

Other examples of semi-rings of subsets of X:

(i) (X ) is a semi-ring;

(ii) {∅} is a semi-ring;

(iii) {∅} ∪ {{x}: x ∈X} = collection of all subsets of X containing 1 point.

Definition 2.3. Let X be a set, let R ⊆ (X ). Then R is a ring of subsets of X if

(i) ∅ ∈R;

(ii) if A, B ∈R then A ∩ B, A ∪ B and A \ B are all in R.

Remarks

(i) Every ring is a semi-ring.

(ii) Rings are closed under finite intersection and union: if A1 , A2 , . . . , An ∈R, then

i =1
∩n

Ai ∈R and
i =1
∪n

Ai ∈R.

Examples

(i) (X ), {∅} are both rings of subsets of X.

(ii) R = {A ⊆ X : A is finite}.

(iii) R = {A ⊆ : A is bounded }.

In this course, our main example of a ring will be the following.

Example 2.4. Set

= {A ⊆ : A is a finite union of half open intervals in , each of the form (a,b]}.

is called the collection of elementary figures in .

a1 b1

(− − − − − − ]
a2 b2

(− − − − − − ]
a3 b3

(− − − − − − − − − − − − ]
. . .

(− − − − − − ]
an bn

(− − − − ]

contains all sets of form
i =1
∪n

(ai , bi ].
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The fact that is a ring follows from Lemma 2.6 below. First we give a definition.

Definition 2.5. Let be a semi-ring of subsets of a set X. Then R( ) is defined to be the collection of

all finite disjoint unions of sets in .

Lemma 2.6. Let be a semi-ring of subsets of a set X. Then R( ) is a ring, and for any ring R ′
satisfying ⊆ R ′ , we have R( ) ⊆ R ′ also.

Remarks . It will follow that R( ) is also the collection of all finite unions of sets in . R( ) is the

smallest ring containing .

Proof . First note ⊆ R( ).

Next note that if A, B ∈ , then A \ B is a finite disjoint union of sets in (by property (iii) of

semi-rings). Thus A \ B ∈R( ). Suppose now that A, B ∈R( ) and A ∩ B = ∅.

Then A = .
i =1
∪n

Ai , B = .
j =1
∪m Bj with all Ai , Bj in .

Then A ∪ B = .
i =1
∪n

Ai
.∪ .

j =1
∪m Bj , a finite disjoint union of sets in . Thus A ∪ B ∈R( ). Hence if

A1 , A2 , . . . , An ∈R( ) and Ai are pairwise disjoint then
i =1
∪n

Ai ∈R( ).

Now suppose that A, B ∈R( ) with

A = .
i =1
∪n

Ai , B = .
j =1
∪m Bj , Ai , Aj ∈ .

Set Cij = Ai ∩ Bj . Then Cij ∈ (1 i n , 1 j m ), and

A ∩ B = (
i =1
∪n

Ai) ∩ (
j =1
∪m Bj) =

1 j m

1 i n

i, j
∪ (Ai ∩ Bj ) =

i, j
∪ Cij .

The sets Cij are pairwise disjoint, so A ∩ B ∈R( ). Hence R( ) is closed under finite intersec -

tions.

Suppose A, B are as above in R( ). Then

A \ B = ( .
i =1
∪n

Ai) \ ( .
j =1
∪m Bj)

= .
i =1
∪n (Ai \

j =1
∪m Bj)

= .
i =1
∪n (

j =1
∩m (Ai \ Bj ))

∈R( ).
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Finally, if A, B ∈R( ), then

A ∪ B = (A \ B ) .∪ B

∈R( ).

Hence R( ) is a ring.

The rest of the result is obvious, since any ring containing must also contain all finite unions

of sets in .
�

In particular, with P as in Example 2.2, we see that R(P ) = , and so is a ring. Similarly in
n, the ring generated by P n is the set of elementary figures in n, n consisting of all finite (disjoint)

unions of sets in Pn.

There is an alternative definition of ring, equivalent to ours, R is a ring if

(i) ∅ ∈R,

(ii) for A, B ∈R, A ∩ B is in R, and A B ∈R.

With Operations ∩ as multiplication, as addition, R really is a ring in the algebraic sense.

This is NOT true for fields: fields of sets are not usually really fields in the algebraic sense.

Definition 2.7. Let X be a set. A collection of sets ⊆ (X ) is a field of subsets of X if is a ring

and X ∈ .

Examples

(i) {∅, X} is the smallest possible field of subsets of X.

(ii) (X ) is a field of subsets of X.

(iii) Let A ⊆ X. Then {∅, A, X \ A, X} is a field of subsets of X.

(iv) Set = {A ⊆ X : either A or X \ A are finite (or both)}.

Exercise: Check this is a field.

Fields are also called algebras of sets.

The next type of collection of sets is the σ -field (also known as σ -algebra or Borel algebra or

Borel family).

σσσ -fields

A σ -field of subsets of X is a field of subsets of X which is closed under countable unions.
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In full, the definition of a σ -field is:

Definition 2.8. Let X be a set and let ⊆ (X ). Then is a σ - field of subsets of X if satis fies

(i) ∅, X ∈ ,

(ii) for all A, B ∈ , A \ B ∈ ,

(iii) whenever A1 , A2 , A3 , . . . ∈ , then
n =1
∪∞ An ∈ .

Since

n =1
∩∞ An = X \ (

n =1
∪∞ (X \ An )),

is closed under infinite intersections. Finite unions and intersections then follow, since φ and X are

in .

Examples

(i) {∅, X}, (X ) are both σ -fields of subsets of X.

(ii) If is a field and has only finitely many elements, then is always a σ -field. This is because

only finitely many sets are involved in the countable union.

(iii) Set X = . Set = {A ⊆ : A or \ A is countable } (here countable means finite or countably

infinite).

Exercise . Show that is a σ -field.

The following lemma remains true if ‘σ -field’ is replaced throughout by ‘field’, ‘ring’ but NOT
‘semi-ring’.

Lemma 2.9. Let { γ : γ ∈Γ} be a set of σ -fields on a set X, where Γ is a non-empty indexing set.

Then
γ ∈Γ
∩ γ is also a σ -field on X.

Proof

(i) For each γ , ∅ and X are in γ . Thus ∅ ∈
γ ∈Γ
∩ γ and X ∈

γ ∈Γ
∩ γ .

(ii) Let A, B ∈
γ ∈Γ
∩ γ . Then, for all γ ∈Γ , A and B are in γ .

Since γ is a σ -field, A \ B ∈ γ for all γ , and so A \ B ∈
γ ∈Γ
∩ γ .

(iii) Let A1 , A2 , A3 , . . . be a sequence of sets in
γ ∈Γ
∩ γ . Then, just as before,

n =1
∪∞ An ∈ γ for every γ

and so
n =1
∪∞ An ∈

γ ∈Γ
∩ γ . �
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Definition 2.10. Suppose that X is a set and is any set of subsets of X. There is at least one σ -field

on X containing , namely, (X ). Now define

( ) = ∩ { a σ-field on X : ⊆ }

the intersection of all the σ -fields on X containing . By Lemma 2.9, ( ) is a σ -field on X. Any

σ -field on X which contains must contain ( ) also.

( ) is called the σ -field generated by .

Definition 2.11 . Let (X, d) be a metric space. Let be the collection of all open subsets of X. Then

the Borel subsets of X are the sets in ( ).

Thus the collection of Borel sets on X is the σ -field generated by the set of open subsets of X.

We are interested mainly in and
� �

.

Let denote the collection of Borel subsets of . So is a σ -field which includes all open sets.

Since fields are closed under complement, all closed subsets of are also in . Since is closed

under countable unions and intersections, we see that every countable subset of is in , in particular

∈ . There are very many sets in but we shall see later that ≠ ( ).

We have, for example, the Cantor middle thirds set is in .

Example 2.12 (the Cantor Middle Thirds Set). Start with X0 = [0, 1]. Delete the middle third ( 3
1� � , 3

2� � )

to form X1 = [0, 3
1� � ] ∪ [ 3

2� � , 1]. X1 consists of two closed intervals. Form X2 by deleting the middle

third of both intervals to leave four closed intervals.

e.g. X0
�
− − − − − − − − − − − − − − − − − �

X1 	 − − − − − − − 
 
 − − − − − − − �
X2 � − −   − − � � − − � � − − �

Xn consists of 2n closed intervals, each with length
3n

1��� obtained by deleting the middle third of all the

intervals forming Xn −1 .

Set

C =
n =0
∩∞ Xn

= those points in none of the deleted open intervals, but in [0, 1].

Then C is a closed subset of [0, 1], called the Cantor middle thirds set.

In fact C consists of all x in [0, 1] which have a base 3 expansion of the form

0.a1a2a3 . . .

where all ai are 0 or 2.
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C is an example of a metric space with no isolated points but such that the only connected sub-

sets are single points. Although C contains no intervals of positive length, C has the same cardinality

as .

Every half-open interval (a, b] is a Borel set. This is because

(a, b] =
n =1
∪∞ [a +

n

(b − a)� ��������� , b] .

Thus (a, b] is a countable union of closed sets and hence (a, b] ∈ .

We have P ⊆ . Since is a ring we have ⊆ , i.e. every elementary figure is a Borel set.

Also, since is a σ -field containing P, we have (P ) ⊆ .

However, every open interval (a, b) is a countable union of sets in P.

(a, b) =
n =1
∪∞

(a, b −
n

(b − a)� ��������� ] .

Thus (a, b) ∈ (P ) for all a < b in . But any open set U ⊆ is a countable union of open intervals,

e.g. U = ∪ {(p, q): p, q ∈ and (p, q) ⊆ U}. Thus (P ) is a σ -field containing all open subsets of .

Since is the smallest σ -field containing all the open sets, it follows that ⊆ (P ). We already had

(P ) ⊆ . Thus (P ) = . We have thus proven the following.

Proposition 2.13 . The σ -field generated by P is precisely the set of Borel subsets of . �


