G1CMIN MEASURE AND INTEGRATION: QUESTION SHEET 4

Answers to questions 1 and 2 to be handed in by the end of the lecture on Friday April 25th

Always justify your answers!

1. Let (X, \mathcal{F}, μ) be a measure space, and let $E \in \mathcal{F}$. As in the course we define \mathcal{F}_E by

$$\mathcal{F}_E = \{F \cap E : F \in \mathcal{F}\}.$$

(i) Show that \mathcal{F}_E is a σ -field on *E*.

(ii) (Easy!) Let v be the restricton of μ to \mathcal{F}_E . Show that v is a measure on E.

(iii) Let $s:X \longrightarrow [0,\infty)$ be a simple measurable function. Let t be the restriction of s to E. Prove that, with respect to the σ -field \mathcal{F}_E , t is a simple measurable function from E to $[0,\infty]$, and that

$$\int_E s \, d\mu = \int_E t \, d\nu.$$

(iv) Now let $f:X \to [0,\infty]$ be a measurable function, and let g be the restriction of f to E. Using (iii) and the Monotone Convergence Theorem, or otherwise, prove that g is \mathcal{F}_E -measurable, and that

$$\int_E f d\mu = \int_E g \, d\nu.$$

[Hint: one way to do this is to consider a sequence of simple functions approximating $f\chi_E$ on X and apply the Monotone Convergence Theorem twice].

2. Let (X, \mathcal{F}, μ) be a measure space, and let f, g be measurable functions from X to $[0, \infty]$. Suppose that, with respect to μ , the functions f and g are equivalent (i.e. f(x)=g(x) almost everywhere). Prove that, for every set $E \in \mathcal{F}$,

$$\int_E f d\mu = \int_E g \, d\mu.$$

(Thus functions which agree almost everywhere are pretty much indistinguishable from the point of view of integration).

3. Let μ be counting measure on \mathbb{N} , and let $f(n) = 3^{-n}$. Calculate

$$\int_{\mathbb{N}} f d\mu$$

Either by direct calculation, or quoting an appropriate theorem, prove that as n tends to ∞ ,

$$\int_{\mathbb{N}} f^n d\mu$$

tends to zero.

4. (From 1994-5 G13AN4 exam)

(a) Using the dominated convergence theorem, or otherwise, prove carefully that

$$\lim_{n \to \infty} \left(\int_{0}^{\infty} \frac{\sin(n^{2}x)}{e^{x} + nx^{3}} dx \right) = 0.$$

(b) Let (f_n) be a sequence of Borel measurable functions from $[0,\infty)$ to \mathbb{R} such that $\int_0^{\infty} |f_n(x)| dx \le 1$ for all n, and such that $f_n \to 0$ uniformly on $[0,\infty)$. Is it necessarily true that

$$\lim_{n \to \infty} \left(\int_{0}^{\infty} f_n(x) \, dx \right) = 0?$$

5. Show that the following limit exists, and find its value

$$\lim_{n \to \infty} \left(\sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+2} \right)^{1+\frac{1}{n}} \right)$$