How do we do proofs? (Part I)

Joel Feinstein

School of Mathematical Sciences
University of Nottingham

2007-2008

Last year, you saw quite a few proofs.
You probably saw several different types of proof.

Question 1

How many different kinds of proof can you name or at least describe?

Consider the following question about odd numbers, and try to find a proof.

Later we will come back to the proof and look at the process we went through to find it.

Question 2

Prove that, for every odd integer $n, n^{4}-1$ is divisible by 8 .

Students sometimes feel that 'proofs are hard'.
Here are some questions about understanding lecturers' proofs.
(1) Do you find it easy to follow the individual steps in proofs you see in lectures?
(2) Do you find it easy to see the overview of what needs to be established during the proof?
(3) Do you find that you understand the proof once you see it?

What about when you want to do proofs yourself?
(1) Do you find that you can learn how to do proofs by reading and understanding lecturers' proofs?
(2) Do you feel that you have no idea how the lecturer thought of which step to do when?
(3) Do you feel that it is much harder to find your own proofs than to follow the proofs given by the lecturer?
(4) Do you find it particularly hard to know how to start proofs?

Questions about questions

When you come across a question which asks you to prove something, you may find it useful to ask the following 'meta-questions', i.e., questions about the question.
(1) What does the question mean?
(2) Are there several ways to ask the same question?
(3) How do we use formal definitions?
(4) How do we start a proof?
(5) What are we allowed to assume during a proof?
(6) Which type of proof is appropriate here?

Hopefully we have answered Question 2 above, which means that we have managed to prove the following statement.

For every odd integer $n, n^{4}-1$ is divisible by 8 .

Statement $(*)$ has several equivalent formulations, some of which make it easy to see how to start a proof: here are a few possibilities.

- Let n be an odd integer. Then $n^{4}-1$ is divisible by 8 .
- If n is an odd integer, then $n^{4}-1$ is divisible by 8 .
- Let n be an integer. Then

$$
n \text { is odd } \Rightarrow n^{4}-1 \text { is divisible by } 8
$$

The main thing is that, in the proof, we are allowed to assume that n is odd, and then we have to deduce some further facts about n.

This is a very common approach when you are asked to prove that 'every object of type X has property Y '.

Question 3

Which other equivalent formulations can you think of for statement $(*)$ above?

Our next task is to revisit our proof to see what we did when. Investigate the following questions.
(1) Which definitions did we assume, and when did we use them?
(2) Which standard results did we quote, and when did we use them?
(3) Is it obvious why we chose to do each step when we did?

You may already know this result about limits and inequalities, but you are never allowed to use a result to prove itself!

Question 4

Prove that, for every real number M, and every convergent sequence of real numbers $x_{1}, x_{2}, x_{3}, \ldots$ such that all of the terms x_{n} are $\leq M$, we have

$$
\lim _{n \rightarrow \infty} x_{n} \leq M .
$$

(1) Which meta-questions should you ask?
(2) Do you feel that you know how to start a proof?
(3) Do you think that you can write down a proof?
(9) What do you call a question about meta-questions?

