G1CMIN MEASURE AND INTEGRATION: QUESTION SHEET 5

Answers to questions 2 and 5 to be handed in by the end of the lecture on Friday May 2nd 2003.

1. If you want to obtain area measure for subsets of \mathbb{R}^{2}, you begin with half-open rectangles by defining $\mu((a, b] \times(c, d])=(b-a)(d-c)$. On question sheet 2 , you showed this was finitely additive. Now prove that μ is a measure on the semi-ring of all half-open rectangles $(a, b] \times(c, d]$.

You may assume the following compactness result: if

$$
[a, b] \times[c, d] \subseteq \bigcup_{k=1}^{\infty}\left(a_{k}, b_{k}\right) \times\left(c_{k}, d_{k}\right)
$$

then there exists $n \in \mathbb{N}$ such that

$$
[a, b] \times[c, d] \subseteq \bigcup_{k=1}^{n}\left(a_{k}, b_{k}\right) \times\left(c_{k}, d_{k}\right) .
$$

Once you have this measure, our powerful extension machinery immediately provides a measure on a σ-field containing all the elementary figures in \mathbb{R}^{2}, and in particular we can measure the area of all Borel sets. Of course, all these results also work for dimensions higher than 2 . This allows us to construct Lebesgue measure on the Borel subsets of \mathbb{R}^{n}, for each n in \mathbb{N}.

In the remaining questions, λ^{*} denotes Lebesgue outer measure on \mathbb{R}, and λ denotes Lebesgue measure on the set of Lebesgue measurable sets. You may assume that λ is a measure, and that $\lambda((a, b])=b-a$ whenever a, b are in \mathbb{R} with $a<b$.
2. Prove that $\lambda((a, b))=\lambda([a, b))=\lambda([a, b])=b-a$ for all a, b in \mathbb{R} with $a<b$. (One method is to start by looking at the Lebesgue measure of single-point sets.)
3. Let S be any countable subset of \mathbb{R}. Prove that $\lambda(S)=0$. (Note, in particular, that $\lambda(\mathbb{Q})=0)$.
4. (i) Show that the Lebesgue measure of the Cantor middle-thirds set is 0 .
(ii) Give an example of a closed subset of [0,1] which has positive Lebesgue measure, but which contains no non-empty open intervals. [Hint: either modify the construction of the cantor set, or simply enumerate the rationals in $[0,1]$ and then delete a suitable collection of open intervals from $[0,1]$.]
5. Starting from the definition

$$
\lambda^{*}(E)=\inf \left\{\sum_{n=1}^{\infty}\left(b_{n}-a_{n}\right): a_{n} \leqslant b_{n} \in \mathbb{R}, E \subseteq \bigcup_{n=1}^{\infty}\left(a_{n}, b_{n}\right]\right\}
$$

given in the notes for Lebesgue outer measure λ^{*}, prove the result claimed in the notes that, for any $E \subseteq \mathbb{R}$ (note that \boldsymbol{E} need not be measurable!),

$$
\lambda^{*}(E)=\inf \left\{\sum_{n=1}^{\infty}\left(b_{n}-a_{n}\right): a_{n} \leqslant b_{n} \in \mathbb{R}, E \subseteq \bigcup_{n=1}^{\infty}\left(a_{n}, b_{n}\right)\right\}
$$

and

$$
\lambda^{*}(E)=\inf \left\{\sum_{n=1}^{\infty}\left(b_{n}-a_{n}\right): a_{n} \leqslant b_{n} \in \mathbb{R}, E \subseteq \bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right]\right\} .
$$

