G1CMIN MEASURE AND INTEGRATION: QUESTION SHEET 4

Answers to questions 1 and 2 to be handed in by the end of the lecture on Friday April 25th
Always justify your answers!

1. Let (X, \mathscr{F}, μ) be a measure space, and let $E \in \mathscr{F}$. As in the course we define \mathscr{F}_{E} by

$$
\mathscr{H}_{E}=\{F \cap E: F \in \mathscr{F}\} .
$$

(i) Show that \mathscr{F}_{E} is a σ-field on E.
(ii) (Easy!) Let v be the restricton of μ to \mathscr{F}_{E}. Show that v is a measure on E.
(iii) Let $s: X \rightarrow[0, \infty)$ be a simple measurable function. Let t be the restriction of s to E. Prove that, with respect to the σ-field \mathscr{F}_{E}, t is a simple measurable function from E to $[0, \infty]$, and that

$$
\int_{E} s d \mu=\int_{E} t d \nu
$$

(iv) Now let $f: X \longrightarrow[0, \infty]$ be a measurable function, and let g be the restriction of f to E. Using (iii) and the Monotone Convergence Theorem, or otherwise, prove that g is \mathscr{F}_{E}-measurable, and that

$$
\int_{E} f d \mu=\int_{E} g d v
$$

[Hint: one way to do this is to consider a sequence of simple functions approximating $f \chi_{E}$ on X and apply the Monotone Convergence Theorem twice].
2. Let (X, \mathscr{F}, μ) be a measure space, and let f, g be measurable functions from X to $[0, \infty]$. Suppose that, with respect to μ, the functions f and g are equivalent (i.e. $f(x)=g(x)$ almost everywhere). Prove that, for every set $E \in \mathscr{F}$,

$$
\int_{E} f d \mu=\int_{E} g d \mu
$$

(Thus functions which agree almost everywhere are pretty much indistinguishable from the point of view of integration).
3. Let μ be counting measure on \mathbb{N}, and let $f(n)=3^{-n}$. Calculate

$$
\int_{\mathbb{N}} f d \mu
$$

Either by direct calculation, or quoting an appropriate theorem, prove that as n tends to ∞,

$$
\int_{\mathbb{N}} f^{n} d \mu
$$

tends to zero.
4. (From 1994-5 G13AN4 exam)
(a) Using the dominated convergence theorem, or otherwise, prove carefully that

$$
\lim _{n \rightarrow \infty}\left(\int_{0}^{\infty} \frac{\sin \left(n^{2} x\right)}{e^{x}+n x^{3}} d x\right)=0
$$

(b) Let $\left(f_{n}\right)$ be a sequence of Borel measurable functions from $[0, \infty)$ to \mathbb{R} such that $\int_{0}^{\infty}\left|f_{n}(x)\right| d x \leqslant 1$ for all n, and such that $f_{n} \rightarrow 0$ uniformly on $[0, \infty)$. Is it necessarily true that

$$
\lim _{n \rightarrow \infty}\left(\int_{0}^{\infty} f_{n}(x) d x\right)=0 ?
$$

5. Show that the following limit exists, and find its value

$$
\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n}\left(\frac{1}{k}-\frac{1}{k+2}\right)^{1+\frac{1}{n}}\right)
$$

