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3 Ordinary Differential Equations
3.1 Introduction

An ordinary differential equation (ODE) is an equation involving an
unknown function, y(x) say, and its derivatives; for example,

dy
dx

= y , or
d2y
dx2 + 4

dy
dx

+ 6y = 0.

AIM: to learn how to solve ODEs to determine the unknown
function y(x).

Notation: y is called the ‘dependent’ variable,
and x is the ‘independent’ variable.
Other notations are possible, such as an ODE for x as a function

of t , e.g. 3
d2x
dt2 + 5

dx
dt

+ 7x = 0.

ODEs arise quite naturally in a wide variety of practical
engineering situations. Some examples of this now follow...

G Adesso (University of Nottingham) HG1M12: Engineering Mathematics 2 January 2014 3 / 62



3 Ordinary Differential Equations
3.1 Introduction

An ordinary differential equation (ODE) is an equation involving an
unknown function, y(x) say, and its derivatives; for example,

dy
dx

= y , or
d2y
dx2 + 4

dy
dx

+ 6y = 0.

AIM: to learn how to solve ODEs to determine the unknown
function y(x).
Notation: y is called the ‘dependent’ variable,
and x is the ‘independent’ variable.
Other notations are possible, such as an ODE for x as a function

of t , e.g. 3
d2x
dt2 + 5

dx
dt

+ 7x = 0.

ODEs arise quite naturally in a wide variety of practical
engineering situations. Some examples of this now follow...

G Adesso (University of Nottingham) HG1M12: Engineering Mathematics 2 January 2014 3 / 62



3.1.1 Motion of a mass on a spring in a resistive
medium

x = 0 x = X (t)

Resistive force: −k1 × (speed) = −k1
dX
dt

,
Spring restoring force: −k2 × (extension) = −k2(X − l),
where k1 and k2 are constants and l is the natural length of the spring.

Newton’s Second Law (F = ma = mẍ)⇒

−k1
dX
dt
− k2(X − l) = m

d2X
dt2

i.e. m
d2X
dt2 + k1

dX
dt

+ k2X = k2l
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3.1.2 The LCR circuit

I(t)

V(t)

L RC

Kirchoff’s Law: L
dI
dt

+ IR +
1
C

∫
I(t)dt = V (t)

Differentiating gives L
d2I
dt2 + R

dI
dt

+
1
C

I =
dV
dt

— an ODE for I(t).
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3.1.3 Newton’s law of cooling

The rate of decrease of temperature of a body is proportional to the
temperature difference between the body and the surrounding air

that is,
dT
dt
∝ T − T0or, equivalently

dT
dt

= −k(T − T0)

for some constant k .

G Adesso (University of Nottingham) HG1M12: Engineering Mathematics 2 January 2014 6 / 62



3.1.4 Free fall under gravity with air resistance

mg

R A mass m falls a distance y(t),

and has downward speed V (t) =
dy
dt

Resistive force, R ∝ V 2 ⇒ R = kV 2, (k > 0)

F = ma⇒ mg − R = m
dV
dt

⇒ m
dV
dt

= mg − kV 2 for V = V (t).

We can rewrite this in other ways: • for y as a function of t , using y(t)

V =
dy
dt

⇒ m d2y
dt2 = mg − k

(
dy
dt

)2
;

• for V as a function of y , that is V (y),

using
d
dt

=
dy
dt

d
dy

= V
d
dy

implies mV
dV
dy

= mg − kV 2
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3.2 Order of an ODE

The order of an ODE is the highest derivative occurring in the
equation. For example,

d2y
dx2 + 6

dy
dx
− 10y = 0 is second-order;

3
dy
dx

+ 4y3x = 0 is first-order.

We only consider first and second-order ODEs in this module, though
some of the ideas carry over to higher-order examples.
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3.3 Linearity

An ODE is ‘linear’ if (a) the only y -dependent terms are y itself
and derivatives of y and (b) these terms do not appear multiplied
together.
ODEs containing products of y -dependent terms, or functions of
y , are said to be ‘nonlinear’.

Examples
d2y
dx2 + 5

(
dy
dx

)3

− 4y = exp(x) is second-order and nonlinear

(due to the (dy
dx )

3 term), whilst
d2y
dx2 + 10

dy
dx
− 6y = 0

is second-order
and linear;

y
dy
dx

+ x3 = 0 is first-order and nonlinear

(due to the term y dy
dx ), whilst

dy
dx

+ 4x3y = e4x is first-order
and linear.
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3.4 First-order ODEs

Notice that the coefficients in the ODE might depend upon the
independent variable (x in this case).

First-order ODEs are usually written in the canonical form

dy
dx

= f (x , y)

where f is a given function. Sometimes they are written in the
equivalent form

y ′(x) = f (x , y).

Not all ODEs can be solved explicitly, we now cover some
techniques which enable certain classes to be solved.
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3.5 Separable first-order ODEs

In this case, the function f ‘separates’ into the product of a function of
x and a function of y . Then we can write f (x , y) = g(x)h(y)

so that the equation becomes
dy
dx

= g(x)h(y).

We can then rearrange this into the form
1

h(y)
dy
dx

= g(x).

Hence, the solution is obtained by
∫

1
h(y)

dy =

∫
g(x)dx + c,

remembering to include the arbitrary constant of integration c.

G Adesso (University of Nottingham) HG1M12: Engineering Mathematics 2 January 2014 11 / 62



3.5.1 Example

Find the general solution of
dy
dx

= ky .

Solution

dy
dx

= ky ⇒
∫

1
y

dy =

∫
kdx + c ⇒ ln y = kx + c.

Hence,
y = ekx+c = ecekx = Aekx ,

where A = ec is an arbitrary constant.
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3.5.2 Example

Find the general solution of
dy
dx

= y1/2x .

Solution.
dy
dx

= y
1
2 x ⇒

∫
dy

y
1
2

=

∫
xdx + c.

Hence,

2y1/2 =
x2

2
+ c or y1/2 =

1
4

(
x2 + A

)
,

where A = 2c is an arbitrary constant. Finally,

y =
1
16

(
x2 + A

)2
.
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3.5.3 Example

Find the general solution of (1− x2)
dy
dx

= −2xe−y

Solution This is separable - divide by (1− x2) and multiply by ey .
In this case, when the variables have been separated we get∫

eydy =

∫
−2x

(1− x2)
dx + c.

Hence, ey = ln |1− x2|+ c

or, if you prefer,
y = ln

(
ln |1− x2|+ c

)
.
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3.5.4 Implicit solutions

It is not always possible to get an explicit expression for y as a function
of x . For example:

dy
dx

=
cos x
sin y

separates to give ∫
sin ydy =

∫
cos xdx + c

which has the ‘solution’

− cos y = sin x + c.

We consider this as the solution, and it represents a family of curves
with each member of the family corresponding to a particular value of
the constant of integration, c.
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3.6 First order linear equations

Recalling our definition of a linear differential equation, we see that
some of the separable cases that we have studied are nonlinear. For

dy
dx

= f (x , y)

to be linear we must have

f (x , y) = −p(x)y + q(x)

for given functions p and q. Then the equation becomes

dy
dx

+ p(x)y = q(x).

No ‘y ’-terms are multiplied together and there are no functions of y .
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3.6.1 Homogeneous first-order linear ODEs

If q(x) = 0, the equation is said to be homogeneous.
If q(x) = 0 the equation is also separable. Then

dy
dx

+ p(x)y = 0 ⇒ dy
dx

= −p(x)y .

Hence, ∫
1
y

dy = −
∫

p(x)dx + k ,

where k is a constant of integration, so that

ln y = −
∫

p(x)dx + k .

Taking exponentials, y = ce−
∫

p(x)dx

where c = ek is an arbitrary constant.
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3.6.2 An observation

d
dx

(
y(x)e

∫
p(x)dx

)
= e

∫
p(x)dx dy

dx
+ y

d
dx

e
∫

p(x)dx

= e
∫

p(x)dx dy
dx

+ ye
∫

p(x)dx
(

d
dx

∫
p(x)dx

)
= e

∫
p(x)dx dy

dx
+ e

∫
p(x)dxp(x)y

= e
∫

p(x)dx
(

dy
dx

+ p(x)y
)
.

Hence:

e
∫

p(x)dx
(

dy
dx

+ p(x)y
)

=
d
dx

(
ye

∫
p(x)dx

)
.
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3.6.3 The inhomogeneous case

To solve the ODE
dy
dx

+ p(x)y = q(x) ,

we multiply both sides by the integrating factor (IF) e
∫

p(x)dx :

e
∫

p(x)dx
(

dy
dx

+ p(x)y
)

= e
∫

p(x)dxq(x).

From the previous result, we have

d
dx

(
ye

∫
p(x)dx

)
= q(x)e

∫
p(x)dx .

Now integrate both sides with respect to x :

ye
∫

p(x)dx =

∫
q(x)e

∫
p(x)dxdx + c.

⇒ Final result: y = e−
∫

p(x)dx ∫ q(x)e
∫

p(x)dxdx + ce−
∫

p(x)dx .

NB. If q(x) = 0, then we get the same result as before.
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3.6.4 Example

Find the general solution of
dy
dx
− 2y = ex .

Solution. We identify p(x) = −2, q(x) = ex

The integrating factor is e
∫

p(x)dx = e−
∫

2dx = e−2x

Hence, e−2x
(

dy
dx
− 2y

)
= e−2xex = e−x .

Then
d
dx

(
ye−2x

)
= e−x ⇒ ye−2x =

∫
e−xdx + c

⇒ ye−2x = −e−x + c ⇒ y = −e−xe2x + ce2x .

⇒ y = −ex + ce2x for arbitrary constant c.
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3.6.5 Example

Find the general solution of x
dy
dx

+ 2y = 3x3

Solution: divide by the coefficient of
dy
dx

to obtain
dy
dx

+
2
x

y = 3x2 (1)

Identify p(x) = 2/x and hence find the integrating factor:

e
∫

p(x)dx = e
∫ 2

x dx = e2 ln x = e(ln x2) = x2.

Multiply (1) by IF = x2:

x2 dy
dx

+ 2xy = 3x4 ⇒ d
dx

(
x2y

)
= 3x4

⇒ x2y =
3
5

x5 + c ⇒ y =
3
5

x3 +
c
x2 .
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3.6.6 Boundary and initial conditions

We have seen that the solution for a first-order ODE involves one
unknown constant. This is called the general solution.

Generally, the number of unknown constants in the general
solution equals the order of the ODE.
To determine a specific solution, we must find these constants.
We therefore need as many conditions on the solution as there
are unknown constants.
These conditions usually involve the value of the unknown
function and/or some of its derivatives at certain points.
For a first-order equation we only need one such condition, and
this is called a boundary condition.
If the independent variable in the ODE is time t , then we normally
specify the condition at time t = 0. Then the boundary condition is
called an initial condition.
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3.6.7 Example

Find the general solution of
dy
dx

+
x

1 + x2 y = x

and the solution subject to the boundary condition y(1) = 0.

Solution. This is a linear ODE with

p(x) =
x

1 + x2 , q(x) = x .

Hence we find the integrating factor∫
p(x)dx =

∫
x

1 + x2 dx =
1
2

ln
(

1 + x2
)
= ln

(
1 + x2

)1/2
.

⇒ e
∫

p(x)dx = eln(1+x2)
1/2

=
(

1 + x2
)1/2

.

The effect of multiplying the ODE by the integrating factor is to put the
equation into the form

d
dx

(
y
(

1 + x2
)1/2

)
= x

(
1 + x2

)1/2
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3.6.7 Example (ctd)

⇒ y
(

1 + x2
)1/2

=

∫
x
(

1 + x2
)1/2

dx + c =
1
3

(
1 + x2

)3/2
+ c,

⇒ y =
1
3

(
1 + x2

)
+ c

(
1 + x2

)−1/2
.

This is the general solution to the ODE.

(ii) Suppose that we insist that y = 0 when x = 1. i.e. y(1) = 0. Then

1
3
(1 + 1) + c(1 + 1)−

1
2 = 0

which can be solved to give the value of c in this case as c = −2
√

2
3

.

The solution for y is then

y =
1
3

(
1 + x2

)
− 2
√

2
3

(
1 + x2

)−1/2
.
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3.6.8 Example

Suppose that a variable current I(t), where t is time in seconds, flows
through a coil with inductance L and a resistor of resistance R with an
applied voltage V , where we assume that L,R and V are constants.
Suppose also that the current is zero at time t = 0. Find I(t).

Solution The current satisfies the ODE L
dI
dt

+ RI = V

subject to the initial condition I(0) = 0.

We can re-write the ODE in the form
dI
dt

+
R
L

I =
V
L
,

which is linear, and first-order.
Since p = R/L, the integrating factor is exp

(∫ R
L dt
)
= eRt/L.
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3.6.8 Example (ctd)

Hence, eRt/L
(

dI
dt

+
R
L

I
)

=
V
L

eRt/L =
d
dt

(
eRt/LI

)
=

V
L

eRt/L

⇒ eRt/LI =
V
L

L
R

eRt/L + c,

where c is a constant of integration. Hence, the general solution for I is

I(t) =
V
R

+ ce−Rt/L.

But I(0) = 0, from the initial condition. So 0 =
V
R

+ c ⇒ c = −V
R
.

Therefore the solution for I(t) is I(t) =
V
R

(
1− e−Rt/L

)
.
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3.6.9 Example

The rate of increase of the concentration of a chemical is proportional
to the concentration at that time.
Experiment shows that the concentration doubles in four hours.
If the initial concentration is c0, what is the concentration after five
hours?

Solution: Let c(t) denote the concentration at time t . Then
dc
dt

= kc,
for some constant k . This is a separable ODE and so we obtain∫

1
c

dc =

∫
kdt + A ⇒ ln c(t) = kt + A ⇒ c(t) = Bekt

where A and B = eA are constants.
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3.6.9 Example (ctd)

Using c = Bekt and the initial condition

c = c0 at t = 0⇒ c0 = Be0 = B,

gives
c(t) = c0ekt .

At t = 4 (in units of hours), c = 2c0. So

2c0 = c0e4k

or
k =

1
4

ln 2 ⇒ c(t) = c0e(t/4) ln 2.

If t = 5,
c(5) = c0e(5/4) ln 2 = c0eln 25/4

= 25/4c0.
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3.7 Exact equations

We can always express the equation

dy
dx

= f (x , y)

in the form
M(x , y) + N(x , y)

dy
dx

= 0,

by setting f (x , y) = −M(x ,y)
N(x ,y) , if necessary.

Sometimes the left-hand side in the above equation is an exact
derivative, in which case the ODE is called exact and its solution
is easily found. This happens if there exists a function F (x , y)
such that

dF (x , y)
dx

= M(x , y) + N(x , y)
dy
dx

.
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3.7.1 Example

y + x
dy
dx

= 0 ⇔ d
dx

(xy) = 0,

by the product rule (in this case, F = xy ). Hence, the solution is
xy = c,
where c is an arbitrary constant; thus y = c/x .

Example: − x2

y2
dy
dx

+
2x
y

= 0 ⇒ d
dx

(
x2

y

)
= 0. ⇒ x2

y
= c,

where c is an arbitrary constant, hence y =
x2

c
= Ax2, A =

1
c

.
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3.7.2 Conditions for exact derivatives

Suppose M(x , y) + N(x , y)
dy
dx

= 0

is equivalent to
d
dx

(F (x , y)) = 0. (∗)

Then since
d
dx

(F (x , y(x))) =
∂F
∂x

+
∂F
∂y

dy
dx

we must have that

∂F
∂x

= M and
∂F
∂y

= N.

Since
∂2F
∂y∂x

=
∂2F
∂x∂y

, we must also have
∂M
∂y

=
∂N
∂x

.

Integrating (∗), the solution is F (x , y) = c , where c is a constant.
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3.7.3 Repeated Example

We revisit the problem: y + x
dy
dx

= 0

M(x , y) = y , N(x , y) = x ⇒ ∂M
∂y

= 1 =
∂N
∂x

.

M = Fx , N = Fy

also implies
∂F
∂x

= y and
∂F
∂y

= x .

∂F
∂x

= y ⇒ F = xy + g(y).

∂F
∂y

= x ⇒ ∂

∂y
(xy + g(y)) = x

⇒ g′(y) = 0 or g(y) = const.

So F (x , y) = xy + constant

and the general solution is xy = constant, as before.
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3.7.4 Repeated Example

Let us revisit the problem −x2

y2
dy
dx

+
2x
y

= 0

Hence M(x , y) =
2x
y
, N(x , y) = −x2

y2 .

Check solvability:
∂M
∂y

= −2x
y2 =

∂N
∂x

.

Solve:
∂F
∂x

=
2x
y

⇒ F =
x2

y
+ g(y). (∗)

∂F
∂y

= −x2

y2 ⇒ ∂

∂y

(
x2

y
+ g(y)

)
= −x2

y2 .

Hence, g′(y) = 0 ⇒ g(y) = constant.

Therefore, from (∗), F (x , y) = x2/y+ constant and so the general
solution F (x , y) = constant implies x2/y = constant.
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3.7.5 New example

Check the solvability and, if possible, solve 2xy +
(

x2 − 1
) dy

dx
= 0

Solution: M(x , y) = 2xy , N(x , y) = x2 − 1 ⇒ ∂M
∂y

= 2x =
∂N
∂x

.

We know that the equation must be equivalent to
d
dx

(F (x , y(x)) = 0

where
∂F
∂x

= 2xy and
∂F
∂y

= x2 − 1.

∂F
∂x

= 2xy ⇒ F = x2y + g(y).

Therefore
∂F
∂y

= x2 + g′(y) = x2 − 1

⇒ g′(y) = −1, implying g(y) = −y + const.

So F (x , y) = constant⇒ x2y − y = c.

This can be re-expressed in the form y =
c

x2 − 1
.
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3.8 Second-order ODEs

We restrict attention to second-order ODEs of the general form

a
d2y
dx2 + b

dy
dx

+ cy = f (x),

where a, b and c are given constants.

These are called constant coefficient, linear second-order ODEs.
If f (x) = 0, the right-hand side is zero and the ODE is referred to
as homogeneous; we consider these first.
Other notation is possible; for example, the ODE might be in terms
of x(t) and its derivatives with respect to t .
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3.8.1 Simpler case

The case a = 0.

b
dy
dx

+ cy = 0

and we know how to solve this (by separating the variables). The
solution is

y = Ae−cx/b.

Alternatively, try y = Aemx as a solution.

b
dy
dx

+ cy = 0 ⇒ bmAemx + cAemx ⇒ Aemx(bm + c) = 0.

Hence,
m = −c

b
and we have obtained the same answer as before.
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3.9 Homogeneous 2nd-order ODEs-auxiliary eq

Suppose we adopt the same approach for the second-order equation:

y = Aemx ⇒ dy
dx

= mAemx ,
d2y
dx2 = m2Aemx .

Substituting into the ODE, we find

am2Aemx + bmAemx + cAemx = 0

⇒ Aemx(am2 + bm + c) = 0.

Aemx 6= 0 ⇒ am2 + bm + c = 0.

So m satisfies a quadratic equation called the auxiliary equation.
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3.9 Auxiliary equation (ctd)

If the two roots are m1 and m2, then the general solution for y is

y = Aem1x + Bem2x ,

where A and B are arbitrary constants.

Example: Solve
d2y
dx2 −

dy
dx
− 2y = 0

y = Aemx ⇒ Aemx(m2 −m − 2) = 0

⇒ m2 −m − 2 = 0 ⇒ (m + 1)(m − 2) = 0

⇒ m1 = −1, m2 = 2.

The general solution for y is y = Ae−x + Be2x

for arbitrary constants A and B.
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3.9.1 Example

Solve
d2y
dx2 − 4

dy
dx

+ 3y = 0

Solution: y = Aemx ⇒ Aemx(m2 − 4m + 3) = 0

⇒ m2 − 4m + 3 = 0 ⇒ (m − 3)(m − 1) = 0

⇒ m1 = 3, m2 = 1.

The general solution for y is y = Ae3x + Bex

for arbitrary constants A and B.
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3.9.2 Three types of solution of the auxiliary equation

Since m1 and m2 are the roots of a quadratic equation, three different
cases are possible:

1 m1 and m2 are real and distinct (as in the previous two examples)
2 m1 and m2 are real and repeated (i.e. m1 = m2)
3 m1 and m2 are complex conjugates

We now consider the second and third cases, the first having already
been dealt with.
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3.9.3 Real and repeated roots

2 If m1 = m2, the general solution would appear to be

y = Aem1x + Bem2x = Cem1x

where C = A + B. The solution now only contains one constant of
integration, and we know that it should contain two.

In fact, in this case, the general solution is

y = (A + Bx)em1x ,

where A and B are arbitrary constants.

Example: Solve y ′′ − 6y ′ + 9y = 0

y = Aemx ⇒ Aemx(m2 − 6m + 9) = 0 ⇒ (m − 3)2 = 0.

So m = 3 is repeated and the general solution is y = (A + Bx)e3x .
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3.9.4 Complex conjugate roots

3 Suppose the roots are

m1 = α+ iβ, m2 = α− iβ.

The general solution for y is now

y = Ae(α+iβ)x + Be(α−iβ)x = Aeαxeiβx + Beαxe−iβx

= eαx(Aeiβx + Be−iβx) = eαx((A+B) cos(βx) + i(A−B) sin(βx))

= eαx (C cos(βx) + D sin(βx)) ,

where C and D are arbitrary constants (they are, in fact,
combinations of A and B.) This is the general solution in this case.
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3.9.5 Example

Find the general solution of
d2y
dx2 + y = 0

The auxiliary equation is m2 + 1 = 0,

so that the solutions are m1 = i and m2 = −i ; that is α = 0, β = 1.

So the general solution in this case is y = C cos x + D sin x .
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3.9.6 SUMMARY: 2nd-order homogeneous ODEs

The GENERAL SOLUTION of the ODE

a
d2y
dx2 + b

dy
dx

+ cy = 0

is found by solving the auxiliary equation am2 + bm + c = 0, then

1 y = Aem1x + Bem2x

if m1 and m2 are the distinct roots of the auxiliary equation

2 y = (A + Bx)em1x

if m2 = m1 are repeated roots of the auxiliary equation

3 y = eαx (A cos(βx) + B sin(βx))
if m1 = α+ iβ and m2 = α− iβ are complex conjugate roots of
the auxiliary equation.

In all cases, A and B are arbitrary real constants (for convenience, in
the final case, we have reverted to A and B instead of C and D ).
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3.10 The inhomogeneous case

The linear ODE

a
d2y
dx2 + b

dy
dx

+ cy = r(x)

is said to be inhomogeneous, i.e. there is a term involving x but not y
on the RHS.

This equation is solved in two stages:

1 Consider the equivalent homogeneous equation obtained by
setting r(x) = 0,

a
d2y
dx2 + b

dy
dx

+ cy = 0

Solve this using the previous method;
This solution is called the complementary function (C.F.) written
u(x) say.
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3.10 Inhomogeneous ODEs (ctd)

2 Obtain (for example by trial and error) a particular solution to the
original inhomogeneous equation, or particular integral (P.I.),
written v(x) say.

Note: Usually, the form of the P.I. is closely related to the function
r(x). We can use our experience of derivatives of functions to help
find v(x). For example differentiating

epx gives pepx (use if RHS is an exponential)
xn gives nxn−1 (use if RHS is a polynomial)
sin px gives p cos px (use if RHS is sin / cos)
cos px gives −p sin px (use if RHS is sin / cos)

The complete general solution is then

y = u(x) + v(x) .
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3.10.1 Example

Find the general solution of
d2y
dx2 − 3

dy
dx

+ 2y = e−x .

First solve the equivalent homogeneous equation ie set RHS to
zero.

Auxiliary equation is

m2 − 3m + 2 = 0

with solutions m = 1, m = 2.

Hence the complementary function is

u(x) = Aex + Be2x .

Now seek a particular solution related to r(x) = e−x .
Try a solution of the form

v(x) = Ce−x
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3.10.1 Example (ctd)

then
dv
dx

= −Ce−x and
d2v
dx2 = Ce−x .

Substitute into the ODE:

Ce−x − 3
(
−Ce−x)+ 2Ce−x = e−x .

ie
6Ce−x = e−x .

Equating the coefficients of e−x we obtain C = 1/6.
So the P.I. is

v(x) =
1
6

e−x .

The general solution to the ODE is the C.F. plus the P.I.:

y = Aex + Be2x +
1
6

e−x .
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3.10.2 Example

Find the general solution of
d2y
dx2 − 3

dy
dx

+ 2y = 3− 2x2.

Since the LHS is the same as example (9), the C.F. is the same.
Now find the P.I.:

since r(x) = 3− 2x2, try

v(x) = ax2 + bx + c.

and find appropriate values for a, b and c.

Now
dv
dx

= 2ax + b,
d2v
dx2 = 2a.

Substitute into the ODE:

2a− 3(2ax + b) + 2(ax2 + bx + c) = 3− 2x2.

G Adesso (University of Nottingham) HG1M12: Engineering Mathematics 2 January 2014 49 / 62



3.10.2 Example

Find the general solution of
d2y
dx2 − 3

dy
dx

+ 2y = 3− 2x2.

Since the LHS is the same as example (9), the C.F. is the same.
Now find the P.I.:

since r(x) = 3− 2x2, try

v(x) = ax2 + bx + c.

and find appropriate values for a, b and c.

Now
dv
dx

= 2ax + b,
d2v
dx2 = 2a.

Substitute into the ODE:

2a− 3(2ax + b) + 2(ax2 + bx + c) = 3− 2x2.

G Adesso (University of Nottingham) HG1M12: Engineering Mathematics 2 January 2014 49 / 62



3.10.2 Example (ctd)

Collecting terms

2ax2 + x(−6a + 2b) + (2a− 3b + 2c) = 3− 2x2.

Now find a, b and c by equating coefficients:
x2 : 2a = −2 ⇒ a = −1.
x1 : −6a + 2b = 0 ⇒ b = −3.
x0 : 2a− 3b + 2c = 3 ⇒ c = −2.
So the PI is v(x) = −x2 − 3x − 2.
So the complete general solution to the ODE is (CF+PI):

y = Aex + Be2x − x2 − 3x − 2.
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3.10.3 Example

d2y
dx2 − 3

dy
dx

+ 2y = sin x .

Again the C.F. is the same as before.
Try to find a P.I. of the form v(x) = a sin x
and find an appropriate value of a.

When we substitute into the ODE we obtain

−a sin x − 3a cos x + 2a sin x = sin x .

Collecting terms: a sin x − 3a cos x = sin x
Now equate coefficients of sin x and of cos x :
there is no value of a which will make both

a sin x = sin x and − 3a cos x = 0.

So need to try a different form for the PI.
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3.10.3 Example (ctd)

So, try a P.I. of the form
v(x) = a sin x + b cos x and find appropriate values for a and b.
Substituting into the ODE we obtain

−a sin x−b cos x−3a cos x +3b sin x +2a sin x +2b cos x = sin x .

Collecting terms
(a + 3b) sin x + (b − 3a) cos x = sin x .

Now equate coefficients:
cos x : b − 3a = 0 ⇒ b = 3a.
sin x : a + 3b = 1 ⇒ a + 9a = 1.

Solving for a and b, a = 1/10, b = 3/10.
So the solution to the ODE is:

y = Aex + Be2x +
1

10
sin x +

3
10

cos x .
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3.10.4 Example

Note: this method may fail if the RHS is the same for as the CF.

d2y
dx2 − 3

dy
dx

+ 2y = ex .

This is an example of an exceptional case: the function r(x) = ex

appears in the C.F. u(x) = Aex + Be2x .
In this case the natural first choice for the P.I.,

v(x) = aex ,

fails, as it gives

aex − 3aex + 2aex = ex ⇒ 0 = 1 ??
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3.10.4 Example (ctd)

The solution is to try a P.I. of the form v(x) = axex .

Then
dv
dx

= axex + aex ,
d2v
dx2 = axex + 2aex .

Substitute into the ODE:

axex + 2aex − 3(axex + aex) + 2axex = ex .

Now all the terms in xex cancel out, leaving

2aex − 3aex = ex ⇒ a = −1,

so the solution to the ODE is

y = Aex + Be2x − xex .

Similar modifications with other exceptional cases.
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3.11 Boundary conditions and initial conditions

In general, the solution to an nth order ODE contains n arbitrary
constants. To determine the values of these constants, n additional
conditions must be specified. For a second-order equation two
additional conditions are needed, and they can be either

Initial Conditions
If two conditions (usually y and y ′) are given at the same value of
x (e.g. x = 0)

or

Boundary Conditions
If one condition is given at x = x1 (say) and the second condition
is given at x = x2 (say), or perhaps a limit as x →∞.
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3.11.1 Example

d2y
dx2 − 3

dy
dx

+ 2y = ex

with the initial conditions

y = 1 and
dy
dx

= 0 at x = 0.

The general solution to the ODE is

y = Aex + Be2x − xex ,

from the previous example.
At x = 0,

y = A + B = 1 and
dy
dx

= A + 2B − 1 = 0.

Hence A = 1 and B = 0, so the solution to the ODE with these initial
conditions is

y = ex − xex .
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3.12.1 Miscellaneous examples

Find the curve in the (x , y ) plane that passes through (0,3) and whose
tangent line at a point (x , y) has slope 2x/y2.

Since the slope of the curve y = y(x) is dy
dx , we have

dy
dx

=
2x
y2

and since it must pass through (0,3) we have the condition y(0) = 3.

Separating the variables, we find
∫

y2dy =

∫
2xdx + c

where c is an arbitrary constant. Hence 1
3y3 = x2 + c.

y(0) = 3⇒ 1
3

33 = 0 + c so c = 9.

Finally
1
3

y3 = x2 + 9 or y =
(

3x2 + 27
) 1

3
.
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3.12.2 The LCR circuit revisited

Recall that the ODE for the current I(t) flowing around a circuit with an
applied voltage V (t) in the presence of a resistance R, capacitance C
and inductance L is

L
d2I
dt2 + R

dI
dt

+
1
C

I =
dV
dt
.

So if V (t) is constant, this becomes

L
d2I
dt2 + R

dI
dt

+
1
C

I = 0.

If we seek a solution I(t) = Aemt then m satisfies the auxiliary equation

Lm2 + Rm +
1
C

= 0.

This has solutions

m1 =
−R +

√
R2 − 4 L

C

2L
and m2 =

−R −
√

R2 − 4 L
C

2L
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3.12.2 LCR (ctd)

If
R2 − 4

L
C
> 0

then the solutions for m1 and m2 are real and the solutions are of
exponential form and decay with time.
However, if

R2 − 4
L
C
< 0

then the solutions are complex and we get oscillatory solutions of the
form

I(t) = A exp
(
−Rt

2L

)
cos

(
t

2L

√
R2 − 4

L
C

)
.
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3.12.3 Example

Solve the ODE y ′′ − y ′ − 2y = 0.

Solution: Seeking a solution of the form y = Aemx gives that m
satisfies the auxiliary equation

m2 −m − 2 = 0.

Hence (m − 2)(m + 1) = 0

so m = 2 and m = −1 are the two roots.
Hence the general solution is

y = Ae2x + Be−x

for arbitrary constants A and B.

G Adesso (University of Nottingham) HG1M12: Engineering Mathematics 2 January 2014 60 / 62



3.12.3 Example

Solve the ODE y ′′ − y ′ − 2y = 0.
Solution: Seeking a solution of the form y = Aemx gives that m
satisfies the auxiliary equation

m2 −m − 2 = 0.

Hence (m − 2)(m + 1) = 0

so m = 2 and m = −1 are the two roots.
Hence the general solution is

y = Ae2x + Be−x

for arbitrary constants A and B.

G Adesso (University of Nottingham) HG1M12: Engineering Mathematics 2 January 2014 60 / 62



3.12.4 Example

Solve the ODE y ′′ + 4y ′ + 4y = 0.

Solution: Seeking a solution of the form y = Aemx gives that m
satisfies the auxiliary equation

m2 + 4m + 4 = 0. Hence (m + 2)2 = 0

so m = −2 is a repeated root.
Hence the general solution is

y = (A + Bx)e−2x

for arbitrary constants A and B.
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3.12.5 Example

Solve the ODE y ′′ − 2y ′ + 5y = 0.

Solution: Seeking a solution of the form y = Aemx gives that m
satisfies the auxiliary equation

m2 − 2m + 5 = 0.

This cannot be factorised and so we solve it by formula to get
m = 1 + 2i and m = 1− 2i as the roots.
Hence the general solution is

y = ex(A cos 2x + B sin 2x)

where A and B are arbitrary constants.
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