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Abstract. This paper is a continuation of our study of compact, power compact, Riesz, and

quasicompact endomorphisms of commutative Banach algebras. Previously it has been shown that

if B is a unital commutative semisimple Banach algebra with connected character space, and T is

a unital endomorphism of B, then T is quasicompact if and only if the operators T n converge in

operator norm to a rank-one unital endomorphism of B.

In this note the discussion is extended in two ways: we discuss endomorphisms of commutative

Banach algebras which are semiprime and not necessarily semisimple; we also discuss commutative

Banach algebras with character spaces which are not necessarily connected.

In previous papers we have given examples of commutative semisimple Banach algebras B and

endomorphisms T of B showing that T may be quasicompact but not Riesz, T may be Riesz but

not power compact, and T may be power compact but not compact. In this note we give examples

of commutative, semiprime Banach algebras, some radical and some semisimple, for which every

quasicompact endomorphism is actually compact.

1. Introduction. Let A be a commutative, complex Banach algebra. We denote by ΦA

the character space of A, and, for a ∈ A, we denote by â the Gelfand transform of a. As in
[2], if A has no identity element then we denote by A# the usual Banach algebra obtained
by adjoining an identity to A ; otherwise we define A# = A. We denote the open unit disc
by D and the closed unit disc by D. We denote the standard disc algebra (regarded as a
Banach space) by A(D).
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In previous papers the authors [5, 6, 7] and others [8, 9, 14] have studied endomorphisms
of commutative semisimple Banach algebras and have obtained several general theorems,
and also a variety of results pertaining to specific classes of algebras. In this note we extend
this discussion to endomorphisms of commutative Banach algebras which are semiprime and
not necessarily semisimple.

We recall that a complex algebra B is semiprime if J = {0} is the only ideal in B such
that the product of every pair of elements in J is 0. It is standard that a commutative,
complex algebra B is semiprime if and only if B has no non-zero nilpotent elements (see,
for example, [4] or [2, pp.77-78]). Certainly semisimple algebras are semiprime.

Examples of commutative semiprime Banach algebras which are not semisimple include
certain Banach algebras of formal power series, as discussed in [10]. In particular, A(D) and
Hp(D) for p ∈ [1,∞) are commutative radical semiprime Banach algebras with respect to
convolution multiplication defined by

(f ∗ g)(z) =
∫

γz

f(z − w)g(w) dw ,

where the path γz is a straight line joining 0 to z. Other examples of commutative radical
semiprime Banach algebras include `p(ω) for p ∈ [1,∞) and radical weights ω.1

A linear map T from a commutative Banach algebra A to itself is an endomorphism if
T preserves multiplication. If the algebra A is unital, then an endomorphism T of A is said
to be unital if T maps the identity to itself. In this case, φ := T ∗|ΦA

is a selfmap of ΦA; we
shall call φ the selfmap of ΦA associated with T . Note that then, for all a ∈ A, we have

T̂ a = â ◦ φ .

In particular, if A is semisimple, then we may recover the endomorphism from the associated
selfmap φ. If A is not semisimple, then φ may give little information about the endomorphism
T . Even in the latter case, however, the existence or otherwise of fixed points of φ is relevant
to our study of endomorphisms.

For commutative semisimple Banach algebras, endomorphisms are automatically contin-
uous. However, in the case of commutative semiprime algebras, this need not be the case, at
least if we assume the continuum hypothesis (CH). Indeed, let ω be a radical weight on R+,
and set A = L1(R+, ω). Assuming CH, it follows from [2, Theorem 5.7.31] and the comments
following that theorem, that there is then a discontinuous, injective, unital endomorphism
of the integral domain A#. We shall consider only bounded endomorphisms in this note.

Let E be an infinite dimensional Banach space, let L(E) be the Banach algebra of
bounded linear operators on E, and let K(E) be the set of compact linear operators on E.
Then K(E) is a closed ideal in L(E). The quotient algebra L(E)/K(E) is called the Calkin
algebra. Now let T be a bounded linear operator on E. The essential spectral radius of T ,
ρe(T ), is the spectral radius of T +K(E) in the Calkin algebra.

We shall discuss operators T such that ρe(T ) < 1. (This holds if and only if there is a
natural number n such that the distance from Tn to K(E) is strictly less than 1.) Following
Heuser [11] such an operator T is called quasicompact. If ρe(T ) = 0 the operator T is a Riesz

1A real valued function ω on Z+ is a weight if ω(n) > 0 for all n ∈ Z+ and, for all m and n in
Z+, we have ω(m + n) ≤ ω(m)ω(n). The weight is radical if, in addition, limn→∞ ω(n)1/n = 0.
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operator. Quasicompactness is clearly weaker than Riesz, which in turn is weaker than the
condition that an operator be power compact.

In [7], the authors investigated quasicompact endomorphisms of commutative semisimple
Banach algebras. One of the main results of that paper was the following.

Proposition 1.1. Let B be a unital commutative semisimple Banach algebra with connected
character space, let T be a unital endomorphism of B, and let φ be the associated selfmap
of ΦB. Then T is quasicompact if and only if the operators Tn converge in operator norm
to a rank-one unital endomorphism of B; in this case φ has a unique fixed point x0 ∈ ΦA,
and the rank-one endomorphism above must be the endomorphism b 7→ b̂(x0)1.

In Section 2, we indicate that Proposition 1.1 is valid for bounded unital endomorphisms
of commutative semiprime Banach algebras whose character space is connected. In Section
3, we consider the case where the character space need not be connected. Using a fairly
standard technique involving orthogonal idempotents, we will prove the following result,
which is a main result of this note.

Theorem 1.2. Let B be a unital commutative semiprime Banach algebra, and let T be a
bounded unital endomorphism of B. Then T is quasicompact if and only if there is a natural
number n such that the operators (T kn)∞k=1 converge in operator norm to a finite-rank unital
endomorphism of B.

This result extends earlier results of the authors [5, 6, 7] for commutative semisimple
Banach algebras, and results for uniform algebras of Klein [14] and Gamelin, Galindo and
Lindström [8, 9].

Section 4 contains some results about commutative radical semiprime Banach algebras,
while Section 5 presents two examples of commutative semisimple Banach algebras where
each quasicompact endomorphism is compact.

2. Bounded endomorphisms of semiprime Banach algebras with connected char-
acter space. In order to extend the results from [7], we begin by examining the properties
of semisimplicity which were used in the proof of Lemma 1.1 of [7], and observing that they
are more generally true. Specifically, we note the following.

• Let B be a unital commutative Banach algebra. Then ΦB is connected if and only if
the only idempotent elements in B are 0 and 1. This is an immediate consequence of
the Shilov Idempotent Theorem [2, Theorem 2.4.33].

• Let B be a commutative unital semiprime Banach algebra, and let T be a unital
endomorphism of B. Then, since B has no non-zero nilpotent elements, the set of
eigenvalues of T is closed under taking powers.

• Let A be a finite-dimensional commutative semiprime Banach algebra. Since the radical
of a finite dimensional algebra is nilpotent [2, Theorem 1.5.6(iv)], it follows that A

is, in fact, semisimple. Thus A is isomorphic to the finite-dimensional commutative
C*-algebra Cm (with coordinate-wise multiplication), where m = dim A.

Using these observations it easily follows that the proof of Lemma 1.1 of [7] holds when
semisimple is replaced by semiprime and we have the following lemma.
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Lemma 2.1. Let B be a unital commutative semiprime Banach algebra with connected char-
acter space, and let T be a bounded unital quasicompact endomorphism of B. Then 1 is an
eigenvalue of T with multiplicity 1 and eigenspace C · 1, and σ(T ) (the spectrum of T ) is
contained in {λ : |λ| < 1} ∪ {1}.

Armed with this lemma, the proof of the convergence of the operators Tn in Theorem
1.2 of [7] is equally valid for semiprime algebras, and we obtain the corresponding result for
semiprime algebras.

Theorem 2.2. Let B be a unital commutative semiprime Banach algebra with connected
character space, let T be a bounded, unital endomorphism of B, and let φ be the associated
selfmap of ΦB. Then T is quasicompact if and only if the operators Tn converge in operator
norm to a rank-one unital endomorphism of B; in this case φ has a unique fixed point
x0 ∈ ΦA, and the rank-one endomorphism above must be the endomorphism b 7→ b̂(x0)1.

We immediately obtain the following useful corollary.

Corollary 2.3. Let B be a unital commutative semiprime Banach algebra with connected
character space, let T be a bounded unital endomorphism of B, and let φ be the associated
selfmap of ΦB.

(i) If φ has no fixed points in ΦB, then T is not quasicompact.
(ii) Otherwise, let x0 ∈ ΦB be a fixed point of φ. Then T is quasicompact if and only if

the operators Tn converge in operator norm to the rank-one unital endomorphism of
B defined by b 7→ b̂(x0)1.

Note that, once we have found a fixed point x0 of φ, we can apply this corollary without
having to check whether this fixed point is unique. However, if we do know that φ has more
than one fixed point, then Theorem 2.2 tells us immediately that T is not quasicompact.

Let B be a commutative Banach algebra without identity. Then (by the Shilov Idempo-
tent Theorem again) B has no non-zero idempotent elements if and only if ΦB# is connected.
One trivial special case of this is, of course, when B is radical. Note that it is possible for
ΦB# to be connected when ΦB is disconnected, and vice-versa.

Corollary 2.4. Let B be a commutative semiprime Banach algebra which has no non-zero
idempotent elements, and let T be a bounded endomorphism of B. Then T is quasicompact
if and only if Tn → 0 in operator norm.

Proof. Clearly, if Tn → 0 in operator norm, then T is quasicompact.
Conversely, suppose that T is quasicompact. Obviously B has no identity element. We

may extend T to a bounded unital endomorphism T# of the commutative unital semiprime
Banach algebra B#, and then T# is also quasicompact. By Theorem 2.2, the powers of T#

converge in operator norm to a rank-one unital endomorphism of B#. It follows that Tn → 0
in operator norm.

In particular, for radical semiprime Banach algebras we have the following corollary,
which will be needed in Section 4.
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Corollary 2.5. Let R be a commutative radical semiprime Banach algebra, and let T be a
bounded endomorphism of R. Then T is quasicompact if and only if Tn → 0 in the operator
norm.

3. Extension to more general semiprime Banach algebras. We now wish to gener-
alize these results to the setting where the algebra is semiprime and the character space
need not be connected. A further examination of the proof of Theorem 1.2 of [7] reveals
immediately that the following more general result holds.

Lemma 3.1. Let B be a unital commutative semiprime Banach algebra, and let T be a
bounded unital quasicompact endomorphism of B. Suppose that

σ(T ) ⊆ {λ ∈ C : |λ| < 1} ∪ {1}
and that the eigenvalue 1 of T has multiplicity 1. Then the operators Tn converge in operator
norm to a rank-one unital endomorphism S of B.

The method we use to obtain results when the character space is disconnected is based
on a standard technique involving orthogonal idempotents.

Theorem 3.2. Let B be a unital commutative semiprime Banach algebra, and let T be a
bounded unital quasicompact endomorphism of B. Then there exists an n ∈ N such that

σ(Tn) ⊆ {λ ∈ C : |λ| < 1} ∪ {1} . (1)

For such n, the unital quasicompact endomorphism Tn of B has the following properties.

(i) The eigenspace of Tn corresponding to eigenvalue 1 is a finite-dimensional, unital
subalgebra of B isomorphic to Cm for some m ∈ N, and hence spanned by m orthogonal
idempotents, say e1, e2, . . . , em.

(ii) Set Bi = eiB (1 ≤ i ≤ m). Then (under an equivalent norm) each Bi is a commutative,
unital semiprime Banach algebra, with identity ei, and

B =
m⊕

i=1

Bi .

(iii) For 1 ≤ i ≤ m, Tn|Bi
is a unital quasicompact endomorphism of Bi, and Tn|Bi

satisfies the conditions of Lemma 3.1. The operators (T kn|Bi)
∞
k=1 converge in operator

norm to a rank-1 unital endomorphism of Bi, say Si.
(iv) The operators (T kn)∞k=1 converge in operator norm to the rank-m endomorphism S of

B given by

S(b) =
m∑

i=1

Si(bei) (b ∈ B).

Proof. As in the proof of Lemma 1.1 of [7], the existence of an n satisfying (1) is an easy
consequence of the following pair of facts: the set of eigenvalues of T is closed under taking
powers and the spectrum of T has no limit point on the unit circle.

Now suppose that we have fixed such an n satisfying (1). Then (i) follows immediately
from the fact that ker(I−Tn) is a finite-dimensional, commutative semiprime algebra. Now
(ii) is a standard construction. For (iii), it is clear that Tn|Bi is a unital endomorphism
of Bi, and the multiplicity of the eigenvalue 1 of this endomorphism is 1 by construction.
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The quasicompactness of Tn|Bi is standard. Then, since every eigenvalue of Tn|Bi is also
in σ(Tn), it follows that σ(Tn|Bi

) ⊆ {λ ∈ C : |λ| < 1} ∪ {1} . Thus Tn|Bi
satisfies the

conditions of Lemma 3.1. The rest of (iii) now follows by applying Lemma 3.1 to Tn|Bi
.

Finally, (iv) follows immediately from (i), (ii) and (iii).

Theorem 1.2 is now an immediate corollary, since one implication is part of the result
above, while the converse is trivial.

4. Radical Banach algebras of power series. In this section we look briefly at radical
Banach algebras of power series.

We recall the following terminology and notation from [10]. The algebra of complex
formal power series in one variable is denoted by C[[z]]. The coordinate projections on C[[z]]
are (πn)∞n=0. Let B be a subalgebra of C[[z]] with z ∈ B and such that B ⊆ ker π0 (i.e.,
all elements of B have constant coefficient 0). Then B is a generalized Banach algebra of
power series if it is a Banach algebra under some norm for which all of the functionals πn|B
are continuous.2 In this case, for each n ∈ N, we denote by ‖πn‖ the operator norm of the
continuous linear functional πn|B . If B is a generalized Banach algebra of power series such
that the polynomials are dense in B, then B is a Banach algebra of power series. Since C[[z]]
is an integral domain, these algebras of power series are certainly semiprime.

The reader should note that there are variations in the terminology and notation used
in the literature. In [2, Section 4.6], for example, the algebras are allowed to be unital, and
generalized Banach algebras of power series are called simply Banach algebras of power series
(with no requirement that the polynomials be dense).

Let B be a generalized Banach algebra of power series. For each non-negative integer
j, S−j(B) is the set of those formal power series f with zero constant term for which fzj

belongs to B. In fact S−j(B) is a Banach space when we define the norm of f ∈ S−j(B) to
be the norm of fzj in B.

Let B be a Banach algebra of power series. Then every non-zero endomorphism of B has
the form f → f ◦ g (formal composition of power series) for some g ∈ B [10, p.7]. For those
g ∈ B which give rise to an endomorphism of B in this way, we denote the corresponding
endomorphism by Tg. In this case, we have g = Tgz.

A result of Loy [2, Theorem 5.2.20] shows that endomorphisms of Banach algebras of
power series are automatically continuous. (See also [3] for some striking recent developments
concerning Fréchet algebras of power series.)

It was previously shown that for a wide class of radical Banach algebras of power series,
every endomorphism is either an automorphism or compact [10, Theorem (2.6)]. In such cases
every quasicompact endomorphism is (trivially) compact. In particular, for many radical
weights ω, the Banach algebras `p(ω) are examples of radical semiprime commutative Banach
algebras for which every quasicompact endomorphism is compact.

Lemma 4.1. Let B be a radical Banach algebra of power series, and let T be a quasicompact
endomorphism of B. Set g = Tz (so that T = Tg). Then |π1(g)| < 1.

2In fact, surprising recent results from [3] show that the continuity of the functionals πn|B in
this setting is automatic, while the corresponding statement for formal power series in two variables
is false.
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Proof. Since the endomorphism T = Tg is quasicompact, by Corollary 2.5, Tn
g → 0 in norm.

In particular, Tn
g z → 0. But π1(Tn

g z) = π1(g)n, and so we must have |π1(g)| < 1.

The following proposition is [10, Theorem 5.7].

Proposition 4.2. Suppose that B and S−1(B) are both radical generalized Banach algebras
of power series, and that R := lim sup(‖πn‖‖zn‖)1/n is finite. Let g ∈ B with |Rπ1(g)| < 1.
Then Tg is a compact endomorphism of B.

Combining the previous two results, we have the following.

Corollary 4.3. Suppose that S−1(B) and B are radical Banach algebras of power se-
ries, and that lim sup(‖πn‖‖zn‖)1/n = 1. Then every quasicompact endomorphism of B is
compact.

Let A be A(D) or Hp(D) for some p ∈ [1,∞). Using the definition of convolution multi-
plication on A from Section 1, it was shown in [10, Section 13], that (A, ∗) is a commutative
radical semiprime Banach algebra which can be identified with a radical Banach algebra
of power series B satisfying the hypotheses of Corollary 4.3 (see, in particular, [10, Theo-
rem (13.10)]). Thus, for B, and hence also for (A, ∗), every quasicompact endomorphism is
compact.

5. Two semisimple examples. We have just seen several examples of commutative radi-
cal semiprime Banach algebras where every quasicompact endomorphism is compact. In this
section we give two examples of commutative semisimple Banach algebras where this holds.
This is in contrast to the commutative semisimple Banach algebra C1[0, 1] where there exist
a quasicompact endomorphism which is not Riesz, a Riesz endomorphism which is not power
compact and a power compact endomorphism which is not compact.

Example 5.1. A theorem of Beurling and Helson [13, Theorem 4.5 and exercise 4.12] tells
us that every non-zero endomorphism of the group algebra L1(R) is an automorphism.
Thus, for this commutative semisimple Banach algebra, there are no non-zero quasicompact
endomorphisms at all.

For the next example, the proof is based on our results concerning the powers of quasi-
compact endomorphisms.

Example 5.2. Let A be the Banach algebra Ea[−1, 1] described in [1] and [12], and defined
as follows. Let M(C) denote the set of finite regular Borel measures on C and Mω(C) the
set of measures µ ∈ M(C) for which

∫
C e|Reλ| d|µ|(λ) < ∞. For each µ ∈ Mω(C), we may

define a continuous function fµ : [−1, 1] → C by fµ(x) =
∫

C exλ dµ(λ) (x ∈ [−1, 1]). Then

Ea[−1, 1] = {fµ : µ ∈ Mω(C)} .

With norm defined by

‖f‖A = inf
{∫

C
e|Reλ| d|µ|(λ) : µ ∈ Mω(C) with fµ = f

}
,

A = Ea[−1, 1] is a regular commutative semisimple Banach algebra [1, 15]. Further ΦA is
[−1, 1]. This algebra is called the extremal algebra for [−1, 1], a name derived from a property



8 J. F. FEINSTEIN AND H. KAMOWITZ

it possesses relative to the study of numerical ranges of elements in complex unital Banach
algebras. The Banach algebra A is generated by the Hermitian element u, where u(x) = x

for x ∈ [−1, 1]. Also ‖eitu‖A = 1 for all real t [1, 15].
Let T be an endomorphism of A, and let φ be the associated selfmap of [−1, 1]. In [12]

it was shown that φ must have the form x 7→ αx + β, where α and β are real numbers with
|α| + |β| ≤ 1. If β = 0 and |α| = 1, then T is an automorphism, while if α = 0, then the
endomorphism T has rank one, and so T is compact. Also it was shown in [12] that the
rank-one endomorphisms are the only nonzero compact endomorphisms of A. We claim that
every quasicompact endomorphism of A is compact.

To see this, let T be a quasicompact endomorphism of A, with associated selfmap φ. For
some α and β as above, we have φ(x) = αx + β. Since T is not an automorphism, we have
α 6= 1. Set x0 = β

1−α , so that x0 is the fixed point of φ. Let S be the rank-one endomorphism
f 7→ f(x0)1. Since T is quasicompact, Corollary 2.3 implies that ‖Tn − S‖ → 0. We shall
show that α = 0, and hence that x0 = β and T = S.

Suppose, towards a contradiction, that α 6= 0. For each n ∈ N, define fn ∈ A by

fn(x) =
(

1 + exp(i(α−n(x− x0)))
2

)n

.

As mentioned above, for each real number t, the function x 7→ eitx has norm 1 in A. Thus
we have

1 = ‖fn‖∞ ≤ ‖fn‖A ≤ 1 ,

and so ‖fn‖A = 1.

It is routine to show that for each positive integer n, Tnf(x) = f(αn(x− x0) + x0) and
so

Tnfn(x) =
(

1 + ei(x−x0)

2

)n

.

We also note that Sfn(x) = fn(x0) = 1. Now

‖fn‖A‖Tn − S‖ ≥ ‖(Tn − S)fn‖A ≥ |(Tn − S)fn(x)|

for all x in [−1, 1]. Evaluate at some x1 6= x0. Then

‖Tn − S‖ = ‖fn‖A‖Tn − S‖ ≥ ‖(Tn − S)fn‖ ≥ |(Tn − S)fn(x1)| .

This implies that

‖Tn − S‖ ≥

∣∣∣∣∣
(

1 + ei(x1−x0)

2

)n

− 1

∣∣∣∣∣ ≥ 1/2

for large n. Therefore ‖Tn − S‖ does not converge to 0, and so T is not quasicompact
according to Corollary 2.3 (or Proposition 1.1). This contradiction shows that α = 0, and
so T = S.

Therefore for this algebra, every quasicompact endomorphism is compact.
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