Why do we do proofs?

Joel Feinstein

School of Mathematical Sciences University of Nottingham

2006-2007

Aren't all mathematical statements either clearly true or clearly false, after checking a few examples and/or doing some calculations?

- Aren't all mathematical statements either clearly true or clearly false, after checking a few examples and/or doing some calculations?
- Why should we prove anything at all?

- Aren't all mathematical statements either clearly true or clearly false, after checking a few examples and/or doing some calculations?
- Why should we prove anything at all?
- How can we be absolutely sure whether a statement is true or false?

- Aren't all mathematical statements either clearly true or clearly false, after checking a few examples and/or doing some calculations?
- Why should we prove anything at all?
- Mow can we be absolutely sure whether a statement is true or false?
- Why should we prove statements which appear to be intuitively obvious?

- Aren't all mathematical statements either clearly true or clearly false, after checking a few examples and/or doing some calculations?
- Why should we prove anything at all?
- Mow can we be absolutely sure whether a statement is true or false?
- Why should we prove statements which appear to be intuitively obvious?
- Why are definitions of concepts important?

- Aren't all mathematical statements either clearly true or clearly false, after checking a few examples and/or doing some calculations?
- Why should we prove anything at all?
- Mow can we be absolutely sure whether a statement is true or false?
- Why should we prove statements which appear to be intuitively obvious?
- Why are definitions of concepts important?
- O Do we need to memorize lots of proofs?

Problem 1

For which prime numbers p, if any, is p + 1 a perfect square?

Problem 1

For which prime numbers p, if any, is p + 1 a perfect square?

You should find one example quite quickly. Are there any others? Are you sure? Can you generalize this result?

3/5

Problem 1

For which prime numbers p, if any, is p + 1 a perfect square?

You should find one example quite quickly. Are there any others? Are you sure? Can you generalize this result?

Problem 2 (Fermat's Last Theorem!)

Prove that, whenever x, y, z and n are positive integers with n > 2, then

$$x^n + y^n \neq z^n$$
.

3/5

Problem 1

For which prime numbers p, if any, is p + 1 a perfect square?

You should find one example quite quickly. Are there any others? Are you sure? Can you generalize this result?

Problem 2 (Fermat's Last Theorem!)

Prove that, whenever x, y, z and n are positive integers with n > 2, then

$$x^n + y^n \neq z^n$$
.

That's rather a tricky one. It took over 350 years to find a proof!

3/5

Two hospitals (Hospital A and Hospital B) each claim to be better at treating a certain disease than the other.

Two hospitals (Hospital A and Hospital B) each claim to be better at treating a certain disease than the other.

Hospital A points out that it cured a greater percentage of its male patients last year than Hospital B did, and that it also cured a greater percentage of its female patients last year than Hospital B did.

Two hospitals (Hospital A and Hospital B) each claim to be better at treating a certain disease than the other.

Hospital A points out that it cured a greater percentage of its male patients last year than Hospital B did, and that it also cured a greater percentage of its female patients last year than Hospital B did.

However, Hospital B points out that, overall, it cured a greater percentage of its patients last year than Hospital A did.

Two hospitals (Hospital A and Hospital B) each claim to be better at treating a certain disease than the other.

Hospital A points out that it cured a greater percentage of its male patients last year than Hospital B did, and that it also cured a greater percentage of its female patients last year than Hospital B did.

However, Hospital B points out that, overall, it cured a greater percentage of its patients last year than Hospital A did.

Problem 3

Given that none of the numbers involved are zero, is this possible? If so, which hospital would you rather be treated by?

Definitions

Sometimes the answers to your questions depend on the definitions you are using.

What is the definition of a rectangle?

Definitions

Sometimes the answers to your questions depend on the definitions you are using.

What is the definition of a rectangle?

What is the definition of a square?

Definitions

Sometimes the answers to your questions depend on the definitions you are using.

What is the definition of a rectangle?

What is the definition of a square?

Problem 4

Is every square a rectangle?