Module code: G1ICMIN Module name: Measure and Integration
Session: 2002-3 Credits: 15
Module Lecturer: Dr J.F. Feinstein Other staff involved: None

Lecture 1:

Lecture 2:

Lecture 3:

Lecture 4:

Lecture 5:

Lecture 6:

I

Lecture
Lecture 8:

Lecture 9:

Detailed blow-by-blow account

Chapter 0. Introduction General description of content and motivation for the module (length
and area, connections with integrals, modes of convergence of functions, convergence theorems for
integrals, formal manipulation of o).

Chapter 1. The extended real line The extended real line R = R U {—00,00}, a totally ordered
set. Intervals, upper bounds, lower bounds. Most details left as exercises (some on question sheet
1). EVERY subset E of R has an infimum and a supremum in R, denoted by inf(E) and sup(FE)
respectively. The minus operator  — —z. Sequences in R: the limit infimum and limit supremum
of a sequence (liminf, o 2, and limsup,,_, ., ). Warning over notation. Convergent sequences
in R defined in terms of liminf and limsup: this extends the usual definition of convergence in R,
but sequences which previous diverged to 4+o00 now converge to +oo in R. Equivalent definitions
of convergence to +o0o in R. A standard homeomorphism between R and (—1,1) extends to a
homeomorphism between R and [—1,1].

The monotone sequence theorem in R. The algebra of limits in [0, c0] (with limitations: see question
sheet 1). Arithmetic in R: addition and subtraction (where possible) and multiplication in R. Series
in R. Series with terms in [0, 00]. Fact: series with non-negative terms can be rearranged arbitrarily
and still give the same sum (finite or infinite). (Some special cases are proved in the printed notes.
These results also follow from results on integration in Chapter 4.)

Sums over countable sets. Open sets in R, defined as countable unions of open intervals. Properties
and examples of open sets. Closed sets in R. Examples. Countable intersections and unions, set
difference, complements and De Morgan’s laws (complements of countable unions and intersections).
Implications for properties of open/closed sets. Open subsets of R.

Chapter 2. Classes of sets Motivation recalled: aim to measure the size (total length) of as many
subsets of R as possible. This will be possible (using Lebesgue measure) for a large class of sets (the
Borel sets, to be defined shortly). Symmetric difference introduced, various equivalent definitions
including addition of characteristic functions modulo 2. The power set of X, P(X) (or 2%). Levels
of abstraction, notation e.g z € R, A C R, A € P(R), C C P(X), C € P(P(X)). Semi-rings of sets:
Intervals in R. Half-open intervals P = {(a,b] : a,b € R,a < b}. Half-open rectangles. Rings of sets.
Elementary figures in R: finite (disjoint) unions of half-open intervals from P. Elementary figures in
R?. The ring generated by a semi-ring. Fields (or algebras) of subsets of a set X (also called ‘fields
on X’). Alternative definitions, deductions from axioms.

The field generated by a ring. Examples. Definition and examples of o-fields of subsets of a set X.
What can you say about a o-field on R if it includes all of the half-open intervals (a,b]? Indexing

sets, intersections of indexed families of collections of subsets of X, ﬂ S,. Whenever you have
yel’

some o-fields of subsets of X, say F, (v € I'), then [, p F is also a o-field of subsets of X. The
o-field on X generated by a collection C of subsets of X, denoted in this module by F(C) or, to avoid
ambiguity, Fx (C). This is the smallest possible o-field on X which includes all of the sets in C. More
formally, Fx(C) is a o-field on X, C C Fx(C) and, whenever G is a o-field on X such that C C G
then we have also Fx (C) C G. Proof of the existence and properties of Fx (C).

Comparison of Fx(C) and Fy(C) when X C Y (exercise: see also question sheet 2). The o-field,
B, of all Borel sets in R (also called Borel subsets of R or Borel measurable subsets of R): B is the
o-field generated by the collection of all open subsets of R. Borel subsets of R (and other metric
spaces). Examples of Borel subsets of R, including open sets, closed sets, Q, countable interesections
of open sets, countable unions of closed sets. There are many other Borel sets. Brief comments on
transfinite induction (beyond the scope of this module, but see books if interested). The Cantor set
and the Cantor function. Proof that F(P) = B (with P and B as above). Related facts are on
question sheet 2. All these proofs are based on the fact that whenever C C P(R) and a o-field G on
R is such that C C G then the o-field on R generated by C, FR(C), must also be C G.

1



Lecture 10:

Lecture 11:

Lecture 12:

Lecture 13:

Lecture 14:

Lecture 15:

Lecture 16:
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Lecture 18:

Short cuts for proving F(C1) = F(C2): F(C1) C F(C2) if and only if C; C F(Cs) .

Chapter 3. Measures and measure spaces Brief mention of notions of size: counting measure, length,
area, volume. Definition of (positive) measure on a collection C of subsets of X (with § € C).
Examples: length of half-open intervals (see Chapter 5), counting measure (on any set). Measurable
spaces and measure spaces. Properties of measures on rings: countable additivity (part of definition),
finite additivity.

Monotonicity and countable subadditivity of measures on rings. Finite measures, probability mea-
sures, o-finite measures. Positive measures (the measures used in this module) and other kinds
of measures: complex measures, real measures, signed measures. Hahn decomposition for com-
plex/signed measures stated in the form p = g3 — pa + ius — ipa (where p; are positive measures,
1 <4 < 4). More examples: the zero measure, point mass measures, sums and multiples of measures.
Continuity properties of measures on rings: measures (when defined) of countable unions and count-
able intersections of sets in rings. Properties that hold almost everywhere e.g. almost every real
number is irrational (because A(Q) = 0, where ) is Lebesgue measure on R).

Equivalence (almost everywhere equality) of functions on measure spaces. What this means for
some specific measures. Completeness of measures (see question sheet 3 for more details). An
example of a ‘non-measurable’ (in particular, non-Borel) subset of [0,1] (using equivalence classes
modulo the rationals). This uses facts that will be proven in Chapter 5 (see below). Translates of
subsets of R (E + z or z + E). Translates of Borel sets are also Borel sets (exercise, or see later).
Some standard properties of A* (Lebesgue outer measure on R) stated (see Chapter 5 for details):
monotonicity, translation invariance, countable additivity on Borel sets, correct length for intervals.
We can show that A* does not add up correctly for translates of the set we constructed above, so it
is ‘non-measurable’.

Final details concerning the non-measurable set constructed in the previous lecture.

Chapter 4: The Integral Revision of Riemann integration: approximation of functions from below
and above using step functions (staircase functions). The idea behind the Lebesgue integral: start
with finite linear combinations of characteristic functions of sets more general than intervals (can
use any measurable sets). These will be easy to integrate (in particular we will have no problem
integrating xq, which gave problems with the Riemann integral). Simple functions on X: definition
(n.b. simple functions are real-valued), examples, standard form (using the distinct values, partition
the set X and so form a finite linear combination of characteristic functions). Sums, products and
linear combinations of simple functions are still simple functions. Every finite linear combination of
characteristic functions is a simple function (even if the sets do not form a partition of X or the
coefficients are not distinct).

Over-use of the word measurable: measurable spaces, measurable sets and measurable functions.
Continuous functions, images and pre-images revised. Topological definition of continuous functions
from R to R (in terms of pre-images of open sets). Measurable functions from one measurable space
to another. Using the Borel sets on the codomain it is enough to check the pre-images of open sets.
Every continuous function from R to R is (Borel) measurable. (By default we use the Borel sets as our
o-field on R. See Chapter 5, however, for discussion of the Lebesgue measurable sets.) Measurability
of functions taking values in R. Four conditions equivalent to measurability (from X to R or R),
including that, for all a € R, the set {z € X : f(z) < a} be a measurable set. The function —f is
measurable if and only if f is measurable.

The pointwise sup, inf, limsup and liminf of any sequence of measurable functions is measurable.
Hence every pointwise limit of a sequence of measurable functions is a measurable function.
Characteristic functions of measurable sets are measurable functions, while those of non-measurable
sets are non-measurable functions. Most sensible functions are measurable, but the characteristic
function of the non-Borel set we constructed earlier is a non-measurable function on R. Simple mea-
surable functions (measurable simple functions): finite linear combinations of characteristic functions
of measurable sets. A sum or product of two simple measurable functions is again a simple measur-
able function. Sketch shown of approximation of the function f(x) = z by simple functions on [0, 00).
Monotone approximation from below of non-negative measurable functions using non-negative simple
measurable functions. Deduction (from the corresponding result for simple measurable functions) of
the fact that the sum and product of two non-negative measurable functions is measurable. Many
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Lecture 21:

Lecture 22:

Lecture 23:

Lecture 24:

results for general measurable functions can be deduced in the same way using the results for simple
measurable functions and this method of approximation.

The pointwise maximum /minimum of two measurable functions is measurable. Recall: the pointwise
maximum of two R-valued measurable functions is a measurable function. Decomposition of R-
valued functions into positive and negative parts: f = f* — f~. The function f is measurable
if and only if both f* and f~ are. Definition of the (Lebesgue) integral of non-negative, simple
measurable functions (notation: Ig(s,p) [non-standard]). Connection with Riemann integrals of
staircase functions. Brief discussion of some standard facts (mostly intuitively obvious, proofs in
printed notes or on question sheet 4, some proofs discussed in lectures).

When s is non-negative, simple measurable, then the function ¢(E) = Ig(s, u) is a measure on F.

Definition of the Lebesgue integral of a non-negative measurable function, / f dp. In particular
E

this gives the same value as before for simple measurable functions: Ig(s,u) = / s du. Thus we
may safely switch to the new notation, but maintain our old results. For example, when s is non-
negative, simple measurable, then the function ¢(E) = / s dp is a measure on F. Brief discussion of

standard facts about integrals of non-negative, mea,sura‘gle functions (proofs in printed notes, most
follow directly from the definitions and the results for non-negative, simple measurable functions).
Further elementary problems of the integral. Revision of continuity properties of measures. State-
ment and proof of the Monotone Convergence Theorem.

Typical application of MCT: deduction of less elementary facts about integrals of non-negative,
measurable functions using facts about simple measurable functions and monotone approximation.
Integral of a sum of two non-negative, measurable functions:

/X(f+g)du=/xfdu+/xgdu-

For a non-negative measurable function f and a € [0, 00) we have

/Xafdu:a/xfdu

this may also be proved by elementary means). For non-negative measurable functions f,,
y g

o) - Z (o)

For any non-negative measurable function f, the function ®(E) = / f dp is a measure on F.
E

Counting measure on N: connection between integrals and series. In particular, another proof of the
fact that for non-negative extended real numbers a, i,

% (Ee)-Z (Ee)

Statement and proof of Fatou’s Lemma.

Defined (where possible) the integral over E of a measurable R-valued function f to be / fdp =
E

/ frdp— / f~dp. The (measurable) function f is integrable on E if both f* and f~ have finite
E E

integral on E. The set of integrable functions f such that f take values in R (non-standard) is
denoted by L'(u) (or L'(X,u) or L'(X,du)). Most authors allow f to be R-valued, but this makes
no real difference to the theory. For integrable functions

‘/deu‘s/xlfldu-

3



Lecture 25:
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Lecture 27:

Lecture 28:
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Lecture 30:

Lect. 31-32:

L'(p) is a vector space of functions on X, and, for f, g in L!'(u) and «, 8 in R, we have

/X(af+59)du=a/xfdu+6/ngu.

Statement and proof of the Dominated Convergence Theorem (DCT).

Problem class/Tutorial session on the main three theorems of Chapter 4: the Monotone Conver-
gence Theorem, Fatou’s Lemma and the Dominated Convergence Theorem (discussed in the context
of Riemann integrals of functions and sums of series). Students worked in groups to find coun-
terexamples when conditions of the theorems are weakened, and an example where the inequality in
Fatou’s Lemma is strict. Answers were discussed.

Sets of measure zero have no effect on integration. Countable unions of sets of measure 0 still have
measure 0. As a result, conditions in convergence theorems are only required to hold almost every-
where. Recalled the definition of Lebesgue outer measure A* in terms of possible sums of lengths of
sequences of half-open intervals which cover the set, and stated some properties of Lebesgue measure
(more details in Chapter 5). The connection between the Riemann integral and the Lebesgue integral
w.r.t. Lebesgue measure A\ (see below). The two agree for all Riemann integrable functions (idea
of proof sketched, based on approximation of a Riemann integrable function by staircase functions).

b
This allows us to use the notation / f(z) dz for the Lebesgue integral f dX of a Lebesgue
a a,b
integrable function (even if it is not Riemann integrable). “
Chapter 5. Outer measures and the construction of Lebesgue measure Definition and examples of
outer measures. Definition of p*-measurable sets for an outer measure p*. Statements of some
standard results (see printed notes for full details): the set of p*-measurable sets is a o-field and
the restriction of p* to this o-field is a complete measure. Lebesgue outer measure A* is an outer
measure on R and the half-open intervals (a,b] are A*-measurable with A\*((a,b]) = b — a.
Tutorial /problem class session on measures and outer measures.
Fubini’s theorem for double sums (another proof). Using a measure on a ring to define an outer
measure.
Revision of concept of measurability with respect to an outer measure p*. Lemma: The collection
of p* measurable sets is a field on which p* is finitely additive.
Proofs of some further details of the construction of Lebesgue measure, including the fact that
length gives a measure on our semi-ring P of half-open intervals. Statement and discussion of the
extension theorem: every measure on a semi-ring may be extended to a complete measure on a
o-field containing the semi-ring, using the standard outer measure construction. The particular case
of Lebesgue outer measure and Lebesgue measure. Question and answer session. Student opinion
forms.



