Section 3: Measures and Measure Spaces

Intuitively, in \mathbb{R}^2 , we expect the area of a disjoint union of sets $A \cup B$ to be the sum of area of A and area of B (i.e. total area = sum of smaller areas).

What if $(A_n)_{n=1}^{\infty}$ is a sequence of disjoint subsets of \mathbb{R}^2 ? We would hope that the area of $\bigcup_{n=1}^{\infty} A_n$ would equal $\sum_{n=1}^{\infty}$ (area of A_n).

In \mathbb{R} the equivalent notion is that of length. We want to define a function $\lambda \colon \mathcal{P}(\mathbb{R}) \to [0, \infty]$ to measure the length of as many sets as possible, such that

$$\lambda((a,b]) = b-a$$
 and $\lambda(A \cup B) = \lambda(A) + \lambda(B)$, $\lambda\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \lambda(A_n)$ etc.

Unfortunately this cannot be done for all subsets of \mathbb{R} .

Area in \mathbb{R}^2 and volume in \mathbb{R}^3 have the same problems. But we will succeed in defining our measurements of size on at least all the Borel sets.

Definition 3.1

Let *X* be a set, let $\mathscr{C} \subseteq \mathscr{P}(X)$ s.t. $\emptyset \in \mathscr{C}$, and let $\mu \colon \mathscr{C} \to [0, \infty]$.

Then μ is a *measure* on \mathcal{C} if

- (i) $\mu(\emptyset) = 0$,
- (ii) whenever A_1, A_2, \ldots , is a sequence of pairwise disjoint sets in $\mathscr C$ s.t. $\bigcup_{n=1}^\infty A_n$ is in $\mathscr C$, then $\mu\left(\bigcup_{n=1}^\infty A_n\right) = \sum_{n=1}^\infty \mu(A_n)$.

Examples

(i)
$$X = \mathbb{R}$$
, $\mathscr{C} = \mathscr{P}(\mathbb{R})$,

define

$$\mu(E) = \begin{cases} \infty & \text{if } E \text{ has infinitely many elements} \\ n & \text{if } E \text{ has exactly } n \text{ elements} \end{cases}$$

Easy exercise: check μ is a measure. This measure μ is called *counting measure* on \mathbb{R} .

[Counting measure is usually used on \mathbb{N} rather than on an uncountable set.]

(ii) 'point mass' measures. Let X be a set, $\mathscr{C} = \mathscr{P}(X)$. Let x be any fixed point in X. Define

$$\mu(E) = \begin{cases} 1 & \text{if } x \in E, \\ 0 & \text{if } x \notin E. \end{cases}$$

Certainly $\mu(\emptyset) = 0$.

If A_1, A_2, \ldots , are disjoint subsets of X, then either $x \in \bigcup_{n=1}^{\infty} A_n$, in which case x is in exactly one set A_n or $x \notin \bigcup_{n=1}^{\infty} A_n$, in which case x is in none of the A_n . In both cases $\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n)$. This measure μ is called the *point mass at* x, and is often denoted by δ_x .

If a and $b \ge 0$, μ , v are measures on \mathcal{C} , then so is $a\mu + bv$ defined by

$$(a\mu + b\nu)(E) = a\mu(E) + b\nu(E).$$

In the examples above (i) and (ii) \mathscr{E} was a σ -field.

Definition 3.2

A measurable space is a pair (X, \mathcal{F}) where X is a set and \mathcal{F} is a σ -field of subsets of X.

A measure space is a triple (X, \mathcal{F}, μ) where \mathcal{F} is a σ -field on X, and

$$\mu \colon \mathcal{F} \to [0, \infty]$$
 is a measure.

By abuse of terminology, X is a measurable space and μ is a 'measure on X', provided we know which σ -field we are working with.

Our aim: with $\mathcal{B} = \text{Borel subsets of } \mathbb{R}$, we wish to find a measure $\lambda \colon \mathcal{B} \to [0, \infty]$ s.t.

$$\lambda((a,b]) = b-a \quad \forall \ a \leq b \text{ in } \mathbb{R}.$$

Is this possible?

The first problem. Suppose $(a,b] = \bigcup_{n=1}^{\infty} (a_n,b_n]$. We would need $\lambda((a,b]) = \sum_{n=1}^{\infty} \lambda((a_n,b_n])$, i.e. we need $b-a = \sum_{n=1}^{\infty} (b_n-a_n)$.

Is this last equality true? Yes! (See later.)

General Results about Measures on Rings

Proposition 3.3

Let X be a set, R be a ring of subsets of X, and let $\mu: R \to [0, \infty]$ be a measure.

(i) If $A_1, A_2, ..., A_n$ are pairwise disjoint sets in R then

$$\mu\left(\bigcup_{k=1}^n A_k\right) = \sum_{k=1}^n \mu(A_k).$$

(ii) If $A, B \in R$ then

$$\mu(A) = \mu(A \cap B) + \mu(A \setminus B).$$

Proof

(i) To see this, set $A_{n+1} = A_{n+2} = \dots = \emptyset$. Then

$$\bigcup_{k=1}^{\infty} A_k = \bigcup_{k=1}^{n} A_k \in R.$$

Thus

$$\mu\left(\bigcup_{k=1}^{n} A_{k}\right) = \mu\left(\bigcup_{k=1}^{\infty} A_{k}\right) = \sum_{k=1}^{\infty} \mu(A_{k})$$
$$= \sum_{k=1}^{n} \mu(A_{k}),$$

since $\mu(\emptyset) = 0$.

(ii)
$$\mu(A) = \mu(A \cap B) + \mu(A \setminus B)$$

because $A = (A \cap B) \cup (A \setminus B)$.

Is it true that $\mu(A \cap B) = \mu(A) - \mu(A \setminus B)$? Not necessarily! (May have $\infty - \infty$.) [Remember $\infty - \infty$ is not defined.]

e.g. work with counting measure on N.

Set

$$A = \{2, 4, 6, ...\}$$

$$B = \{primes\}$$

 $A \cap B = \{2\}, \ \mu(A \cap B) = 1, \ \mu(A) = \mu(B) = \mu(A \setminus B) = \infty \text{ so } \mu(A) - \mu(A \setminus B) \text{ is not defined.}$

Proposition 3.4

Let μ be a measure on a ring R of subsets of a set X.

(i) If $A, B \in R$ with $A \subseteq B$, then

$$\mu(A) \leq \mu(B)$$
. (Monotonicity)

(ii) If
$$A \in R$$
, $B_1, B_2, ... \in R$ and $A \subseteq \bigcup_{n=1}^{\infty} B_n$, then

$$\mu(A) \le \sum_{n=1}^{\infty} \mu(B_n)$$
. (Countable subadditivity)

Proof

(i)
$$\mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A)$$
.

(ii) (N.B. The B_n are NOT assumed disjoint, and we do not assume $\bigcup_{n=1}^{\infty} B_n \in R$.)

Set $C_n = B_n \cap A$. Then

$$A = A \cap \left(\bigcup_{n=1}^{\infty} B_n\right) = \bigcup_{n=1}^{\infty} C_n.$$

Set $D_1 = C_1$ and $D_n = C_n \setminus \bigcup_{k=1}^{n-1} C_k$ (n > 1). We then have

$$D_n$$
 are in R ,
 $D_n \subseteq C_n \subseteq B_n \quad \forall n$,
 D_n are pairwise disjoint.

Also, for each n,

$$\bigcup_{k=1}^{n} D_k = \bigcup_{k=1}^{n} C_k.$$

We then have

$$A = \bigcup_{n=1}^{\infty} D_n,$$

and so

$$\mu(A) = \sum_{n=1}^{\infty} \mu(D_n) \leqslant \sum_{n=1}^{\infty} \mu(B_n).$$

The property that

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n)$$

is ' μ is countably additive'.

('
$$\mu$$
 is finitely additive' means $\mu\left(\bigcup_{n=1}^{N} A_n\right) = \sum_{n=1}^{N} \mu(A_n)$.)

The property that $A \subseteq B \Rightarrow \mu(A) \leq \mu(B)$ is called *monotonicity* (μ is monotone).

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) \leq \sum_{n=1}^{\infty} \mu(A_n)$$
 means ' μ is countably subadditive'.

If \mathcal{F} is σ -field on X, then (X, \mathcal{F}) is a measurable space. If $\mu \colon \mathcal{F} \to [0, \infty]$ is a measure, then (X, \mathcal{F}, μ) is a measure space.

Definition 3.5.

If $\mu(X) < \infty$ then μ is a finite measure.

If $\mu(X) = 1$ then μ is a *probability measure* (informally, for $A \in \mathcal{F}$, $\mu(A)$ represents the probability that a random point chosen from X will be in A).

We say that a measure is σ -finite if there are countably many sets $E_n \in \mathcal{F}$ with $\mu(E_n) < \infty$ all n, and s.t.

$$X = \bigcup_{n=1}^{\infty} E_n.$$

Examples.

The point mass measures are all probability measures (and hence finite measures).

Counting measure μ on a set X

$$\mu(E) = \begin{cases} n & \text{if } E \text{ has } n \text{ elements} \\ \infty & \text{if } E \text{ is infinite} \end{cases}$$

is a finite measure if and only if X is finite.

If μ is a counting measure on \mathbb{N} , then $\mu(\mathbb{N}) = \infty$, but

$$\mathbb{N} = \bigcup_{n=1}^{\infty} \{1, 2, 3, \dots, n\}$$

so that μ is σ -finite.

But counting measure on $\mathbb R$ (or on any uncountable set) is not σ -finite.

More Standard Properties of Measures

Proposition 3.6

Let R be a ring of subsets of a set X. Suppose $\mu: R \to [0, \infty]$ is a measure and let $A_1, A_2, A_3, \ldots \in R$.

(i) If
$$\bigcup_{n=1}^{\infty} A_n \in \mathbb{R}$$
, then

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mu\left(\bigcup_{k=1}^{n} A_k\right).$$

(ii) If $\mu(A_1) < \infty$ and $\bigcap_{n=1}^{\infty} A_n \in \mathbb{R}$, then

$$\mu\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mu\left(\bigcap_{k=1}^{n} A_k\right).$$

Proof

(i) If $\bigcup_{n=1}^{\infty} A_n \in R$, set $A = \bigcup_{n=1}^{\infty} A_n$, set $B_1 = A_1$, $B_n = A_n \setminus \bigcup_{k=1}^{n-1} A_k$ for n > 1. Then each $B_n \in R$, the sets B_n are pairwise disjoint,

$$\bigcup_{k=1}^n A_k = \bigcup_{k=1}^n B_k \quad \forall n,$$

and $A = \bigcup_{k=1}^{\infty} B_k$. Thus

$$\mu(A) = \sum_{k=1}^{\infty} \mu(B_k)$$

$$= \lim_{n \to \infty} \left(\sum_{k=1}^{n} \mu(B_k) \right)$$

$$= \lim_{n \to \infty} \left(\mu\left(\bigcup_{k=1}^{n} B_k \right) \right)$$

$$= \lim_{n \to \infty} \left(\mu\left(\bigcup_{k=1}^{n} A_k \right) \right).$$

(ii) Now suppose that $\mu(A_1) < \infty$.

If
$$\bigcap_{n=1}^{\infty} A_n$$
 is in R , then set

$$C_n = A_1 \backslash A_n \quad \forall n.$$

Then $C_n \in R$ and

$$\bigcap_{n=1}^{\infty} A_n = A_1 \setminus \bigcup_{n=1}^{\infty} (A_1 \setminus A_n)$$
$$= A_1 \setminus \bigcup_{n=1}^{\infty} C_n.$$

 $\bigcup_{n=1}^{\infty} C_n \subseteq A_1 \text{ by definition of } C_n \text{ and so } \bigcup_{n=1}^{\infty} C_n = A_1 \setminus \bigcap_{n=1}^{\infty} A_n \in R. \text{ Thus}$

$$\mu\left(\bigcup_{n=1}^{\infty} C_n\right) = \lim_{n \to \infty} \mu\left(\bigcup_{k=1}^{n} C_k\right)$$

(by the first part).

Now note

$$\mu\left(\bigcap_{n=1}^{\infty}A_{n}\right) = \mu(A_{1}) - \mu\left(\bigcup_{n=1}^{\infty}C_{n}\right) \qquad \text{[this holds because } \mu(A_{1}) < \infty \text{ and } \bigcup_{n=1}^{\infty}C_{n} \subseteq A_{1}.\text{]}$$

$$= \mu(A_{1}) - \lim_{n \to \infty}\mu\left(\bigcup_{k=1}^{n}C_{k}\right)$$

$$= \lim_{n \to \infty}\left(\mu(A_{1}) - \mu\left(\bigcup_{k=1}^{n}C_{k}\right)\right)$$

$$= \lim_{n \to \infty}\left(\mu\left(\bigcap_{k=1}^{n}A_{k}\right)\right) \quad \text{as required.}$$

Properties which hold almost everywhere

Definition 3.7

Let (X, \mathcal{F}, μ) be a measure space. To say that a property holds almost everywhere (with respect to μ) (a.e. (μ)) means that there is a set $E \in \mathcal{F}$ with $\mu(E) = 0$ such that the property holds $\forall x \in X \setminus E$.

For example:

Using Lebesgue measure (see Chapter 5 for the construction) on \mathbb{R} we can say

$$\chi_{\mathbb{Q}}(x) = 0$$
 almost everywhere (λ) .

OR alternatively

$$\chi_{\mathbb{Q}}(x) = 0$$
 for almost all x (λ).

[" (λ) " means "with respect to λ ".]

This is because $\lambda(\mathbb{Q}) = 0$ (see question sheet 5).

Definition 3.8

Given two functions $f, g: X \to Y$ where Y is some set, we say f and g are equivalent if

$$f(x) = g(x)$$
 a.e. (μ)

(this depends on the measure μ).

Check: this really is an equivalence relation (make sure your sets are really in \mathcal{F}).

Note that if you use *counting measure*, a.e. means *everywhere*! (Because $\mu(E) = 0 \Rightarrow E = \emptyset$ when μ is counting measure.)