Chapter 4: The Integral

The abstract theory of integration with respect to a measure goes through just as easily in general as it does in special cases. You should think of the following examples:
(a) Lebesgue measure on \mathbb{R}, or on an interval $[a, b]$
(b) counting measure on \mathbb{N}.

The Riemann Integral Revisited

With Riemann integration we attempt to approximate our function from below and from above by step functions.

A step function is a finite linear combination of characteristic functions of intervals $\sum_{k=1}^{n} \alpha_{k} \chi_{I_{k}}$ where $I_{1}, I_{2}, \ldots, I_{n}$ are disjoint intervals, and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are real numbers. These functions are Riemann integrable, with integral

$$
\sum_{k=1}^{n} \alpha_{k} \times \text { length of } I_{k}=\sum_{k=1}^{n} \alpha_{k} \lambda\left(I_{k}\right)
$$

The beginning of the theory of Lebesgue is to generalise by replacing I_{k} by A_{k}, where A_{1}, \ldots, A_{n} are disjoint Lebesgue measurable sets.

Then we will define

$$
\int\left(\sum \alpha_{i} \chi_{A_{i}}\right) \mathrm{d} \lambda=\sum \alpha_{i} \lambda\left(A_{i}\right)
$$

Note that this will already be enough to integrate $\chi_{\mathbb{Q}}$, since $\chi_{\mathbb{Q}}=1 \times \chi_{\mathbb{Q}}$, so the above gives

$$
\int \chi_{\mathbb{Q}} \mathrm{d} \lambda=1 \times \lambda(\mathbb{D})=0
$$

Simple Functions

Definition 4.1. Let X be a non-empty set. Then a simple function from X is a function $s: X \rightarrow \mathbb{R}$ such that s takes only finitely many different values.

Note that simple functions are real-valued. Writing $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ for the distinct values taken by s, we can set

$$
A_{k}=\left\{x \in X: s(x)=\alpha_{k}\right\} .
$$

Then

$$
X=\bigcup_{k=1}^{n} A_{k}
$$

and

$$
s(x)=\sum_{k=1}^{n} \alpha_{k} \chi_{A_{k}}(x) \quad \text { all } \quad x \in X,
$$

i.e. $s=\sum_{k=1}^{n} \alpha_{k} \chi_{A_{k}}$.

The following two results are obvious.
Proposition 4.2. If s, t are simple functions from a set X, and a, b are real numbers, then $s+t$, st and $a s+b t$ are all simple functions from X.

Corollary 4.3. Let X be a set. For any real numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ and any subsets $A_{1}, A_{2}, \ldots, A_{n}$ of X,

$$
\sum_{k=1}^{n} \alpha_{k} \chi_{A_{k}}(x)
$$

is a simple function on X.

Continuous Functions and Measurable Functions

Let X, Y be metric spaces, and let $f: X \rightarrow Y$ be a function. Then f is continuous if

$$
\begin{aligned}
& \forall x \in X \quad \forall \varepsilon>0 \quad \exists \quad \delta>0 \quad \text { s.t. for } z \in X \\
& d_{X}(z, x)<\delta \Rightarrow d_{Y}(f(z), f(x))<\varepsilon .
\end{aligned}
$$

Equivalently: $f: X \rightarrow Y$ is continuous if, whenever $x_{n} \rightarrow x$ is a convergent sequence in X then

$$
f\left(x_{n}\right) \rightarrow f(x) \quad \text { in } \quad Y .
$$

Recall: for $E \subseteq X$,

$$
\begin{aligned}
f(E) & =\{f(x): x \in E\} \\
& =\{y \in Y: \exists x \in E \quad \text { with } \quad f(x)=y\} .
\end{aligned}
$$

For $F \subseteq Y, f^{-1}(F)=\{x \in X: f(x) \in F\}$.
Note: $f\left(E_{1} \cup E_{2}\right)=f\left(E_{1}\right) \cup f\left(E_{2}\right)$ but $f\left(E_{1} \cap E_{2}\right)$ need not equal $f\left(E_{1}\right) \cap f\left(E_{2}\right)$. But f^{-1} behaves better.

$$
\begin{aligned}
& f^{-1}\left(F_{1} \cup F_{2}\right)=f^{-1}\left(F_{1}\right) \cup f^{-1}\left(F_{2}\right) \\
& f^{-1}\left(F_{1} \cap F_{2}\right)=f^{-1}\left(F_{1}\right) \cap f^{-1}\left(F_{2}\right) \\
& f^{-1}(Y \backslash F)=X \backslash f^{-1}(F) .
\end{aligned}
$$

Similar results hold for infinite intersections and unions
The following result is standard except for condition (iv), whose equivalence to the other conditions is an optional exercise.

Proposition 4.4 Let X, Y be metric spaces, and let $f: X \rightarrow Y$. Then the following four conditions are equivalent:
(i) f is continuous,
(ii) for every open set $U \subseteq Y, f^{-1}(U)$ is open in X,
(iii) for every closed set $F \subseteq Y, f^{-1}(F)$ is closed in X,
(iv) $\forall A \subseteq X, f(\bar{A}) \subseteq \overline{f(A)}$.

We now begin to introduce the class of functions which we intend to integrate.

Definition 4.5 Let $\left(X, \mathscr{F}_{1}\right),\left(Y, \mathscr{F}_{2}\right)$ be measurable spaces, and let $f: X \rightarrow Y$ be a function. Then f is $\mathscr{F}_{1}-\mathscr{F}_{2}$ measurable (or simply measurable if the σ-fields involved are unambiguous) if, for all $E \in \mathscr{F}_{2}$, $f^{-1}(E) \in \mathscr{F}_{1}$.

Proposition 4.6 Let (X, \mathscr{F}) be a measurable space, and let Y be a metric space. Let \mathscr{B}_{Y} be the set of Borel subsets of Y. Let $f: X \rightarrow Y$ be a function. Then f is $\mathscr{H}_{H} \mathscr{B}_{Y}$ measurable if and only if
(*) $f^{-1}(U) \in \mathscr{F}$ for all open subsets U of Y.

Proof. The "only if" part is trivial, so we prove the "if" part. Suppose that condition (*) above holds. From Exercise Sheet $3,\left\{F \subseteq Y: f^{-1}(F) \in \mathscr{F}\right\}$ is in fact a σ-field. By (*) this σ-field includes all the open sets and hence all the Borel sets. The result follows.

For similar reasons,
f is measurable $\Leftrightarrow \forall$ closed sets $F \subseteq Y, f^{-1}(F) \in \mathscr{F}$.

Given a metric space Y we will usually use the Borel sets on Y to make Y into a measurable space. However, on \mathbb{R} we will sometimes use the Lebesgue sets.

Corollary 4.7 Using the Borel sets on \mathbb{R}, every continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ is measurable.

Note that we should really consider separately the σ-field used on \mathbb{R} as domain and on \mathbb{R} as range. The result remains true if we change to the Lebesgue sets on \mathbb{R} as domain, and keep the Borel sets on \mathbb{R} as range.

Proposition 4.8 Let (X, \mathscr{F}) be a measurable space and let f be a function either from X to \mathbb{R} or from X to $\overline{\mathbb{R}}$. Then the following five conditions are equivalent:
(i) f is measurable;
(ii) $\forall a \in \mathbb{R}$,

$$
\{x \in X: f(x) \leqslant a\} \in \mathscr{F} ;
$$

(iii) $\forall a \in \mathbb{R}$,

$$
\{x \in X: f(x)>a\} \in \mathscr{F}
$$

(iv) $\forall a \in \mathbb{R}$,

$$
\{x \in X: f(x) \geqslant a\} \in \mathscr{F}
$$

(v) $\forall a \in \mathbb{R}$,

$$
\{x \in X: f(x)<a\} \in \mathscr{F}
$$

Remark. Here we use the Borel sets on \mathbb{R} or on $\overline{\mathbb{R}}$ as appropriate.

Proof. We prove the equivalence of (i) and (ii). The rest is similar. Let us consider condition (ii). For $f: X \rightarrow \overline{\mathbb{R}}$ this means

$$
f^{-1}([-\infty, a]) \in \mathscr{F} \quad \forall a \in \mathbb{R} ;
$$

For $f: X \rightarrow \mathbb{R}$ it means

$$
f^{-1}((-\infty, a]) \in \mathscr{F} \quad \forall a \in \mathbb{R} .
$$

But the Borel sets on $\overline{\mathbb{R}}$ are generated by

$$
\{[-\infty, a]: a \in \mathbb{R}\}
$$

and the Borel sets on \mathbb{R} are generated by

$$
\{(-\infty, a]: a \in \mathbb{R}\}
$$

Thus, by the same reasoning as in Proposition 4.6, (i) and (ii) are equivalent.

Example Suppose

$$
f: \mathbb{N} \rightarrow[0, \infty]
$$

Unless otherwise specified we will use counting measure on \mathbb{N}, using the σ-field $\mathscr{P}(\mathbb{N})$.
In this case every such function is measurable. Writing a_{n} for $f(n)$, we will see later that

$$
\int_{\mathbb{N}} f \mathrm{~d} \mu=\sum_{n=1}^{\infty} f(n)=\sum_{n=1}^{\infty} a_{n}
$$

where μ is a counting measure.

To make it very clear when we are using the Borel sets on the domain of our functions, we sometimes use the following definition.

Definition 4.9. Let X, Y be metric spaces. Use the Borel sets on X and on Y to make them measurable spaces. Then a measurable function from X to Y is said to be Borel measurable.

With this terminology, corollary 4.7 can be rephrased as the following proposition.

Proposition 4.10. Every continuous function from \mathbb{R} to \mathbb{R} is Borel measurable.

Let

$$
f: X \rightarrow \overline{\mathbb{R}}
$$

then we can define $(-f)$ by

$$
(-f)(x)=-f(x)
$$

Proposition 4.11. If (X, \mathscr{F}) is a measurable space and $f: X \rightarrow \overline{\mathbb{R}}$ is measurable then so is $-f$.

Proof. For all $a \in \mathbb{R}$

$$
f^{-1}([-\infty, a]) \in \mathscr{F}
$$

and so

$$
f^{-1}((a, \infty]) \in \mathscr{H}
$$

i.e.

$$
\{x \in X:(-f)(x)<-a\} \text { is in } \mathscr{F} .
$$

But this last set is just $(-f)^{-1}([-\infty,-a))$. The rest is easy.

In the next few propositions, (X, \mathscr{F}) is a measurable space.

Proposition 4.12 Suppose $f_{1}, f_{2}, f_{3}, \ldots X \rightarrow \overline{\mathbb{R}}$ are all measurable. Define

$$
f(x)=\sup \left\{f_{n}(x): n \in \mathbb{N}\right\} \in \overline{\mathbb{R}}
$$

Then f is measurable.

Proof

Let $a \in \mathbb{R}$. We show that $f^{-1}([-\infty, a])$ is in \mathscr{F}. For $x \in X$,

$$
\begin{array}{ll}
x \in f^{-1}([-\infty, a]) & \text { iff } f(x) \leqslant a, \\
& \text { iff } f_{n}(x) \leqslant a \quad \forall n, \\
& \text { iff } \quad x \in \bigcap_{n \in \mathbb{N}} f_{n}^{-1}([-\infty, a]) .
\end{array}
$$

Thus

$$
f^{-1}([-\infty, a])=\bigcap_{n \in \mathbb{N}} f_{n}^{-1}([-\infty, a]) \in \mathscr{F} .
$$

Proposition 4.13. Suppose $f_{1}, f_{2}, f_{3}, \ldots X \rightarrow \overline{\mathbb{R}}$ are all measurable. Then so are the functions $\inf f_{n}, \lim \inf f_{n}, \lim \sup f_{n}$.

Remark. Here the relevant functions are defined pointwise, looking at the sequence $f_{n}(x)$.

Proof Let

$$
g(x)=\inf \left\{f_{n}(x): n \in \mathbb{N}\right\} .
$$

Then

$$
g(x)=-\sup \left\{-f_{n}(x): n \in \mathbb{N}\right\}
$$

and so g a measurable function by 4.11 and 4.12.
Set

$$
\begin{aligned}
h(x) & =\limsup _{n \rightarrow \infty}\left(f_{n}(x)\right) \\
& =\inf _{n \in \mathbb{N}}\left(\sup _{k \geqslant n} f_{k}(x)\right) .
\end{aligned}
$$

Then h is a measurable function, using the above and Proposition 4.12. Finally,

$$
\liminf _{n \rightarrow \infty}\left(f_{n}(x)\right)=-\limsup _{n \rightarrow \infty}\left(-f_{n}(x)\right)
$$

which is measurable by the above and 4.11 .
Corollary 4.14 If f_{n} is a sequence of measurable functions from X to $\overline{\mathbb{R}}$, and if $f_{n}(x) \rightarrow f(x) \forall x \in X$, then f is also measurable.

Proof. $\lim \sup f_{n}(x)=f(x)$, and so f is measurable.

In other words, the collection of measurable functions is closed under the operation of taking pointwise limits.

Theorem 4.15

Let (X, \mathscr{F}) be a measurable space, and let $f, g: X \rightarrow \overline{\mathbb{R}}$ be measurable functions. Suppose that $f(x)+g(x)$ is defined for all $x \in X$. Then the function $f+g$ is measurable.

Proof. It is enough to show that, $\forall a \in \mathbb{R}$,

$$
\{x \in X: f(x)+g(x)<a\} \text { is in } \mathscr{F} .
$$

But

$$
\begin{aligned}
\{x \in X: f(x)+g(x)<a\} & =\bigcup_{\substack{p, q \in \mathbb{Q} \\
p+q<a}}\{x \in X: f(x) \leqslant p \text { and } g(x) \leqslant q\} \\
= & \bigcup_{\substack{p, q \in \mathbb{Q} \\
p+q<a}} f^{-1}([-\infty, p]) \cap g^{-1}([-\infty, q])
\end{aligned}
$$

a countable union of measurable sets.

Returning to simple functions, suppose (X, \mathscr{F}) is measurable space, and $s: X \rightarrow \mathbb{R}$ is a simple function. We have

$$
s=\sum_{k=1}^{n} \alpha_{k} \chi_{A_{k}}
$$

for some sets A_{k} with $X=\bigcup_{k=1}^{n} A_{k}$, where the α_{k} are the distinct values taken by s.
When is s measurable? With this notation it is easily shown that s is measurable if and only if each set A_{k} is measurable.

Note, however, that if $A_{1}, A_{2}, \ldots, A_{n} \in \mathscr{F}$, not necessarily disjoint, and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{R}$ then $\sum_{k=1}^{n} \alpha_{k} \chi_{A}$ is a sum of measurable functions, and so is measurable. It is also simple.

Integration theory begins with simple measurable functions (measurable simple functions).
Proposition 4.16 Let (X, \mathscr{F}) be a measurable space, and let s, t be simple measurable functions on X. Then $s+t$ and $s t$ are also simple measurable functions.

Proof. This is immediate from Proposition 4.2 and Theorem 4.15, except for the measurability of st. Write

$$
\begin{array}{ll}
s=\sum_{k=1}^{n} \alpha_{k} \chi_{A_{k}} & A_{k} \text { all measurable } \\
t & =\sum_{j=1}^{m} \beta_{j} \chi_{B_{j}} \quad B_{j} \text { all measurable }
\end{array}
$$

Then

$$
s t=\sum_{\substack{k, j \\ 1 \leqslant k \leqslant n \\ 1 \leqslant j \leqslant m}}\left(\alpha_{k} \beta_{j}\right) \chi_{A_{j} \cap B_{k}}
$$

which is a measurable simple function, as required.
So the collection of simple measurable functions is closed under multiplication and addition.

Lemma 4.17

Let (X, \mathscr{F}) be a measurable space, and let

$$
f: X \rightarrow[0, \infty]
$$

be a function. Then there is a sequence of simple functions

$$
s_{n}: X \rightarrow[0, \infty) \text { with } 0 \leqslant s_{1}(x) \leqslant s_{2}(x) \leqslant \ldots \leqslant f(x)
$$

and

$$
\lim _{n \rightarrow \infty} s_{n}(x)=f(x) \quad \forall x \in X .
$$

If f is measurable, the s_{n} may be chosen to be measurable simple functions. If f is bounded then we can choose s_{n} to converge to f uniformly.

Proof. Define $s_{n}: X \rightarrow \mathbb{R}$ as follows.

$$
s_{n}(x)=\left\{\begin{array}{ll}
n & \text { if } \\
f(x) \geqslant n \\
\frac{j}{2^{n}} & \text { if }
\end{array} f(x)<n \text { and } j \in \mathbb{Z}^{+} \text {satisfies } \frac{j}{2^{n}} \leqslant f(x)<\frac{j+1}{2^{n}} .\right.
$$

NB: $f(x)<n \Rightarrow s_{n}(x)=\frac{j}{2^{n}}$ for some integer $0 \leqslant j \leqslant n 2^{n}-1$, and in this case

$$
s_{n}(x) \leqslant f(x)<s_{n}(x)+\frac{1}{2^{n}} .
$$

Certainly s_{n} is simple, and $0 \leqslant s_{n}(x) \leqslant f(x)$ all x.
If $k \in \mathbb{N}$, and $f(x) \geqslant k$, then certainly

$$
\left.s_{k}(x) \geqslant k \quad \text { (because } \quad s_{k}(x)=k\right) .
$$

In fact, $\forall n \geqslant k, s_{n}(x) \geqslant k$ (you should check this).

For all $x \in X$, we can see that $s_{n}(x) \rightarrow f(x)$ as $n \rightarrow \infty$ because, if $f(x)<\infty$, then $\forall n>f(x)$,

$$
\left|s_{n}(x)-f(x)\right|<\frac{1}{2^{n}},
$$

while if $f(x)=\infty$ then $s_{n}(x)=n \quad \forall n$ and so $s_{n}(x) \rightarrow f(x)$.
To see that $s_{n}(x) \leqslant s_{n+1}(x)$ there are two cases:
(i) $f(x) \geqslant n$

In this case $s_{n}(x)=n$ and $s_{n+1}(x) \geqslant n$.
(ii) $f(x)<n$

Then there is $j<n 2^{n}$ with $\frac{j}{2^{n}} \leqslant f(x)<\frac{j+1}{2^{n}}$.

Then $s_{n}(x)=\frac{j}{2^{n}}$. But also

$$
\frac{2 j}{2^{n+1}} \leqslant f(x)<\frac{2 j+2}{2^{n+1}}
$$

and so $s_{n+1}(x)=\frac{2 j}{2^{n+1}}$ or $\frac{2 j+1}{2^{n+1}}$.

In either case, $s_{n+1}(x) \geqslant s_{n}(x)$.

In all cases $s_{n}(x) \leqslant s_{n+1}(x)$.

If f is bounded then there is $N \in \mathbb{N}$ with

$$
0 \leqslant f(x) \leqslant N \quad \forall x \in X
$$

But then, $\forall n \geqslant N$,

$$
\left|s_{n}(x)-f(x)\right|<\frac{1}{2^{n}} \quad \text { all } x
$$

So in this case $s_{n} \rightarrow f$ uniformly.

Note:

$$
s_{n}=n \chi\{x \in X: f(x) \geqslant n\}+\sum_{j=0}^{n 2^{n}-1} \frac{j}{2^{n}} \chi\left(\left\{x \in X: \frac{j}{2^{n}} \leqslant f(x)<\frac{j+1}{2^{n}}\right\}\right)
$$

If f is measurable, each of these subsets is measurable, and so s_{n} is a measurable function.

Corollary 4.18

Let $f, g: X \rightarrow[0, \infty]$ be measurable functions, where (X, \mathscr{F}) is a measurable space. Then $f g$ is also measurable.

Proof

We can choose simple functions s_{n}, t_{n} such that s_{n}, t_{n} are measurable,

$$
\begin{aligned}
& 0 \leqslant s_{n}(x) \leqslant s_{n+1}(x) \\
& 0 \leqslant t_{n}(x) \leqslant t_{n+1}(x) \text { all } n
\end{aligned}
$$

and all $x \in X$,

$$
\begin{aligned}
& s_{n}(x) \rightarrow f(x) \\
& t_{n}(x) \rightarrow g(x)
\end{aligned}
$$

Then $\forall n, s_{n} t_{n}$ is a simple measurable function

$$
\forall x \in X, \quad\left(s_{n} t_{n}\right)(x)=s_{n}(x) t_{n}(x) \rightarrow f(x) g(x) \text { as } n \rightarrow \infty
$$

because the sequences $s_{n}(x)$ and $t_{n}(x)$ are nondecreasing. Thus $f g$ is a pointwise limit of measurable
functions and so $f g$ is measurable.

Recall:

If $\left(f_{n}\right)$ is a sequence of measurable functions, then the function

$$
x \mapsto \sup _{n} f_{n}(x)
$$

is also measurable. It follows that if f, g are measurable then

$$
x \mapsto \max \{f(x), g(x)\}
$$

is also measurable.

Definition 4.19. Let X be a set and let $f: X \rightarrow \overline{\mathbb{R}}$. We define

$$
\begin{aligned}
f^{+}(x) & =\max \{f(x), 0\} \\
f^{-}(x) & =\max \{-f(x), 0\}
\end{aligned}
$$

f^{+}is the positive part of f, f^{-}is the negative part.

Note that if X is a measurable space and f is measurable, then $f^{+}, f^{-}: X \rightarrow[0, \infty]$ are measurable. We always have $f(x)=f^{+}(x)-f^{-}(x)$ all $x \in X$.

The Integral

We begin by defining the integral of a non-negative, simple measurable function.

Definition 4.20

Let (X, \mathscr{F}, μ) be a measure space, let $s: X \rightarrow[0, \infty)$ be a simple measurable function. Then, for every $E \in \mathscr{F}$ we define the integral of s over E with respect to $\mu, I_{E}(s, \mu)$, as follows.

Let $\alpha_{1}, \ldots, \alpha_{n}$ be the distinct values taken by s. Let $A_{k}=\left\{x \in X: s(x)=\alpha_{k}\right\}$. Then

$$
I_{E}(s, \mu)=\sum_{k=1}^{n} \alpha_{k} \mu\left(E \cap A_{k}\right)
$$

NB: α_{k} are all real numbers, but $\mu\left(E \cap A_{k}\right)$ may be $\infty . I_{E}(s, \mu)$ is a well defined element of $[0, \infty]$.

Proposition 4.21. (a) If $s(x)=\alpha \quad \forall x \in X$, then

$$
I_{E}(s, \mu)=\alpha \cdot \mu(E) \quad \forall E \in \mathscr{F} .
$$

(b)

$$
I_{\varnothing}(s, \mu)=0
$$

for any simple measurable s.
(c) If $E \in \mathscr{F}$ and s, t are simple measurable functions with

$$
s(x) \leqslant t(x) \quad \text { all } x \in E
$$

then

$$
I_{E}(s, \mu) \leqslant I_{E}(t, \mu) .
$$

Proof. Parts (a) and (b) are trivial. To prove (c),
let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ be the values taken by s.
Let $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ be the values taken by t
and set

$$
\begin{aligned}
A_{j} & =\left\{x \in X: s(x)=\alpha_{i}\right\} \\
B_{k} & =\left\{x \in X: t(x)=\beta_{k}\right\} .
\end{aligned}
$$

Since $s(x) \leqslant t(x) \quad \forall x \in E$, it follows that if $A_{j} \cap B_{k} \cap E \neq \varnothing$, then $\alpha_{j} \leqslant \beta_{k}$. Also

$$
\begin{aligned}
& X=\bigcup_{j=1}^{m} A_{j}=\bigcup_{k=1}^{n} B_{k} . \\
I_{E}(s, \mu)= & \sum_{j=1}^{m} \alpha_{j} \mu\left(A_{j} \cap E\right) \\
= & \sum_{j=1}^{m} \alpha_{j} \sum_{k=1}^{n} \mu\left(A_{j} \cap B_{k} \cap E\right) \\
= & \sum_{j=1}^{m} \sum_{k=1}^{n} \alpha_{j} \mu\left(A_{j} \cap B_{k} \cap E\right) \\
\leqslant & \sum_{j=1}^{m} \sum_{k=1}^{n} \beta_{k} \mu\left(A_{j} \cap B_{k} \cap E\right) \\
= & \sum_{k=1}^{n} \beta_{k} \mu\left(\beta_{k} \cap E\right) \quad(\text { reversing order }) \\
= & I_{E}(t, \mu) .
\end{aligned}
$$

Further Properties of the Integral

Proposition $4.22(X, \mathscr{F}, \mu)$ is a measure space. $s: X \rightarrow[0, \infty)$ is simple measurable.
(a) For any $E \in \mathscr{F}$ such that $\mu(E)=0$,

$$
I_{E}(s, \mu)=0 .
$$

(b) If $E \in \mathscr{F}$ and c is such that $s(x)=c \forall x$ in E, then

$$
I_{E}(s, \mu)=c \mu(E) .
$$

(c) Let $E \in \mathscr{F}$. Then recall \mathscr{F}_{E} is the σ-field $\{A \cap E: A \in \mathscr{F}\}$ on E. Let v be $\left.\mu\right|_{\mathscr{F}_{E}}$, (the restriction of μ to \mathscr{H}_{E}), so that $\left(E, \mathscr{F}_{E}, v\right)$ is a measure space. Then $\left.s\right|_{E}$ is a simple measurable function $E \rightarrow[0, \infty)$, and

$$
I_{E}(s, \mu)=I_{E}\left(\left.s\right|_{E}, v\right)
$$

Proof. Easy exercise! (See question sheet 4).

Lemma 4.23.

Let (X, \mathscr{F}, μ) be a measure space.
(i) Let $s: X \rightarrow[0, \infty)$ be a simple measurable function. Define

$$
\phi(E)=I_{E}(s, \mu) \quad(E \in \mathscr{F}) .
$$

Then ϕ is a measure on \mathscr{F}.
(ii) Let $s, t: X \rightarrow[0, \infty)$ be simple measurable functions and let $E \in \mathscr{F}$. Then

$$
I_{E}((s+t), \mu)=I_{E}(s, \mu)+I_{E}(t, \mu) .
$$

Proof

(i) To show ϕ is a measure, note that $\phi(E) \in[0, \infty] \forall E \in \mathscr{F}$ and that $\phi(\varnothing)=0$ because $I_{\varnothing}(s, \mu)=0$.

It remains to show that ϕ is countably additive.

Let $E \in \mathscr{F}$, and suppose that

$$
E=\bigcup_{n=1}^{\infty} E_{n}
$$

where E_{n} is in $\mathscr{F} \forall n$. We show that $\phi(E)=\sum_{n=1}^{\infty} \phi\left(E_{n}\right)$.

Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ be the distinct values taken by s, and set

$$
A_{k}=\left\{x \in X: s(x)=\alpha_{k}\right\} .
$$

As usual $X=\bigcup_{k=1}^{m} A_{k}$.

By definition

$$
\begin{gathered}
\phi(E)=I_{E}(s, \mu)=\sum_{k=1}^{m} \alpha_{k} \mu\left(E \cap A_{k}\right) \\
\phi\left(E_{n}\right)=I_{E_{n}}(s, \mu)=\sum_{k=1}^{m} \alpha_{k} \mu\left(E_{n} \cap A_{k}\right)
\end{gathered}
$$

since

$$
E \cap A_{k}=\bigcup_{n=1}^{\infty}\left(E_{n} \cap A_{k}\right)
$$

We have

$$
\mu\left(E \cap A_{k}\right)=\sum_{n=1}^{\infty} \mu\left(E_{n} \cap A_{k}\right)
$$

and so

$$
\begin{aligned}
\phi(E) & =\sum_{k=1}^{m} \alpha_{k} \sum_{n=1}^{\infty} \mu\left(E_{n} \cap A_{k}\right) \\
& =\sum_{n=1}^{\infty} \sum_{k=1}^{m} \alpha_{k} \mu\left(E_{n} \cap A_{k}\right) \\
& =\sum_{n=1}^{\infty} \phi\left(E_{n}\right) .
\end{aligned}
$$

Thus ϕ is a measure.
(ii) Let $s, t: X \rightarrow[0, \infty)$ be simple measurable functions and let $E \in \mathscr{F}$. Then $s+t$ is also simple measurable.

To show that

$$
I_{E}((s+t), \mu)=I_{E}(s, \mu)+I_{E}(t, \mu)
$$

define

$$
\begin{array}{ll}
\phi_{1}(A)=I_{A}(s, \mu) & (A \in \mathscr{F}) \\
\phi_{2}(A)=I_{A}(t, \mu) & (A \in \mathscr{F}) \\
\phi_{3}(A)=I_{A}((s+t), \mu) & (A \in \mathscr{F})
\end{array}
$$

We must show

$$
\phi_{1}(E)+\phi_{2}(E)=\phi_{3}(E)
$$

We know $\phi_{1}, \phi_{2}, \phi_{3}$ are measures.

Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ be the distinct values taken by $s, \beta_{1}, \beta_{2}, \ldots, \beta_{n}$ be the values taken by t.

Set

$$
\begin{aligned}
A_{j} & =\left\{x \in X: s(x)=\alpha_{j}\right\} \\
B_{k} & =\left\{x \in X: t(x)=\beta_{k}\right\}
\end{aligned}
$$

Set $E_{j k}=E \cap A_{j} \cap B_{k}$. Then

$$
E=\bigcup_{j=1}^{m} \bigcup_{k=1}^{n} E_{j k}
$$

On $E_{j k} s$ is constantly α_{j}, t is constantly equal to β_{k} and $(s+t)$ is constantly equal to $\alpha_{j}+\beta_{k}$. By 4.22(b),

$$
\begin{aligned}
& I_{E_{j k}}((s+t), \mu)=\left(\alpha_{j}+\beta_{k}\right) \mu\left(E_{j k}\right), \\
& I_{E_{j k}}(s, \mu)=\alpha_{j} \mu\left(E_{j k}\right), \\
& I_{E_{j k}}(t, \mu)=\beta_{k} \mu\left(E_{j k}\right) .
\end{aligned}
$$

Hence $\phi_{3}\left(E_{j k}\right)=\phi_{1}\left(E_{j k}\right)+\phi_{2}\left(E_{j k}\right)$. But $\phi_{1}, \phi_{2}, \phi_{3}$ are measures, and

$$
E=\bigcup_{j, k} E_{j k},
$$

so

$$
\begin{aligned}
\phi_{3}(E) & =\sum_{j, k} \phi_{3}\left(E_{j, k}\right), \\
& =\sum_{j, k}\left(\phi_{1}\left(E_{j k}\right)+\phi_{2}\left(E_{j k}\right)\right), \\
& =\sum_{j, k} \phi_{1}\left(E_{j k}\right)+\sum_{j, k} \phi_{2}\left(E_{j k}\right), \\
& =\phi_{1}(E)+\phi_{2}(E) .
\end{aligned}
$$

Note in particular that if $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{R}^{+}$and $A_{1}, A_{2}, \ldots, A_{n} \in \mathscr{F}$, then

$$
I_{X}\left(\sum_{k=1}^{n} \alpha_{k} \chi_{A_{k}}, \mu\right)=\sum_{k=1}^{n} \alpha_{k} \mu\left(A_{k}\right)
$$

even if the α_{k} are not distinct and the A_{k} are not be disjoint.

Recall:

$$
s \leqslant t \Rightarrow I_{E}(s, \mu) \leqslant I_{E}(t, \mu)
$$

The following result follows immediately.

Proposition 4.24 For $s: X \rightarrow[0, \infty)$, measurable simple.

$$
I_{E}(s, \mu)=\sup \left\{\begin{array}{l|l}
I_{E}(t, \mu) & \begin{array}{l}
t: X \rightarrow[0, \infty) \text { simple, measurable } \\
\text { and } 0 \leqslant t(x) \leqslant s(x) \text { all } x \in X
\end{array}
\end{array}\right\}
$$

Definition 4.25 We now define, for any $f: X \rightarrow[0, \infty]$ measurable, and $E \in \mathscr{F}$

$$
\int_{E}^{f \mathrm{~d} \mu=\sup }\left\{\begin{array}{l|l}
I_{E}(s, \mu) & \begin{array}{l}
s: X \rightarrow[0, \infty) \text { simple measurable and } \\
0 \leqslant s(x) \leqslant f(x) \forall x \in X
\end{array}
\end{array}\right\}
$$

In view of proposition 4.24 , we can safely call $\int_{E} f \mathrm{~d} \mu$ the (Lebesgue) integral of f over E with respect to μ.

All our results about the integrals of simple measurable functions remain true (for simple measurable functions) if we change to our new version of the integral (which has the same value for such functions). From now on, this is the version of the integral which we shall use.

Properties

Proposition 4.26.

(a) If $f(x) \leqslant g(x) \quad \forall x \in X$ then

$$
\int_{E} f \mathrm{~d} \mu \leqslant \int_{E} g \mathrm{~d} \mu
$$

(f, g non-negative measurable functions).
(b) If $E \in \mathscr{F}$ and $\mu(E)=0$ then

$$
\int_{E} f \mathrm{~d} \mu=0
$$

(even if $f(x)=\infty$ all $x \in X$) for any measurable function $f: X \rightarrow[0, \infty]$.
(c) Let $f: X \rightarrow[0, \infty)$ be measurable, $E \in \mathscr{F}$ and suppose that $f(x)=0 \quad \forall x$ in E. Then

$$
\int_{E} f \mathrm{~d} \mu=0
$$

(d)

$$
\int_{E} f \mathrm{~d} \mu=\int_{E}\left(f \chi_{E}\right) \mathrm{d} \mu=\int_{X}\left(f \chi_{E}\right) \mathrm{d} \mu
$$

for $f: X \rightarrow[0, \infty]$ measurable and $E \in \mathscr{F}$.
(e) Let $f, g: X \rightarrow[0, \infty]$ be measurable, let $E \in \mathscr{F}$, and suppose $f(x) \leqslant g(x) \forall x \in E$. Then

$$
\int_{E} f \mathrm{~d} \mu \leqslant \int_{E} g \mathrm{~d} \mu
$$

Proof

(a) This is because we take the sup of a larger set (for g).
(b) This is because $\int_{E} s \mathrm{~d} \mu=0$ for all simple functions which are measurable and satisfy $0 \leqslant s \leqslant f$.
(c)

$$
\int_{E} f \mathrm{~d} \mu=\sup \left\{\int_{E} s \mathrm{~d} \mu: s \text { measurable simple, } 0 \leqslant s \leqslant f\right\}
$$

since $f(x)=0 \quad \forall x$ in E, then whenever $0 \leqslant s \leqslant f$ we have $s(x)=0$ all x in E, and so

$$
\int_{E} s \mathrm{~d} \mu=0
$$

for all such measurable simple s. Hence

$$
\int_{E} f \mathrm{~d} \mu=0
$$

(d) Certainly $f \chi_{E}$ is measurable. Since $f \chi_{E} \leqslant f$, we have

$$
\int_{E}\left(f \chi_{E}\right) \mathrm{d} \mu \leqslant \int_{E} f \mathrm{~d} \mu .
$$

Now suppose s is a simple function with s measurable and $0 \leqslant s \leqslant f$. We shall show

$$
\int_{E} s \mathrm{~d} \mu \leqslant \int_{E} f \chi_{E} \mathrm{~d} \mu .
$$

(Taking sup over s will then give equality.)
$s=s \chi_{E}+s \chi_{X \backslash E}$ (the sum of two simple measurable functions).

$$
\begin{aligned}
\int_{E} s \mathrm{~d} \mu & =\int_{E}\left(s \chi_{E}\right) \mathrm{d} \mu+\int_{E}\left(s \chi_{X \backslash E}\right) \mathrm{d} \mu, \\
& =\int_{E} s \chi_{E} \mathrm{~d} \mu, \\
& \leqslant \int_{E} f \chi_{E} \mathrm{~d} \mu .
\end{aligned}
$$

Taking sup over s,

$$
\int_{E} f \mathrm{~d} \mu \leqslant \int_{E} f \chi_{E} \mathrm{~d} \mu,
$$

hence equality.
For the rest: if $0 \leqslant s \leqslant f \chi_{E}$ then $s \equiv 0$ on $X \backslash E$, so

$$
\begin{aligned}
\int_{E} s \mathrm{~d} \mu & =\int_{E} s \mathrm{~d} \mu+\int_{X \backslash E} s \mathrm{~d} \mu \\
& =\int_{X} s \mathrm{~d} \mu
\end{aligned}
$$

so taking sup over s,

$$
\int_{E} f \chi_{E} \mathrm{~d} \mu=\int_{X} f \chi_{E} \mathrm{~d} \mu
$$

(e)

$$
\int_{E} f \chi_{E} \mathrm{~d} \mu=\int_{E} f \mathrm{~d} \mu,
$$

$$
\int_{E} g \chi_{E} \mathrm{~d} \mu=\int_{E} g \mathrm{~d} \mu .
$$

But $f(x) \chi_{E}(x) \leqslant g(x) \chi_{E}(x) \forall x$ in \boldsymbol{X}, therefore, by property (a),

$$
\int_{E} g \chi_{E} \mathrm{~d} \mu \geqslant \int_{E} f \chi_{E} \mathrm{~d} \mu
$$

Corollary 4.27. Let (X, \mathscr{F}, μ) be a measure space, let $f: X \rightarrow[0, \infty]$ be measurable, and let $A, B \in \mathscr{F}$ with A contained in B. Then

$$
\int_{A} f \mathrm{~d} \mu \leqslant \int_{B} f \mathrm{~d} \mu
$$

Proof This is because $f \chi_{A} \leqslant f \chi_{B}$.

Proposition 4.28

Let $f, g: X \rightarrow[0, \infty]$ be measurable. Then $\{x \in X: f(x) \leqslant g(x)\}$ is measurable.

Proof

Easy exercise (using \mathbb{Q} as usual).
The following trivial result is used in the proof of the Monotone Convergence Theorem.
Lemma 4.29. If (X, \mathscr{F}, μ) is a measure space, $s: X \rightarrow[0, \infty)$ is simple measurable and $\alpha \in \mathbb{R}^{+}$, then αs is also a simple measurable function, and $\forall E \in \mathscr{F}$,

$$
\int_{E}(\alpha s) \mathrm{d} \mu=\alpha\left(\int_{E} s \mathrm{~d} \mu\right)
$$

This is because $s=\sum_{k=1}^{n} \beta_{k} \chi_{A_{k}}$ for some $\beta_{1}, \beta_{2}, \ldots, \beta_{k} \in[0, \infty)$ and measurable sets A_{1}, \ldots, A_{n}. But then

$$
\alpha s=\sum_{k=1}^{n}\left(\alpha \beta_{k}\right) \chi_{A k},
$$

which is simple, measurable, and

$$
\begin{aligned}
\int_{E}(\alpha s) \mathrm{d} \mu & =\sum_{k=1}^{n}\left(\alpha \beta_{k}\right) \mu\left(E \cap A_{k}\right) \\
& =\alpha \sum_{k=1}^{n} \beta_{k} \mu\left(E \cap A_{k}\right) \\
& =\alpha \int_{E} s \mathrm{~d} \mu .
\end{aligned}
$$

Theorem 4.30 (Monotone Convergence Theorem)

Let (X, f, μ) be a measure space, let

$$
f_{n}: X \rightarrow[0, \infty]
$$

be a sequence of measurable functions with

$$
0 \leqslant f_{1}(x) \leqslant f_{2}(x) \ldots \quad \forall x \in X
$$

Suppose

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x) \quad \forall x \in X .
$$

Then f is measurable and

$$
\int_{X} f \mathrm{~d} \mu=\lim _{n \rightarrow \infty} \int_{X} f_{n} \mathrm{~d} \mu
$$

Remark

Without the assumption that $0 \leqslant f_{1} \leqslant f_{2} \leqslant \ldots$ the result is false: there are many examples of functions which converge pointwise, but whose integrals do not converge.

Proof Since $f(x)=\lim _{n \rightarrow \infty} f_{n}(x), f$ is a pointwise limit of measurable functions, and hence f is measurable, and $f: X \rightarrow[0, \infty]$.

We have

$$
0 \leqslant f_{1} \leqslant f_{2} \leqslant \ldots \leqslant f
$$

so, $\forall n$,

$$
0 \leqslant \int_{X} f_{n} \mathrm{~d} \mu \leqslant \int_{X} f_{n+1} \mathrm{~d} \mu \leqslant \int_{X} f \mathrm{~d} \mu
$$

Certainly there is an α in $[0, \infty]$ such that

$$
\alpha=\lim _{n \rightarrow \infty} \int_{X} f_{n} \mathrm{~d} \mu
$$

and note

$$
\alpha \leqslant \int_{X} f \mathrm{~d} \mu .
$$

It remains to prove $\int_{X} f \mathrm{~d} \mu \leqslant \alpha$.
From the definition of the integral, it is enough to show that, if s is simple measurable and $0 \leqslant s \leqslant f$, then

$$
\int_{X} s \mathrm{~d} \mu \leqslant \alpha .
$$

Let s be such a function. Note that s does not take the value ∞. Then it is enough to show that $\forall c$ with $0<c<1$,

$$
c \int_{X} s \mathrm{~d} \mu \leqslant \alpha
$$

since then

$$
\int_{X} s \mathrm{~d} \mu=\lim _{n \rightarrow \infty}\left(\left(1-\frac{1}{2 n}\right) \int_{X} s \mathrm{~d} \mu\right) \leqslant \alpha .
$$

But, for such c,

$$
c \int_{X} s \mathrm{~d} \mu=\int_{X}(c s) \mathrm{d} \mu
$$

We show this is $\leqslant \alpha$. Set $A_{n}=\left\{x \in X:(c s)(x) \leqslant f_{n}(x)\right\}$. Then each A_{n} is measurable, and the sets A_{n} are nested. Also

$$
X=\bigcup_{n=1}^{\infty} A_{n}
$$

because (two cases):
(i) if $s(x)=0$, then $x \in A_{n} \forall n$;
(ii) if $s(x)>0$, then, since $s(x) \neq \infty, c s(x)<s(x) \leqslant f(x)$.

Since $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ there is an n with

$$
f_{n}(x) \geqslant c s(x), \quad \text { i.e. } \quad x \in A_{n} .
$$

But now, for all n,

$$
\int_{A_{n}}(c s) \mathrm{d} \mu \leqslant \int_{A_{n}} f_{n} \mathrm{~d} \mu \leqslant \int_{X} f_{n} \mathrm{~d} \mu .
$$

But, recall,

$$
E \mapsto \int_{E}(c s) \mathrm{d} \mu
$$

is a measure on \mathscr{F}, so

$$
\begin{array}{rlr}
\int_{X}(c s) \mathrm{d} \mu & =\lim _{n \rightarrow \infty} \int_{A_{n}}(c s) \mathrm{d} \mu & \text { by standard properties of measures } \\
& \leqslant \lim _{n \rightarrow \infty} \int_{X} f_{n} \mathrm{~d} \mu & \text { by above. }
\end{array}
$$

We now give some corollaries to the monotone convergence theorem.

Corollary 4.31

Let $f, g: X \rightarrow[0, \infty]$ be measurable functions and let $\alpha \in[0, \infty)$. Then

$$
\begin{equation*}
\int_{X}(f+g) \mathrm{d} \mu=\int_{X} f \mathrm{~d} \mu+\int_{X} g \mathrm{~d} \mu, \tag{i}
\end{equation*}
$$

(ii) $\quad \alpha f$ is measurable and

$$
\int_{X}(\alpha f) \mathrm{d} \mu=\alpha \int_{X} f \mathrm{~d} \mu .
$$

Proof

Let s_{n}, t_{n} be simple measurable functions with

$$
0 \leqslant s_{n} \leqslant s_{n+1}, \quad 0 \leqslant t_{n} \leqslant t_{n+1}
$$

and $s_{n} \rightarrow f$ pointwise, $t_{n} \rightarrow g$ pointwise. Then $s_{n}+t_{n}$ is simple measurable and $s_{n}+t_{n}$ converges pointwise to $f+g$. Also $0 \leqslant s_{n}+t_{n} \leqslant s_{n+1}+t_{n+1}$, so this convergence is monotone.

By MCT we have

$$
\begin{aligned}
\int_{X} s_{n} \mathrm{~d} \mu & \rightarrow \int_{X} f \mathrm{~d} \mu \\
\int_{X} t_{n} \mathrm{~d} \mu & \rightarrow \int_{X} g \mathrm{~d} \mu
\end{aligned}
$$

and

$$
\int_{X}\left(s_{n}+t_{n}\right) \mathrm{d} \mu \rightarrow \int_{X}(f+g) \mathrm{d} \mu .
$$

But s_{n}, t_{n} are simple, so

$$
\int_{X}\left(s_{n}+t_{n}\right) \mathrm{d} \mu=\int_{X} s_{n} \mathrm{~d} \mu+\int_{X} t_{n} \mathrm{~d} \mu .
$$

Taking the limit as $n \rightarrow \infty$, using the above,

$$
\int_{X}(f+g) \mathrm{d} \mu=\int_{X} f \mathrm{~d} \mu+\int_{X} g \mathrm{~d} \mu .
$$

This proves (i).

Also, $\left(\alpha s_{n}\right)$ is a simple measurable function with

$$
\int_{X} \alpha s_{n} \mathrm{~d} \mu=\alpha \int_{X} s_{n} \mathrm{~d} \mu .
$$

Also, αs_{n} tends monotonically pointwise up to αf, and so by MCT, (αf is measurable) and

$$
\begin{aligned}
\int_{X} \alpha f \mathrm{~d} \mu=\lim _{n \rightarrow \infty} \int_{X}\left(\alpha s_{n}\right) \mathrm{d} \mu & =\lim _{n \rightarrow \infty} \alpha \int_{X} s_{n} \mathrm{~d} \mu \\
& =\alpha \lim _{n \rightarrow \infty} \int_{X} s_{n} \mathrm{~d} \mu
\end{aligned}
$$

$$
=\alpha \int_{X} f \mathrm{~d} \mu .
$$

Corollary 4.32

Let f_{n} be a sequence of measurable functions $\left(f_{n}: X \rightarrow[0, \infty]\right)$. Set $g(x)=\sum_{n=1}^{\infty} f_{n}(x)$. Then g is measurable, and

$$
\int_{X} g \mathrm{~d} \mu=\sum_{n=1}^{\infty} \int_{X} f_{n} \mathrm{~d} \mu .
$$

Proof

Set $\quad g_{n}(x)=\sum_{k=1}^{n} f_{k}(x) \quad(x \in X)$.
i.e. $g_{n}=f_{1}+f_{2}+\ldots+f_{n}$.

Then g_{n} is measurable,

$$
\begin{gathered}
0 \leqslant g_{n} \leqslant g_{n+1} \quad \forall n \text { and } \\
g_{n}(x) \rightarrow g(x) \quad \text { as } \quad n \rightarrow \infty .
\end{gathered}
$$

By MCT, g is measurable, and

$$
\int_{X} g \mathrm{~d} \mu=\lim _{n \rightarrow \infty} \int_{X} g_{n} \mathrm{~d} \mu .
$$

But $g_{n}=f_{1}+f_{2}+\ldots+f_{n}$ and so by corollary 4.31,

$$
\int_{X} g_{n} \mathrm{~d} \mu=\sum_{k=1}^{n}\left(\int_{X} f_{k} \mathrm{~d} \mu\right)
$$

and so $\lim _{n \rightarrow \infty} \int_{X} g_{n} \mathrm{~d} \mu$ is just

$$
\sum_{k=1}^{\infty}\left(\int_{X} f_{k} \mathrm{~d} \mu\right) .
$$

Corollary 4.33

Let $f: X \rightarrow[0, \infty]$ be measurable. Define

$$
\Phi(E)=\int_{E} f \mathrm{~d} \mu .
$$

Then Φ is a measure on \mathscr{F}.

Proof

Certainly $\Phi(\varnothing)=0$.

Now suppose that $E \in \mathscr{F}$ and let $E=\bigcup_{n=1}^{\infty} E_{n}$ for some set $E_{n} \in \mathscr{F}$. We show that

$$
\Phi(E)=\sum_{n=1}^{\infty} \Phi\left(E_{n}\right)
$$

To see this, note
and

$$
\begin{aligned}
& \Phi(E)=\int_{E} f \mathrm{~d} \mu=\int_{X}\left(f \chi_{E}\right) \mathrm{d} \mu \\
& \Phi\left(E_{n}\right)=\int_{X}\left(f \chi_{E_{n}}\right) \mathrm{d} \mu
\end{aligned}
$$

But

$$
E=\bigcup_{n=1}^{\infty} E_{n}
$$

and so

$$
f \chi_{E}(x)=\sum_{n=1}^{\infty}\left(f \chi_{E_{n}}\right)(x) \quad \text { all } x \in X .
$$

By Corollary 4.32,
i.e.

$$
\begin{aligned}
\int_{X}\left(f \chi_{E}\right) \mathrm{d} \mu & =\sum_{n=1}^{\infty} \int_{X}\left(f \chi_{E_{n}}\right) \mathrm{d} \mu \\
\Phi(E) & =\sum_{n=1}^{\infty} \int \Phi\left(E_{n}\right)
\end{aligned}
$$

Example

Set $X=\mathbb{N}, \mathscr{F}=\mathscr{P}(\mathbb{N}), \mu=$ counting measure on \mathbb{N}. All functions $f: \mathbb{N} \rightarrow[0, \infty]$ are now measurable. For such an f, what is $\int_{\mathbb{N}} f \mathrm{~d} \mu$? It is $\sum_{n=1}^{\infty} f(n)$.

Proof

$$
\begin{aligned}
& \mathbb{N}=\left(\bigcup_{n=1}^{\infty}\{n\}\right): \\
& \begin{aligned}
\int_{\{n\}} f \mathrm{~d} \mu=\int_{\mathbb{N}}\left(f \chi_{\{n\}}\right) \mathrm{d} \mu & =\int_{\mathbb{N}} f(n) \chi_{\{n\}} \mathrm{d} \mu=f(n) \mu(\{n\}) \\
& =f(n)
\end{aligned}
\end{aligned}
$$

setting $\Phi(E)=\int_{E} f \mathrm{~d} \mu, \Phi$ is a measure so

$$
\int_{\mathbb{N}} f \mathrm{~d} \mu=\Phi(\mathbb{N})=\sum_{n=1}^{\infty} \Phi(\{n\})
$$

$$
=\sum_{n=1}^{\infty} f(n)
$$

Now let $a_{m, n} \in[0, \infty], m \in \mathbb{N}, n \in \mathbb{N}$.

Set $f_{n}(m)=a_{m, n}$.

This defines a sequence of (measurable) functions

$$
f_{n}: \mathbb{N} \rightarrow[0, \infty] .
$$

Then

$$
\int_{\mathbb{N}} f_{n} \mathrm{~d} \mu=\sum_{m=1}^{\infty} f_{n}(m)=\sum_{m=1}^{\infty} a_{m, n} .
$$

By Corollary 4.32,

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \int_{\mathbb{N}} f_{n} \mathrm{~d} \mu=\int_{\mathbb{N}}\left(\sum_{n=1}^{\infty} f_{n}\right) \mathrm{d} \mu \\
& \sum_{n=1}^{\infty}\left(\sum_{m=1}^{\infty} a_{m, n}\right)=\sum_{m=1}^{\infty}\left(\sum_{n=1}^{\infty} a_{m, n}\right)
\end{aligned}
$$

and we have recovered proposition 1.9 by other means! In fact, if you look carefully at our development of integration theory, you will find that there is no circularity in taking this as our proof of 1.9 .

Recall: if (X, \mathscr{F}) is a measurable space,

$$
\left(f_{n}\right)_{n=1}^{\infty} \quad f_{n}: X \rightarrow[0, \infty]
$$

f_{n} measurable. Then

$$
\begin{aligned}
x & \mapsto \limsup _{n \rightarrow \infty} f_{n}(x) \\
x & \mapsto \liminf _{n \rightarrow \infty} f_{n}(x)
\end{aligned}
$$

are both measurable functions. The first is usually denoted by

$$
\limsup _{n \rightarrow \infty} f_{n}
$$

and the second by

$$
\liminf _{n \rightarrow \infty} f_{n} .
$$

Theorem 4.34 (Fatou's Lemma).

Let (X, \mathscr{F}, μ) be a measure space, and let $f_{n}: X \rightarrow[0, \infty]$ be measurable. Then

$$
\int_{X}\left(\liminf _{n \rightarrow \infty} f_{n}\right) \mathrm{d} \mu \leqslant \liminf _{n \rightarrow \infty} \int_{X} f_{n} \mathrm{~d} \mu
$$

Proof

Recall:

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} f_{n}(x) & =\sup _{n \in \mathbb{N}} \inf _{k \geqslant n} f_{k}(x) \\
& =\lim _{n \rightarrow \infty}\left(\inf _{k \geqslant n} f_{k}(x)\right) .
\end{aligned}
$$

Set $g_{n}(x)=\inf _{k \geqslant n} f_{k}(x)$. Then $0 \leqslant g_{1}(x) \leqslant g_{2}(x) \leqslant \ldots$ and $g_{n}(x) \rightarrow \liminf _{m \rightarrow \infty} f_{m}(x)$ as $n \rightarrow \infty$. So, by the MCT,

$$
\begin{aligned}
\int_{X}\left(\liminf _{m \rightarrow \infty} f_{m}\right) \mathrm{d} \mu & =\lim _{n \rightarrow \infty} \int_{X} g_{n} \mathrm{~d} \mu \\
& =\liminf _{n \rightarrow \infty} \int_{X} g_{n} \mathrm{~d} \mu .
\end{aligned}
$$

But

$$
g_{n}(x) \leqslant f_{n}(x) \quad(\forall n \in \mathbb{N}, x \in X)
$$

so

$$
\liminf _{n \rightarrow \infty} \int_{X} g_{n} \mathrm{~d} \mu \leqslant \liminf _{n \rightarrow \infty} \int_{X} f_{n} \mathrm{~d} \mu .
$$

Officially we will not construct Lebesgue measure λ until Chapter 5, but we will assume for now the following properties of $\lambda: \lambda$ is a complete measure (see question sheet 3) on a σ-field which includes all the Borel sets, and for all intervals $I, \lambda(I)$ is the length of I. The σ-field on which the complete measure λ is defined is the collection of Lebesgue measurable subsets of \mathbb{R}.

Example.

Working with the Lebesgue integral on \mathbb{R}, taking

$$
f_{n}(x)= \begin{cases}1 & x \in[n, n+1] \\ 0 & \text { otherwise }\end{cases}
$$

i.e. $f_{n}=\chi_{[n, n+1]}$. Then

$$
\int_{\mathbb{R}} f_{n} \mathrm{~d} \lambda=\lambda([n, n+1])=1
$$

But $f_{n}(x) \rightarrow 0$ pointwise. So

$$
\lim _{n \rightarrow \infty} \int f_{n} \mathrm{~d} \lambda=1, \quad \int \lim _{n \rightarrow \infty}\left(f_{n}\right) \mathrm{d} \lambda=0
$$

But Fatou's Lemma does hold,

$$
\liminf _{n \rightarrow \infty} \int f_{n} \mathrm{~d} \lambda=1, \quad \liminf _{n \rightarrow \infty} f_{n}=\text { zero function. }
$$

Definition 4.35. Let (X, \mathscr{F}) be a measurable space and let $f: X \rightarrow \overline{\mathbb{R}}$ be measurable, then

$$
\begin{aligned}
& f^{+}(x)=\max \{0, f(x)\} \\
& f^{-}(x)=\max \{0,-f(x)\} \\
& f(x)=f^{+}-f^{-}(x) \quad \text { all } x \in X,
\end{aligned}
$$

f^{+}, f^{-}are measurable.
We can define $|f(x)|=f^{+}(x)+f^{-}(x)$ to coincide with the usual definition.
If (X, \mathscr{F}, μ) is a measure space, f, f^{+}, f^{-}as above.
We already know how to define

$$
\int_{X} f^{+} \mathrm{d} \mu, \quad \int_{X} f^{-} \mathrm{d} \mu .
$$

Let $E \in \mathscr{F}$. If

$$
\int_{E} f^{+} \mathrm{d} \mu<\infty \quad \text { or } \int_{E} f^{-} \mathrm{d} \mu<\infty
$$

then we can define

$$
\int_{E} f \mathrm{~d} \mu=\int_{E} f^{+} \mathrm{d} \mu-\int_{E} f^{-} \mathrm{d} \mu
$$

so $\int_{E} f \mathrm{~d} \mu$ is in $\overline{\mathbb{R}}$.
If further both $\int_{E} f^{+} \mathrm{d} \mu, \int_{E} f^{-} \mathrm{d} \mu$ are finite we say that f is integrable or summable on E. We say f is integrable if it is integrable on X. We denote the set of all functions

$$
f: X \rightarrow \mathbb{R}
$$

which are integrable with respect to μ by $L^{1}(\mu)$. [We include measurable in the definition of integrable.]

For all $f \in L^{1}(\mu)$ and all $E \in \mathscr{F}$,

$$
\int_{E} f \mathrm{~d} \mu=\int_{E} f^{+} \mathrm{d} \mu-\int_{E} f^{-} \mathrm{d} \mu \in \mathbb{R}
$$

For example, when $X=\mathbb{N}, \mathscr{F}=\mathscr{P}(\mathbb{N}), \mu=$ counting measure, then

$$
f: \mathbb{N} \rightarrow \mathbb{R} \in L^{1}(\mu) \quad \text { iff } \quad \sum_{n=1}^{\infty} f(n)
$$

is absolutely convergent.

Since $|f(x)|=f^{+}(x)+f^{-}(x)$ we have, for all $E \in \mathscr{F}$,

$$
\begin{aligned}
& \int_{E} f^{+} \mathrm{d} \mu \leqslant \int_{E}|f| \mathrm{d} \mu \\
& \int_{E} f^{-} \mathrm{d} \mu \leqslant \int_{E}|f| \mathrm{d} \mu \\
& \int_{E}|f| \mathrm{d} \mu=\int_{E} f^{+} \mathrm{d} \mu+\int_{E} f^{-} \mathrm{d} \mu .
\end{aligned}
$$

So clearly f is integrable on E iff $|f|$ is integrable on E. In particular, f is integrable iff $|f|$ is. (This statement is false if f is not assumed measurable: it is possible for $|f|$ to be measurable and f to be non-measurable). Also

$$
\begin{aligned}
-\int_{E}|f| \mathrm{d} \mu \leqslant-\int_{E} f^{-} \mathrm{d} \mu & \leqslant \int_{E} f \mathrm{~d} \mu \\
& \leqslant \int_{E} f^{+} \mathrm{d} \mu \\
& \leqslant \int_{E}|f| \mathrm{d} \mu
\end{aligned}
$$

Thus we have, for integrable functions f :

Proposition 4.36

$$
\left|\int_{E} f \mathrm{~d} \mu\right| \leqslant \int_{E}|f| \mathrm{d} \mu \quad \forall E \in \mathscr{F}
$$

Note: $(-f)^{+}=f^{-}$and $(-f)^{-}=f^{+}$.
So for $f \in L^{1}(\mu)$, we have $\forall E \in \mathscr{F}$,

$$
\begin{aligned}
\int_{E}(-f) \mathrm{d} \mu & =\int_{E}(-f)^{+} \mathrm{d} \mu-\int_{E}(-f)^{-} \mathrm{d} \mu \\
& =\int_{E} f^{-} \mathrm{d} \mu-\int_{E} f^{+} \mathrm{d} \mu \\
& =-\int_{E} f \mathrm{~d} \mu
\end{aligned}
$$

Now if $\alpha \geqslant 0$ then $(\alpha f)^{+}=\alpha f^{+}$and $(\alpha f)^{-}=\alpha f^{-}$so

$$
\int_{E}(\alpha f) \mathrm{d} \mu=\alpha \int_{E} f \mathrm{~d} \mu
$$

from the definition because

$$
\int_{E}\left(\alpha f^{+}\right) \mathrm{d} \mu=\alpha \int_{E} f^{+} \mathrm{d} \mu
$$

etc. Now let $\alpha<0$. Then $\alpha f=(-\alpha)(-f)$ and $(-\alpha) \geqslant 0$, so

$$
\begin{aligned}
\int_{E}(\alpha f) \mathrm{d} \mu & =\int_{E}(-\alpha)(-f) \mathrm{d} \mu \\
& =(-\alpha) \int_{E}(-f) \mathrm{d} \mu \\
& =(-\alpha)\left(-\int_{E} f \mathrm{~d} \mu\right) \\
& =\alpha \int_{E} f \mathrm{~d} \mu
\end{aligned}
$$

We have now proved the following.

Proposition 4.37.

For all $f \in L^{1}(\mu)$ and all $\alpha \in \mathbb{R}$ and all $E \in \mathscr{F}$,

$$
\int_{E}(\alpha f) \mathrm{d} \mu=\alpha \int_{E} f \mathrm{~d} \mu
$$

Proposition 4.38.

Let (X, \mathscr{F}, μ) be a measure space, let $f, g \in L^{1}(\mu)$. Then $(f+g) \in L^{1}(\mu)$ and

$$
\int_{E}(f+g) \mathrm{d} \mu=\int_{E} f \mathrm{~d} \mu+\int_{E} g \mathrm{~d} \mu \quad \forall E \in \mathscr{F} .
$$

Proof

Set $h=f+g$. Then

$$
\begin{aligned}
& h^{+}(x) \leqslant f^{+}(x)+g^{+}(x) \\
& h^{-}(x) \leqslant f^{-}(x)+g^{-}(x)
\end{aligned}
$$

$\forall x \in X$. (Easy exercise.)

So

$$
\int_{X} h^{+}(x) \mathrm{d} \mu \leqslant \int_{X} f^{+} \mathrm{d} \mu+\int_{X} g^{+} \mathrm{d} \mu<\infty
$$

and similarly for h^{-}, so certainly $h \in L^{1}(\mu)$.

We have

$$
\begin{aligned}
& h(x)=h^{+}(x)-h^{-}(x) \\
& f(x)=f^{+}(x)-f^{-}(x) \\
& g(x)=g^{+}(x)-g^{-}(x) \\
& h(x)=f(x)+g(x)
\end{aligned}
$$

$$
h^{+}(x)+h^{-}(x)=f^{+}(x)-f^{-}(x)+g^{+}(x)-g^{-}(x)
$$

These are all real numbers, so

$$
h^{+}(x)+f^{-}(x)+g^{-}(x)=h^{-}(x)+f^{+}(x)+g^{+}(x)
$$

Thus, for $E \in \mathscr{F}$,

$$
\begin{aligned}
& \int_{E}\left(h^{+}+f^{-}+g^{-}\right) \mathrm{d} \mu=\int_{E}\left(h^{-}+f^{+}+g^{+}\right) \mathrm{d} \mu \\
& \int_{E} h^{+} \mathrm{d} \mu+\int_{E} f^{-} \mathrm{d} \mu+\int_{E} g^{-} \mathrm{d} \mu=\int_{E} h^{-} \mathrm{d} \mu+\int_{E} f^{+} \mathrm{d} \mu+\int_{E} g^{+} \mathrm{d} \mu .
\end{aligned}
$$

Rearranging gives

$$
\int_{E} h \mathrm{~d} \mu=\int_{E} f \mathrm{~d} \mu+\int_{E} g \mathrm{~d} \mu
$$

as required.

Theorem 4.39 (Dominated Convergence Theorem)

Let (X, \mathscr{F}, μ) be a measure space, let $g: X \rightarrow[0, \infty]$ be a measurable function with $\int_{X} g \mathrm{~d} \mu<\infty$. Let f_{n}, f be measurable functions from X to \mathbb{R} such that

$$
\left|f_{n}(x)\right| \leqslant g(x) \quad \forall x \in X \quad \text { all } n \in \mathbb{N}
$$

Suppose

$$
f_{n}(x) \rightarrow f(x) \quad \forall x \in X
$$

Then

$$
\begin{aligned}
& \text { (i) } \lim _{n \rightarrow \infty} \int_{X}\left|f_{n}-f\right| \mathrm{d} \mu=0 \\
& \text { (ii) } \lim _{n \rightarrow \infty} \int_{X} f_{n} \mathrm{~d} \mu=\int_{X} f \mathrm{~d} \mu .
\end{aligned}
$$

Proof

Note first that $|f(x)| \leqslant g(x)$ all $x \in X$, and so f_{n}, f are all in $L^{1}(\mu)$, with

$$
\begin{aligned}
\int_{X}\left|f_{n}\right| \mathrm{d} \mu & \leqslant \int_{X} g \mathrm{~d} \mu<\infty \\
\int_{X}|f| \mathrm{d} \mu & \leqslant \int_{X} g \mathrm{~d} \mu<\infty .
\end{aligned}
$$

Also set

$$
g_{n}(x)=\left|f-f_{n}(x)\right| .
$$

Then

$$
g_{n}(x) \leqslant 2 g(x)
$$

Thus

$$
2 g(x)-g_{n}(x) \geqslant 0 \quad \forall x
$$

Set

$$
h_{n}(x)=2 g(x)-\left|f-f_{n}(x)\right|
$$

Then $h_{n}: X \rightarrow[0, \infty]$ and h_{n} is measurable.

We now apply Fatou's lemma:

$$
\int_{X}\left(\liminf _{n \rightarrow \infty} h_{n}\right) \mathrm{d} \mu \leqslant \liminf _{n \rightarrow \infty} \int_{X} h_{n} \mathrm{~d} \mu
$$

We have $h_{n}(x) \rightarrow 2 g(x)$ as $n \rightarrow \infty$. So $\liminf \left(h_{n}\right)=2 g$,

$$
\begin{aligned}
& \int_{X}(2 g) \mathrm{d} \mu \leqslant \liminf _{n \rightarrow \infty}\left(\int_{X}\left(2 g-\left|f-f_{n}\right|\right) \mathrm{d} \mu\right) \\
&=\liminf _{n \rightarrow \infty}\left(\int_{X}(2 g) \mathrm{d} \mu-\int_{X}\left|f-f_{n}\right| \mathrm{d} \mu\right) \\
& \quad \text { [this is justified later]* } \\
&=\int_{X} 2 g \mathrm{~d} \mu+\liminf _{n \rightarrow \infty}\left(-\int_{X}\left|f-f_{n}\right| \mathrm{d} \mu\right) .
\end{aligned}
$$

But $\int_{X}(2 g) \mathrm{d} \mu$ is finite, so

$$
\begin{aligned}
0 & \leqslant \liminf _{n \rightarrow \infty}\left(-\int_{X}\left|f-f_{n}\right| \mathrm{d} \mu\right) \\
& =-\limsup _{n \rightarrow \infty} \int_{X}\left|f-f_{n}\right| \mathrm{d} \mu \\
& \leqslant 0
\end{aligned}
$$

Thus equality holds,

$$
0=\limsup _{n \rightarrow \infty} \int_{X}\left|f-f_{n}\right| \mathrm{d} \mu
$$

It follows that

$$
\lim _{n \rightarrow \infty} \int_{X}\left|f-f_{n}\right| \mathrm{d} \mu=0
$$

(proving (i)).

But now

$$
\left|\int_{X} f \mathrm{~d} \mu-\int_{X} f_{n} \mathrm{~d} \mu\right|=\left|\int_{X}\left(f-f_{n}\right) \mathrm{d} \mu\right|
$$

$$
\begin{aligned}
& \leqslant \int_{X}\left|f-f_{n}\right| \mathrm{d} \mu \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Thus

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n} \mathrm{~d} \mu=\int_{X} f \mathrm{~d} \mu
$$

* To justify subtraction

Let $h: X \rightarrow[0, \infty]$ measurable with $\int_{X} h \mathrm{~d} \mu<\infty$,

$$
f: X \rightarrow \mathbb{R}, \quad f \in L^{1}, \quad f(x) \geqslant 0 \quad \text { all } x
$$

Prove:

$$
\int_{X}(h-f) \mathrm{d} \mu=\int_{X} h \mathrm{~d} \mu-\int_{X} f \mathrm{~d} \mu .
$$

Proof

Set $N=\{x \in X: h(x)=\infty\}$. Then we can see N has measure 0 :

$$
\infty>\int_{X} h \mathrm{~d} \mu \geqslant \int_{N} h \mathrm{~d} \mu
$$

For all $n \in \mathbb{N}, h(x) \geqslant n$ on N, and so

$$
\int_{N} h \mathrm{~d} \mu \geqslant n \mu(N)
$$

True $\forall n \in \mathbb{N}$. Thus $\mu(N)$ must be 0 .

$$
\begin{aligned}
\int_{X}(h-f) \mathrm{d} \mu & =\int_{N}(h-f) \mathrm{d} \mu+\int_{X \backslash N}(h-f) \mathrm{d} \mu \\
& =\int_{X \backslash N}(h-f) \mathrm{d} \mu \\
& =\int_{X \backslash N} h \mathrm{~d} \mu-\int_{X \backslash N} f \mathrm{~d} \mu \\
& =\int_{X} h \mathrm{~d} \mu-\int_{X} f \mathrm{~d} \mu
\end{aligned}
$$

In general whenever N is a set of measure zero and $f: X \rightarrow \mathbb{R}$ is integrable then

$$
\int_{X} f \mathrm{~d} \mu=\int_{X \backslash N} f \mathrm{~d} \mu .
$$

[Write $f=f^{+}-f^{-}$,

$$
\begin{aligned}
\int_{X} f \mathrm{~d} \mu & =\int_{X} f^{+} \mathrm{d} \mu-\int_{X} f^{-} \mathrm{d} \mu \\
& =\int_{X \backslash N} f^{+} \mathrm{d} \mu-\int_{X \backslash N} f^{-} \mathrm{d} \mu \\
& \left.=\int_{X \backslash \mathbb{N}} f \mathrm{~d} \mu .\right]
\end{aligned}
$$

Question Sheet 5: $f=g$ nearly everywhere, f, g integrable

$$
\Rightarrow \int_{E} f \mathrm{~d} \mu=\int_{E} g \mathrm{~d} \mu \quad \forall \text { measurable } E .
$$

All the theorems we have given have versions with the words "almost everywhere" inserted. For example, if $f_{n} \rightarrow f$ almost everywhere on X, f_{n} all measurable, f measurable, and if $\left|f_{n}(x)\right| \leqslant h(x)$ almost everywhere and h is integrable, then

$$
\lim _{n \rightarrow \infty} \int_{X}\left|f(x)-f_{n}(x)\right| \mathrm{d} \mu=0
$$

Proof of this version

Choose set N of measure zero such that $f_{n}(x) \rightarrow f(x) \forall x$ in $X \backslash N$.

Choose for each $k \in \mathbb{N}$, a set N_{k} of measure 0 such that

$$
\left|f_{n}(x)\right| \leqslant h(x) \quad \forall x \in X \backslash N_{k}
$$

Set

$$
A=N \cup \bigcup_{k=1}^{\infty} N_{k}
$$

For $x \in X \backslash A$ we have $\left|f_{n}(x)\right| \leqslant h(x) \forall n$ and $f_{n}(x) \rightarrow f(x)$ as $n \rightarrow \infty$.

On $X \backslash A$ the conditions of the dominated convergence theorem are satisfied, so

$$
\lim _{n \rightarrow \infty} \int_{X \backslash A}\left|f_{n}-f\right| \mathrm{d} \mu=0
$$

But A is a countable union of sets of measure zero, so $\mu(A)=0$ also, thus

$$
\int_{X}\left|f_{n}-f\right| \mathrm{d} \mu=\int_{X \backslash A}\left|f_{n}-f\right| \mathrm{d} \mu \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

Note

Working with $X=\mathbb{R}$, using Lebesgue measure λ, taking $f_{n}=\chi_{[n, n+1]}$. Then, with $f(x)=0$ all x, we have

$$
f_{n}(x) \rightarrow f(x) \quad \forall x \text { in } \mathbb{R}
$$

and

$$
0 \leqslant f_{n}(x) \leqslant 1 \quad \forall n
$$

all x, but $\int_{\mathbb{R}} f_{n} \mathrm{~d} \mu$ does not converge to $\int_{\mathbb{R}} f \mathrm{~d} \mu$.
(We cannot apply the Dominated Convergence Theorem because

$$
\left.\int_{[1, \infty)} 1 d \lambda=\infty .\right)
$$

Returning to the Riemann integral:

How does it compare with Lebesgue integral?

Let us work in the interval $[0,1]$ (any bounded interval is similar). For any interval $I \subseteq[0,1]$, χ_{I} is both Riemann integrable and Lebesgue integrable, with the same integral.

$$
\begin{aligned}
\int_{[0,1]} \chi_{I} \mathrm{~d} \lambda & =\int_{0}^{1} \chi_{I}(x) \mathrm{d} x \\
& =\text { length of } I=\lambda(I)
\end{aligned}
$$

This is also true for finite linear combinations of characteristic functions of intervals

$$
\sum_{j=1}^{n} \alpha_{j} \chi_{I_{j}}
$$

i.e. the Riemann integral and the Lebesgue integral agree for all step functions on [0, 1]. However we have $\chi_{\mathbb{Q} \cap[0,1]}$ is not Riemann integrable on [0,1] but is Lebesgue integrable with integral 0 .

Moreover, any (proper) Riemann integrable function f on $[0,1]$ must be bounded on $[0,1]$. However if we define

$$
f(x)=\left\{\begin{array}{cl}
0 & x=0 \\
\frac{1}{\sqrt{x}} & x \in(0,1]
\end{array}\right.
$$

it is not too hard (using the next theorem, and results about measures) to prove that f is Lebesgue integrable on $[0,1]$.

Facts

1. Let $f: \mathbb{R} \rightarrow \overline{\mathbb{R}}$ be Lebesgue measurable (i.e. $f^{-1}([-\infty, a])$ is a Lebesgue measurable set $\forall a \in \mathbb{R}$) and let $g: \mathbb{R} \rightarrow \overline{\mathbb{R}}$ be any function. If g is equivalent to f (i.e. $f(x)=g(x)$ a.e. (λ)) then g is also measurable. This is because Lebesgue measure is complete (see question sheet 3). This result is no longer necessarily true if we used Borel measurable functions instead.
2. Let (X, \mathscr{F}, μ) be a measure space, and let $f: X \rightarrow[0, \infty]$ be measurable. Then

$$
\int_{X} f \mathrm{~d} \mu=0
$$

if and only if $f(x)=0$ a.e..

Proof

If $f(x)=0$ a.e., then

$$
\int_{X} f \mathrm{~d} \mu=0
$$

is trivial. Conversely, suppose that

$$
\int_{X} f \mathrm{~d} \mu=0
$$

Set

$$
A_{n}=\left\{x \in X: f(x) \geqslant \frac{1}{n}\right\} .
$$

Then

$$
\bigcup_{n=1}^{\infty} A_{n}=\{x \in X: f(x)>0\} .
$$

Since f is non-negative,

$$
0=\int_{A_{n}} f \mathrm{~d} \mu \geqslant \frac{1}{n} \mu\left(A_{n}\right)
$$

and so $\mu\left(A_{n}\right)=0 \quad \forall n\left(\right.$ as $\left.\frac{1}{n}>0, \mu\left(A_{n}\right) \geqslant 0\right)$. Thus

$$
\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=0
$$

Since

$$
\bigcup_{n=1}^{\infty} A_{n}=\{x \in X: f(x) \neq 0\}
$$

this proves $f(x)=0$ a.e. (μ).
If f is Riemann integrable on $[0,1]$ then we can find 'staircase functions' s_{n}, t_{n} (finite linear combinations of characteristic functions of intervals), such that $s_{n}(x) \leqslant f(x) \leqslant t_{n}(x)$ and

$$
\int_{0}^{1} f(x) \mathrm{d} x=\lim _{n \rightarrow \infty} \int_{0}^{1} s_{n}(x) \mathrm{d} x=\lim _{n \rightarrow \infty} \int_{0}^{1} t_{n}(x) \mathrm{d} x .
$$

(Riemann integral)

We can arrange for $s_{1} \leqslant s_{2} \leqslant s_{3} \leqslant \ldots$ and $t_{1} \geqslant t_{2} \geqslant t_{3} \geqslant \ldots$. (One way to do this is to divide [0,1] up into 2^{n} intervals and define s_{n}, t_{n} using this division of the interval.)

Theorem 4.40

Let $f:[0,1] \rightarrow \mathbb{R}$ be a Riemann-integrable function. Then f is Lebesgue integrable and

$$
\int_{0}^{1} f(x) \mathrm{d} x=\int_{[0,1]} f \mathrm{~d} \lambda .
$$

Proof

Choose functions $s_{n}, t_{n}:[0,1] \rightarrow \mathbb{R}$ such that

$$
s_{1}(x) \leqslant s_{2}(x) \leqslant \ldots \leqslant f(x) \leqslant \ldots \leqslant t_{n}(x) \leqslant t_{n-1}(x)
$$

and such that

$$
\begin{aligned}
\int_{0}^{1} f(x) \mathrm{d} x & =\lim _{n \rightarrow \infty} \int_{0}^{1} s_{n}(x) \mathrm{d} x \\
& =\lim _{n \rightarrow \infty} \int_{0}^{1} t_{n}(x) \mathrm{d} x
\end{aligned}
$$

and such that all s_{n}, t_{n} are finite linear combinations of characteristic functions of intervals. Then s_{n}, t_{n} are all simple and Lebesgue measurable. Then $s_{n}(x), t_{n}(x)$ are monotone sequences.

Set

$$
f_{1}(x)=\lim _{n \rightarrow \infty} s_{n}(x), \quad f_{2}(x)=\lim _{n \rightarrow \infty} t_{n}(x)
$$

We have

$$
f_{1}(x) \leqslant f(x) \leqslant f_{2}(x) \quad \forall x \in[0,1]
$$

Then f_{1}, f_{2} are pointwise limits of Lebesgue measurable functions and hence are Lebesgue measurable. For the functions s_{n}, t_{n} we have

$$
\int_{[0,1]} s_{n} \mathrm{~d} \mu=\int_{0}^{1} s_{n}(x) \mathrm{d} x \quad \text { and } \quad \int_{[0,1]} t_{n} \mathrm{~d} \lambda=\int_{0}^{1} t_{n}(x) \mathrm{d} x
$$

Thus

$$
\int_{0}^{1} s_{n}(x) \mathrm{d} x \leqslant \int_{[0,1]} f_{1} \mathrm{~d} \lambda \leqslant \int_{[0,1]} f_{2} \mathrm{~d} \lambda \leqslant \int_{0}^{1} t_{n}(x) \mathrm{d} x
$$

So taking the limit as $n \rightarrow \infty$ we obtain

$$
\int_{0}^{1} f(x) \mathrm{d} x \leqslant \int_{[0,1]} f_{1} \mathrm{~d} \lambda \leqslant \int_{[0,1]} f_{2} \mathrm{~d} \lambda \leqslant \int_{0}^{1} f(x) \mathrm{d} x
$$

Thus

$$
\int_{0}^{1} f(x) \mathrm{d} x=\int_{[0,1]} f_{1} \mathrm{~d} \lambda=\int_{[0,1]} f_{2} \mathrm{~d} \lambda
$$

But $f_{2}-f_{1}$ is Lebesgue measurable on $[0,1]$ and non-negative and

$$
\int_{[0,1]}\left(f_{2}-f_{1}\right) \mathrm{d} \lambda=0 .
$$

Thus $f_{2}-f_{1}=0$ a.e. on $[0,1]$. Since $f_{1}(x) \leqslant f(x) \leqslant f_{2}(x)$ on $[0,1]$, we have $f(x)=f_{1}(x)$ a.e. on $[0,1]$. Thus $f:[0,1] \rightarrow \mathbb{R}$ is also Lebesgue measurable. But then

$$
\int_{[0,1]} f \mathrm{~d} \lambda=\int_{[0,1]} f_{1} \mathrm{~d} \lambda=\int_{[0,1]} f_{2} \mathrm{~d} \lambda=\int_{0}^{1} f(x) \mathrm{d} x .
$$

The proof on a general interval $[a, b]$ is the same. So Riemann integrable \Rightarrow Lebesgue measurable with the same value of the integral.

Now (in Section 0) we claimed the following: let

$$
f_{n}:[0,1] \rightarrow \mathbb{R}
$$

continuous or Riemann integrable,

$$
\left|f_{n}(x)\right| \leqslant 1 \quad \forall n,
$$

and suppose that $f_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$ for each x in $[0,1]$. Then

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) \mathrm{d} x=0
$$

Proof

Use dominated convergence.

