Global r The University of
Top 100 A | Nottingham

Univers |ty UNITED KINGDOM - CHINA - MALAYSIA

HG1M12: Engineering Mathematics 2

G Adesso (based on the lecture slides by J A D Wattis)

School of Mathematical Sciences, University of Nottingham

January 2014

G Adesso (University of Nottingham) HG1M12: Engineering Mathematics 2 January 2014



Vectors
Calculus of Functions of Two Variables

Ordinary Differential Equations
m 3.1 Introduction
3.2 Order of an ODE
3.3 Linearity
3.4 First-order ODEs
3.6 First order linear equations
3.7 Exact equations
3.8 Second-order ODEs
3.9 Homogeneous 2nd_grder ODEs-auxiliary eq
3.10 The inhomogeneous case
3.11 Boundary conditions and initial conditions
3.12 Miscellaneous examples

G Adesso (University of Nottingham) HG1M12: Engineering Mathematics 2 January 2014



3 Ordinary Differential Equations

3.1 Introduction

m An ordinary differential equation (ODE) is an equation involving an
unknown function, y(x) say, and its derivatives; for example,

dy d?y . dy 3
m AIM: to learn how to solve ODEs to determine the unknown
function y(x).
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3 Ordinary Differential Equations

3.1 Introduction

m An ordinary differential equation (ODE) is an equation involving an
unknown function, y(x) say, and its derivatives; for example,

dy d?y  dy N
w= Y or —5+4—+6y=0.

dx? dx
m AIM: to learn how to solve ODEs to determine the unknown
function y(x).

m Notation: y is called the ‘dependent’ variable,
and x is the ‘independent’ variable.
Other notations are possible, such as an ODE for x as a function
(s 3 a?x 5 adx
of t, e.g. a2 + T
m ODEs arise quite naturally in a wide variety of practical
engineering situations. Some examples of this now follow...

+7x =0.
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3.1.1 Motion of a mass on a spring in a resistive

medium

82222120 |

x=0 x=X(1)
- aX
Resistive force: —ky x (speed) = —k4 o
Spring restoring force: —kp x (extension) = —kx(X — /),
where ki and ko are constants and / is the natural length of the spring.
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3.1.1 Motion of a mass on a spring in a resistive

medium

82222120 |

x=0 x=X(1)
- aX
Resistive force: —ky x (speed) = —k4 o
Spring restoring force: —kp x (extension) = —kx(X — /),
where ki and ko are constants and / is the natural length of the spring.

Newton’s Second Law (F = ma = mx) =

aX a?X
kL hpx -1 =mTZ
v X =N =me
. d2X (0).¢
l.e. dtz + Ky — dt + Ko X = kol
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3.1.2 The LCR circuit

1(®)

V(t)

Kirchoff’'s Law: L +IR+ C/I

d2/ dl av
Differentiating gives Ldt2 RE El ot

— an ODE for I(t).
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3.1.3 Newton’s law of cooling

The rate of decrease of temperature of a body is proportional to the
temperature difference between the body and the surrounding air

that is,

dt

for some constant k.

o T — Toor, equivalently L —k(T = Top)

dt

G Adesso (University of Nottingham) HG1M12: Engineering Mathematics 2 January 2014 6/62



3.1.4 Free fall under gravity with air resistance

R A mass m falls a distance y(t),
and has downward speed V(t) = Z};
Resistive force, R « V? = R = kV?,(k > 0)
av
F=ma= mg—-—R=m—- i
mg = C;‘; =mg — kV?| for V= V(t).
We can rewrite this in other ways: e for y as a function of t, using y(f)
dy d dy\?
V:E = mﬁ:mg—k(i}t’)
e for V as a function of y, thatis V(y),
. d dyd d . . av o
using dt ot dy de implies |m dy mg
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3.2 Order of an ODE

The order of an ODE is the highest derivative occurring in the
equation. For example,

oy | .dy : .
] + 6d —10y =0 is second-order;
dy 30 A i
3& +4y°x =0 is first-order.

We only consider first and second-order ODEs in this module, though
some of the ideas carry over to higher-order examples.
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3.3 Linearity

m An ODE is ‘linear if (a) the only y-dependent terms are y itself
and derivatives of y and (b) these terms do not appear multiplied
together.

m ODEs containing products of y-dependent terms, or functions of
y, are said to be ‘nonlinear’.
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3.3 Linearity

m An ODE is ‘linear if (a) the only y-dependent terms are y itself
and derivatives of y and (b) these terms do not appear multiplied
together.

m ODEs containing products of y-dependent terms, or functions of
y, are said to be ‘nonlinear’.

Examples

d?y dy\*® . i
=2 +5 <dx> — 4y = exp(x) is second-order and nonlinear

(due to the (%)2 term),
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3.3 Linearity

m An ODE is ‘linear if (a) the only y-dependent terms are y itself
and derivatives of y and (b) these terms do not appear multiplied
together.

m ODEs containing products of y-dependent terms, or functions of
y, are said to be ‘nonlinear’.

Examples
ﬂ +5 dy — 4y = exp(x) is second-order and nonlinear
" e dx y==ep
(due to the( Y)3 term), whilst
d2 y dy is second-order
" 10d ~by=0 and linear;
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3.3 Linearity

m An ODE is ‘linear if (a) the only y-dependent terms are y itself
and derivatives of y and (b) these terms do not appear multiplied
together.

m ODEs containing products of y-dependent terms, or functions of
y, are said to be ‘nonlinear’.

Examples
ﬂ +5 dy — 4y = exp(x) is second-order and nonlinear
" e dx y==ep
(due to the( Y)3 term), whilst
d2 y dy is second-order
"o 10d ~by=0 and linear;

] yZy + x3 = 0 is first-order and nonlinear

(due to the term ydx),
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3.3 Linearity

m An ODE is ‘linear if (a) the only y-dependent terms are y itself
and derivatives of y and (b) these terms do not appear multiplied
together.

m ODEs containing products of y-dependent terms, or functions of
y, are said to be ‘nonlinear’.

Examples
d2y dy . i
=2 +5 (dx) — 4y = exp(x) is second-order and nonlinear
(due to the ( Y)3 term), whilst
d2 y dy is second-order
"o 10d ~by=0 and linear;

] yZy + x3 = 0 is first-order and nonlinear

(due to the term ydx), whilst
dy 4 is first-order

B+ 4x3y = e .
ax + y and linear.
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3.4 First-order ODEs

Notice that the coefficients in the ODE might depend upon the
independent variable (x in this case).

m First-order ODEs are usually written in the canonical form

dy
g ()

where f is a given function. Sometimes they are written in the
equivalent form
y'(x) = f(x,y).
m Not all ODEs can be solved explicitly, we now cover some
techniques which enable certain classes to be solved.
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3.5 Separabile first-order ODEs

In this case, the function f ‘separates’ into the product of a function of
x and a function of y. Then we can write  f(x, y) = g(x)h(y)

so that the equation becomes Z}; = g(x)h(y).
We can then rearrange this into the form 1@ (x)
g h(y)dx gL

Hence, the solution is obtained by / h(1y)dy = /g(x)dx +c,

remembering to include the arbitrary constant of integration c.
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3.5.1 Example

Find the general solution of Zi = Kky.
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3.5.1 Example

dy

Find the general solution of ax Kky.
Solution
ay L B
a_ky = /ydy—/kdx+c = Iny=kx+c
Hence,

_ akx+c _ qckx kx
y=e = e“e™ = Ae™,

where A = €€ is an arbitrary constant.
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3.5.2 Example

Find the general solution of — =y
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3.5.2 Example

Find the general solution of Zﬁ = y'/2x.
Solution. 4 J

—y:y*x = {/:/XdX—i-C

ax y2
Hence, ,

12 _ X 12 _1 (02

2y 2+c or y 4<x +A>,
where A = 2c is an arbitrary constant. Finally,
2
_ 2
Y=16 (¥ +4)"
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3.5.3 Example

Find the general solution of (1 — XZ)EZ = —2xe™Y
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3.5.3 Example

Find the general solution of (1 — x2)Z§ = —2xe™Y

Solution This is separable - divide by (1 — x?) and multiply by e”.
In this case, when the variables have been separated we get

/eydy /(1 dx+c

Hence, € =In|1 —x2|+c

or, if you prefer,
y=In (In|1 —x2|+c>.
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3.5.4 Implicit solutions

It is not always possible to get an explicit expression for y as a function
of x. For example:

dy _cosx

dx  siny
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3.5.4 Implicit solutions

It is not always possible to get an explicit expression for y as a function
of x. For example:

dy _cosx

dx  siny

separates to give
/sin ydy = /cosxdx +c
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3.5.4 Implicit solutions

It is not always possible to get an explicit expression for y as a function

of x. For example:
dy _cosx

dx  siny

separates to give
/sin ydy = /cosxdx +c

which has the ‘solution’
—cosy =sinx+c.

We consider this as the solution, and it represents a family of curves
with each member of the family corresponding to a particular value of
the constant of integration, c.
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3.6 First order linear equations

Recalling our definition of a linear differential equation, we see that
some of the separable cases that we have studied are nonlinear. For

ay
a_f(xay)

to be linear we must have
f(x,y) = —p(X)y +q(x)
for given functions p and g. Then the equation becomes

dy
gx T POy =a(x).

No ‘y’-terms are multiplied together and there are no functions of y.
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3.6.1 Homogeneous first-order linear ODEs

If g(x) = 0, the equation is said to be homogeneous.
If g(x) = 0 the equation is also separable. Then

dy ay

ax

Hence,

/;/dy =— /p(x)dx + kK,

where k is a constant of integration, so that
Iny = —/p(x)dx k.

Taking exponentials, y = ce— J p(x)ax
where ¢ = X is an arbitrary constant.
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3.6.2 An observation

d dy d
il Sp(x)dx)  _  aof p(x)ax ZX = af p(x)dx
ax (vxe ) = e ax Y ax®

= ef p(X)dXZ yefp (d /p(x)dx>

_ efp(x)dxg +efpx)dxp( )y

ay
_ ef p(x)dx { Y7 D
<dX (X)y) '

Hence:
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3.6.3 The inhomogeneous case

To solve the ODE Cdg(/ + p(x)y = q(x)

we multiply both sides by the integrating factor (IF) e/P(*)ox;

o POX)dx (gi +p(x) y> _ o/ P g ()
From the previous result, we have

;’ (vel P — qlx)ef P09,
X
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3.6.3 The inhomogeneous case

To solve the ODE Zi/ + p(x)y = q(x)

we multiply both sides by the integrating factor (IF) e/P(*)ox;
efP(X)dX <Z§ + p(x)y) = efp(x)dxq(x)'

From the previous result, we have

a
dx

Now integrate both sides with respect to x:

(yefp(x)dx) _ q(x)efp(x)dx‘

yefp(x)dx = /q(x)efp(x)dxdx +c.

= Final result: |y = e~/ P(X)dx [ q(x)el P gy 1 ce= [ P(x)dx |

NB. If g(x) = 0, then we get the same result as before.
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3.6.4 Example

Find the general solution of gﬁ(/ -2y =¢e~.
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3.6.4 Example

Find the general solution of gﬁ(/ -2y =¢e~.

Solution. We identify p(x) = -2, q(x)=¢€*
The integrating factor is e/ P(X)dx — o= [2dx — g—2x

_ dy e XX — gX
Hence, e (dx 2y> et =e".

Then d
% (ye‘zx) —e X = ye = /e‘xdx+ c

= yeX=—e¥X4+c = y=-e"e®+ce¥

= y=—e“+ce?® forarbitrary constant c.
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3.6.5 Example

Find the general solution of xZi +2y =3x°
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3.6.5 Example

ady

Find the general solution of = x— +2y = 3x°
s - dy ady 2 oo
Solution: divide by the coefficient of dx to obtain a—i-;y =3x° (1)

Identify p(x) = 2/x and hence find the integrating factor:
el P()dx _ ef%dx _ g2Inx _ e(lnx2) — X2

Multiply (1) by IF = x2:

ay d
2 _ a4 2, _ a4
X dx+2xy_3x = o (x y) = 3x
3 3 c
2,_9.5 _°.3
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3.6.6 Boundary and initial conditions

m We have seen that the solution for a first-order ODE involves one
unknown constant. This is called the general solution.

m Generally, the number of unknown constants in the general
solution equals the order of the ODE.
m To determine a specific solution, we must find these constants.

m We therefore need as many conditions on the solution as there
are unknown constants.

m These conditions usually involve the value of the unknown
function and/or some of its derivatives at certain points.

m For a first-order equation we only need one such condition, and
this is called a boundary condition.

m If the independent variable in the ODE is time ¢, then we normally
specify the condition at time t = 0. Then the boundary condition is
called an initial condition.
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3.6.7 Example

. . ., x
Find the general solution of —- o + 1 +x2y

and the solution subject to the boundary condition y(1) = 0.
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3.6.7 Example

dy _
Find the general solution of ax + r— T2~

and the solution subject to the boundary condition y(1) = 0.

Solution. This is a linear ODE with
X

p(x) = 4 T2

Hence we find the integrating factor

/p dx_/1+ 2 |n(1+X2):In(1+x2)1/2,

L elpo_ g _ (14 2)"?

The effect of multiplying the ODE by the integrating factor is to put the
equation into the form

;’( (y (1 +x2>1/2) =X (1 +x2>1/2

q(x) = x.
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3.6.7 Example (ctd)

= Y(1 +X2>1/2=/x<1 +x2)1/2dx+c:;(1 +x2)3/2+c,

= y=%<1 +x2)+c(1 +x2)_1/2.

This is the general solution to the ODE.
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3.6.7 Example (ctd)

= Y(1 +X2)1/2=/x<1 +x2)1/2dx+c:;(1 +x2)3/2+c,

= y=%<1 +x2)+c<1 +x2)_1/2.

This is the general solution to the ODE.
(i) Suppose that we insist that y = 0 when x = 1. i.e. y(1) = 0. Then

%(1+1)+c(1+1)*%:o

_2ve

which can be solved to give the value of cinthiscaseas c¢= 3

The solution for y is then

=) -2 (e)
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3.6.8 Example

Suppose that a variable current /(t), where t is time in seconds, flows
through a coil with inductance L and a resistor of resistance R with an
applied voltage V, where we assume that L, R and V are constants.
Suppose also that the current is zero at time t = 0. Find /(t).
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3.6.8 Example

Suppose that a variable current /(t), where t is time in seconds, flows
through a coil with inductance L and a resistor of resistance R with an
applied voltage V, where we assume that L, R and V are constants.

Suppose also that the current is zero at time t = 0. Find /(t).

Solution The current satisfies the ODE LZ; +RI=V

subject to the initial condition /(0) = 0.

: . d R %4
We can re-write the ODE in the form gt + fl =7
which is linear, and first-order.

Since p = R/L, the integrating factor is exp (f TRdt) = eft/L,
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3.6.8 Example (ctd)

d R v d 4
Rt/L _ Rt/L _ Rt/L1\ _ Rt/L
Hence, e <dt + T l> T e gt (e I) T e

VL
Rt/Ly _ Rt/L
= e Fge e

where c is a constant of integration. Hence, the general solution for / is

I(t) = ; + ce AL,
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3.6.8 Example (ctd)

Hence, e/t <dl + R/> _ Kan’t/L _

AL G (7)o

L dt
VL
Rt/Ly _ Y & oRt/L
= e R +c,
where c is a constant of integration. Hence, the general solution for / is

I(t) = ; + ce AL,

v v
But /(0) = 0, from the initial condition. So 0 = gtc=c=—5

Therefore the solution for I(£)is  I(f) = % (1 - e*Hf/L) .
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3.6.9 Example

The rate of increase of the concentration of a chemical is proportional
to the concentration at that time.

Experiment shows that the concentration doubles in four hours.

If the initial concentration is ¢y, what is the concentration after five
hours?
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3.6.9 Example

The rate of increase of the concentration of a chemical is proportional
to the concentration at that time.

Experiment shows that the concentration doubles in four hours.

If the initial concentration is ¢y, what is the concentration after five

hours?

. . dc
Solution: Let ¢(t) denote the concentration at time t. Then o ke,
for some constant k. This is a separable ODE and so we obtain

/ldc:/kdtJrA = () =Kkt+A = oft) = BeM

where A and B = e are constants.
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3.6.9 Example (ctd)

Using ¢ = Be and the initial condition
c=cy at t=0=cy=Be’ =8,

gives
c(t) = cpe™.
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3.6.9 Example (ctd)

Using ¢ = Be and the initial condition
c=cy at t=0=cy=Be’ =8,

gives
c(t) = coel.

At t = 4 (in units of hours), ¢ = 2¢;. So
2¢y = coe*k

or
k = %In2 = c(t) = cpel/Mn2,
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3.6.9 Example (ctd)

Using ¢ = Be and the initial condition

c=cy at t=0=cy=Be’ =8,

gives
c(t) = coel.
At t = 4 (in units of hours), ¢ = 2¢;. So
2¢y = coe*k
or ]
k=42 =c(t)= coelt/4)in2,
Ift =5,

c(5) = coel®/n2 = g en " = 25/4¢,,
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3.7 Exact equations

m We can always express the equation

dy
o~ [xy)
in the form
M(x, y) + N, y) Y — o
Y y Y y dX - 9
by setting f(x,y) = —",\/,’(()’((j’)) if necessary.

m Sometimes the left-hand side in the above equation is an exact
derivative, in which case the ODE is called exact and its solution
is easily found. This happens if there exists a function F(x, y)

such that
dF(x.,y)

ax

a

= M(x,y) + N(x,y) - ax
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3.7.1 Example

ay _ 9 ) —
}"i‘Xa—o = a(XY)—Q

by the product rule (in this case, F = xy). Hence, the solution is
Xy = C,
where c is an arbitrary constant; thus y = ¢/x.
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3.7.1 Example

dy _ dn_
}"i‘Xa—o = a(XY)—Q
by the product rule (in this case, F = xy). Hence, the solution is

Xy =c,
where c is an arbitrary constant; thus y = ¢/x.

. x2dy 2x d (x®\ X2
amper 59 o L 9 (F) L X,

where c is an arbitrary constant, hence

January 2014 30/62
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3.7.2 Conditions for exact derivatives

Suppose M(x,y) + N(x,y)ig(/ =0

is equivalent to (g{ (F(x,y))=0. (*)

Then since d 5F 8Fd
a _or _ oray
dX (F(X,y(X))) - 8X + 8y dX

we must have that

OF oF
5_1\/’ and @_N.
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3.7.2 Conditions for exact derivatives

Suppose M(x,y) + N(x,y)ig(/ =0

is equivalent to (g{ (F(x,y))=0. (*)

Then since d 5F 8Fd
a _or _ oray
dX (F(X,y(X))) - 8X + 8y dX

we must have that

OF oF
e M and @ = N.
9?F 9%F oM ON

we must also have —

Since dyox _ oxdy’ oy — ox’

G Adesso (University of Nottingham) HG1M12: Engineering Mathematics 2 January 2014



3.7.2 Conditions for exact derivatives

Suppose M(x,y) + N(x,y)ig(/ =0

is equivalent to (;i (F(x,y))=0. (*)

Then since d 5F 8Fd
a _or oragy
dX (F(X,y(X))) - 8X + 8y dX
we must have that
OF OF
e M and @ = N.
Since 0°F = az—F we must also have % = %
dyox  0xoy’ dy  ox’

Integrating (x), the solution is| F(x, y) = c|, where c is a constant.
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3.7.3 Repeated Example

We revisit the problem: y + xgi =0
oM ON
M(x,y)=y, N(x,y)=x = W_1 ==

M:Fx,N:Fy
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3.7.3 Repeated Example

We revisit the problem: y + xﬂ =0

dx
M(x,y) =y, N(x,y)=x = ?;:122\!'
M = Fy, N = Fy also implies g,;_y and 8y:
?;Zy = F=xy+g(y)
oK s by = x

= Jg(y)=0 or g(y)=const
So F(x,y) = xy + constant

and the general solutionis  xy = constant, as before.

G Adesso (University of Nottingham) HG1M12: Engineering Mathematics 2
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3.7.4 Repeated Example

X2dy  2x

L isit th lem —— — =
et us revisit the problem Ty 0
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3.7.4 Repeated Example

2
Let us revisit the problem _%g 2x =0
yedx y
2x X2
Hence M(x,y) = 3 N(x,y) = e

oM 2x  ON
heck solvability: — =—-——F =—.
Check solvability dy 2~ ox
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3.7.4 Repeated Example

X2dy  2x

oty =0

Let us revisit the problem —

Hence M(x,y):z;(, Nexy) = -5

oM 2x  ON
heck solvability: — = -——2 = .
Check solvability dy V2~ ox

 OF 2x x?
Solve: "=y = F= n +9(y). (%)
oy y? oy \ 'y y?

Hence, ¢'(y)=0 = g(y)= constant.
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3.7.4 Repeated Example

X2dy  2x

oty =0

Let us revisit the problem —

Hence M(x,y):z;(, Nexy) = -5

oM 2x  ON
heck solvability: — =—-—— = )
Check solvability dy 2~ ox

 OF 2x x?
Solve: "=y = F= n +9(y). (%)
oy y? oy \ 'y y?

Hence, ¢'(y)=0 = g(y)= constant.

Therefore, from (), F(x,y) = x?/y+ constant and so the general
solution F(x, y) = constant implies  x2/y = constant.
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3.7.5 New example

Check the solvability and, if possible, solve 2xy + (x2 - 1) 22(’ -0
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3.7.5 New example

Check the solvability and, if possible, solve 2xy + <x2 — 1) Zﬁ =0
oM ON
i . — — 2 J— _— = = —
Solution: M(x,y) =2xy, N(x,y)=x"—-1 = dy 2x o
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3.7.5 New example

Check the solvability and, if possible, solve 2xy + <x2 — 1) Zﬁ =0
oM ON
i . — — 2 J— _— = = —
Solution: M(x,y) =2xy, N(x,y)=x"—-1 = dy 2x o

We know that the equation must be equivalent to C‘Z((F(x,y(x)) =0

oF oF  ,
where 8—)(_2xy and @_x 1.

8F_ 2
6—)(_2xy = F=xy+9(y).

Therefore ?),; =X +dy) =x2-1

= J'(y)=-1, implying g(y)= -y + const.
So F(x,y) = constant = x?y — y = c.

This can be re-expressed in the form y = ¢

x2 -1
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3.8 Second-order ODEs

We restrict attention to second-order ODEs of the general form

d?y  dy
aW + ba + cy = f(X),

where a, b and ¢ are given constants.

m These are called constant coefficient, linear second-order ODEs.

m If f(x) = 0, the right-hand side is zero and the ODE is referred to
as homogeneous; we consider these first.

m Other notation is possible; for example, the ODE might be in terms
of x(t) and its derivatives with respect to t.
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3.8.1 Simpler case

Thecase a=0.

dy
bax

and we know how to solve this (by separating the variables). The
solution is

+cy=0

y = Ae /b,
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3.8.1 Simpler case

Thecase a=0.

dy
bax

and we know how to solve this (by separating the variables). The
solution is

+cy=0

y = Ae /b,
Alternatively, try y = Ae™ as a solution.
bZZ +cy=0 = bmAe™ +cAe™ = Ae™(bm+c)=0.
Hence,
o C
b

and we have obtained the same answer as before.
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3.9 Homogeneous 2Nd_order ODEs-auxiliary eq

Suppose we adopt the same approach for the second-order equation:

me= @ _ mAe™ Py = m?Ae™.

y = Ae
Substituting into the ODE, we find
am?Ae™ + bmAe™ + cAe™ =0

= Ae™(am? + bm+c) =0.
Ae™ £0 = am?+bm+c=0.

So m satisfies a quadratic equation called the auxiliary equation.
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3.9 Auxiliary equation (ctd)

If the two roots are my and m», then the general solution for y is

\y = Ae™* + Be™* |,

where A and B are arbitrary constants.
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3.9 Auxiliary equation (ctd)

If the two roots are my and m», then the general solution for y is

\y = Ae™* + Be™* |,

where A and B are arbitrary constants.
2

Example: Solve dT ———-2y=0

y=Ae™ = Ae™(m*-m-2)=0

= m-m-2=0 = (m+1)(m-2)=0
= m=-1, m=2

The general solution for y is  y = Ae* + Be*
for arbitrary constants A and B.

G Adesso (University of Nottingham) HG1M12: Engineering Mathematics 2 January 2014



3.9.1 Example

d’y  dy
Solve w—4a+3y—0
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3.9.1 Example

2
dy 4Q+3y:0

Solve a2 Yox

Solution: y=Ae™ = Ae™(m*-4m+3)=0
= m—-4m+3=0 = (m-3)(m-1)=0

= m=3 m=1.

The general solution for y is  y = Ae®* + Be*
for arbitrary constants A and B.
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3.9.2 Three types of solution of the auxiliary equation

Since my and m» are the roots of a quadratic equation, three different
cases are possible:
my and m» are real and distinct (as in the previous two examples)
my and mo are real and repeated (i.e. my = mo)
my and m» are complex conjugates

We now consider the second and third cases, the first having already
been dealt with.
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3.9.3 Real and repeated roots

If my = m», the general solution would appear to be
y — Aem1X + Bemgx — Cem1X

where C = A+ B. The solution now only contains one constant of
integration, and we know that it should contain two.
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3.9.3 Real and repeated roots

If my = m», the general solution would appear to be
y — Aem1X + Bemgx — Cem1X

where C = A+ B. The solution now only contains one constant of
integration, and we know that it should contain two.
In fact, in this case, the general solution is

[y =(A+Bx)e™|

where A and B are arbitrary constants.
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3.9.3 Real and repeated roots

If my = m», the general solution would appear to be
y — Aem1X + Bemgx — Cem1X

where C = A+ B. The solution now only contains one constant of
integration, and we know that it should contain two.
In fact, in this case, the general solution is

[y =(A+Bx)e™|

where A and B are arbitrary constants.
Example: Solve y”" —6y'+9y =0
y=Ae™ = Ae™(m?-6m+9)=0 = (m-3)2=0.
So m = 3 is repeated and the general solutionis y = (A + Bx) &**.
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3.9.4 Complex conjugate roots

Suppose the roots are
m=a+iB, m=a—IiS.
The general solution for y is now

y = Ae(aJriﬁ)X_i_Be(afi,B)X — Aeaxeiﬁx_i_BeaXefiﬁX
= e™(Ae"™ + Be7'%¥) = e™((A+B)cos(x) + i(A—B)sin(5x))
= | ™ (Ccos(Bx) + Dsin(5x)) |

where C and D are arbitrary constants (they are, in fact,
combinations of A and B.) This is the general solution in this case.
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3.9.5 Example

Find the general solution of ﬂ +y=0
g axz YT
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3.9.5 Example

a2y

Find th | soluti f—= =
ind the general solution o o2 +y=0

The auxiliary equationis m? +1 =0,
so that the solutions are my =i and m, = —i;thatisa =0, 5 = 1.

So the general solution in this caseis y = Ccos x + Dsin x.
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3.9.6 SUMMARY: 2"9-order homogeneous ODEs

The GENERAL SOLUTION of the ODE

2
aﬂ +bdy

o2 d+cy 0

is found by solving the auxiliary equation am? + bm + ¢ = 0, then

‘y = Ae™M* + Be’"2x‘
if my and mo are the distinct roots of the auxiliary equation
y=(A+ Bx)e™*
if m> = my are repeated roots of the auxiliary equation
y = e (Acos(Bx) + Bsin(5x))
if m{ =a+ifand my = « — i3 are complex conjugate roots of
the auxiliary equation.

In all cases, A and B are arbitrary real constants (for convenience, in
the final case, we have reverted to A and B instead of C and D ).
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3.10 The inhomogeneous case

The linear ODE P2 J
ay A _
a ;2 +bdx+cy_r(x)

is said to be inhomogeneous, i.e. there is a term involving x but not y
on the RHS.

This equation is solved in two stages:
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3.10 The inhomogeneous case

The linear ODE P2 J
ay A _
a ;2 +bdx+cy_r(x)

is said to be inhomogeneous, i.e. there is a term involving x but not y
on the RHS.

This equation is solved in two stages:

Consider the equivalent homogeneous equation obtained by
setting r(x) =0, ,
d°y
aﬁ + bdx
Solve this using the previous method;
This solution is called the complementary function (C.F.) written
u(x) say.

4

+cy=0
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3.10 Inhomogeneous ODEs (ctd)

Obtain (for example by trial and error) a particular solution to the
original inhomogeneous equation, or particular integral (P.l.),
written v(x) say.

Note: Usually, the form of the P.l. is closely related to the function
r(x). We can use our experience of derivatives of functions to help
find v(x). For example differentiating

m eP* gives peP* (use if RHS is an exponential)

m x" gives nx"~" (use if RHS is a polynomial)

B sin px gives pcos px (use if RHS is sin / cos)

B Cos px gives —psin px (use if RHS is sin / cos)
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3.10 Inhomogeneous ODEs (ctd)

Obtain (for example by trial and error) a particular solution to the
original inhomogeneous equation, or particular integral (P.l.),
written v(x) say.

Note: Usually, the form of the P.l. is closely related to the function
r(x). We can use our experience of derivatives of functions to help
find v(x). For example differentiating

m eP* gives peP* (use if RHS is an exponential)

m x" gives nx"~" (use if RHS is a polynomial)

B sin px gives pcos px (use if RHS is sin / cos)

B Cos px gives —psin px (use if RHS is sin / cos)

The complete general solution is then

‘y = u(x) + v(x) ‘
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3.10.1 Example

—X

. . d?y _dy
Find the general solution of o2 3& +2y=e
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3.10.1 Example

. . d?y _dy .
Find the general solution of a2 Sux +2y=¢€e".

m First solve the equivalent homogeneous equation ie set RHS to
zero.

Auxiliary equation is
m?—-3m+2=0
with solutions m=1, m= 2.
Hence the complementary function is
u(x) = Ae* + Be?*.

m Now seek a particular solution related to r(x) = e™*.
Try a solution of the form

v(x) = Ce™¥
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3.10.1 Example (ctd)

then

av x d?v .
a——Ce andﬁ_Ce .

Substitute into the ODE:
Ce™*—-3(-Ce ™) +2Ce " =e*.

ie
6Ce * = e *.
Equating the coefficients of e~ we obtain Cc=1/6.
So the Pl. is ]
_ _aX
v(x) = 5¢

The general solution to the ODE is the C.F. plus the P.I.:

y = AeX + Be® + %e"‘.
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3.10.2 Example
d?y

Find the general solution of —= — de

o2 dx +2y =3 —2x2
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3.10.2 Example

. : d?y . dy 2
Find the general solution of v 3a +2y =3 —2x°.
Since the LHS is the same as example (9), the C.F. is the same.

m Now find the P..:
since  r(x) =3 —2x2, try
v(x) = ax? + bx + c.
and find appropriate values for a, b and c.

Now )
dv d<v
a — 2aX + b, W

m Substitute into the ODE:

=2a.

2a—3(2ax + b) +2(ax® 4+ bx + ¢) = 3 — 2x2.
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3.10.2 Example (ctd)

m Collecting terms
2ax® + x(—6a+2b) + (2a— 3b + 2¢) = 3 — 2x°.

m Now find a, b and ¢ by equating coefficients:
x> 2a=-2 = a=-1.
x': —6a+2b=0 = b=-3.
x°: 2a-3b+2c=3 = c=-2
So the Plis v(x) = —x? — 3x — 2.
So the complete general solution to the ODE is (CF+-PI):

y = Ae* + Be® — x? —3x —2.
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3.10.3 Example

a2y 3dy
ax? dx
Again the C.F. is the same as before.
m Try to find a P.I. of the form v(x) = asin x
and find an appropriate value of a.

+ 2y =sinx.

When we substitute into the ODE we obtain
—asinx — 3acos x + 2asin x = sin x.

m Collecting terms: asin x — 3acos x = sinx

m Now equate coefficients of sin x and of cos x:
there is no value of a which will make both

asinx =sinx and —3acosx =0.

So need to try a different form for the PI.
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3.10.3 Example (ctd)

m So, try a P.l. of the form
v(x) = asin x + bcos x and find appropriate values for a and b.

m Substituting into the ODE we obtain
—asinx —bcos x —3acos x+3bsin x+2asin x+2bcos x = sin x.
m Collecting terms
(a+ 3b)sinx + (b — 3a) cos x = sin x.

m Now equate coefficients:
cosx: b—3a=0 = b=3a

sinx: a+3b=1= ga+9a=1.
Solving for a and b, a=1/10, b=3/10.
So the solution to the ODE is:

1 3
_ X 2X ;
y = Ae* + Be +—1osmx+—1ocosx.
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3.10.4 Example

Note: this method may fail if the RHS is the same for as the CF.

This is an example of an except/onal case: the function r(x) = &*
appears in the C.F. u(x) = AeX + Be?~.

m In this case the natural first choice for the P.I.,
v(x) = ae”,
fails, as it gives

ae* —3ae*+2aef¥ =6 = 0=1 77
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3.10.4 Example (ctd)

m The solution is to try a P.I. of the form v(x) = axe*.

Then
2

Z‘; = axe* + ae”, leg = axe* + 2ae~.
m Substitute into the ODE:
axeX + 2ae* — 3(axe* + ae) + 2axe* = e~.
Now all the terms in xe* cancel out, leaving
2ae* —3ae* =& = a=-1,
so the solution to the ODE is

y = AeX + Be® — xe.

Similar modifications with other exceptional cases.
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3.11 Boundary conditions and initial conditions

In general, the solution to an nth order ODE contains n arbitrary
constants. To determine the values of these constants, n additional
conditions must be specified. For a second-order equation two
additional conditions are needed, and they can be either

m Initial Conditions
If two conditions (usually y and y’) are given at the same value of
x (e.g. x =0)

or

m Boundary Conditions
If one condition is given at x = xy (say) and the second condition
is given at x = x» (say), or perhaps a limit as x — oo.
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3.11.1 Example

d?y g% dy
dx? dx
with the initial conditions

+2y =¢€"

dy
y=1 and a_0 at x=0.
The general solution to the ODE is
y = Ae* + Be® — xé*,
from the previous example.
Atx =0,

dy
y=A+B=1 and &_A+28—1 =0.
Hence A =1 and B = 0, so the solution to the ODE with these initial
conditions is

y = e* — xe*.
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3.12.1 Miscellaneous examples

Find the curve in the (x, y) plane that passes through (0,3) and whose
tangent line at a point (x, y) has slope 2x/y?2.
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3.12.1 Miscellaneous examples

Find the curve in the (x, y) plane that passes through (0,3) and whose
tangent line at a point (x, y) has slope 2x/y?2.
. . 2
Since the slope of the curve y = y(x) is %, we have Zﬁ = y)z(
and since it must pass through (0,3) we have the condition y(0) = 3.
Separating the variables, we find /yzdy = /2xdx +c
where c is an arbitrary constant. Hence  1y® = x2 + c.
1
y(O):3:>§33:0+c so ¢c=09.
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3.12.2 The LCR circuit revisited

Recall that the ODE for the current /(t) flowing around a circuit with an
applied voltage V/(t) in the presence of a resistance R, capacitance C
and inductance L is

2
ol pdl 1, av

Yo TPt o=
So if V(t) is constant, this becomes

a2l d 1
L— +R—+</=0.
gz " gt g! =0
If we seek a solution /(t) = Ae™ then m satisfies the auxiliary equation

]
Lm? + Rm+ = =0.
m+m+CO

This has solutions

-R+/R2 -4k -R—/R? -4k
m = ¢ and mp = c

2L 2L
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3.12.2 LCR (ctd)

R2—4é>0

then the solutions for my and m» are real and the solutions are of
exponential form and decay with time.

However, if .
R?—-4— <0
c <

then the solutions are complex and we get oscillatory solutions of the

form
B Rt t 5 L
I(t) = Aexp <_2L> cos <2L Rz — 4C> .
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3.12.3 Example

Solve the ODE y” —y' —2y =0.
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3.12.3 Example

Solve the ODE y” —y' —2y =0.
Solution: Seeking a solution of the form y = Ae™ gives that m
satisfies the auxiliary equation

m—-m-2=0.

Hence (m-2)(m+1)=0

so m=2and m= —1 are the two roots.
Hence the general solution is

y = Ae®* + Be™*

for arbitrary constants A and B.
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3.12.4 Example

Solve the ODE y” + 4y’ + 4y = 0.
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3.12.4 Example

Solve the ODE y” + 4y’ + 4y = 0.
Solution: Seeking a solution of the form y = Ae™ gives that m
satisfies the auxiliary equation

m?+4m+4=0. Hence (m+2)2=0

S0 m = —2 is a repeated root.
Hence the general solution is

y = (A+ Bx)e ¥

for arbitrary constants A and B.
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3.12.5 Example

Solve the ODE  y” — 2y’ + 5y = 0.
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3.12.5 Example

Solve the ODE  y” — 2y’ + 5y = 0.
Solution: Seeking a solution of the form y = Ae™ gives that m
satisfies the auxiliary equation

m —2m+5=0.

This cannot be factorised and so we solve it by formula to get
m=1+42iand m=1 — 2/ as the roots.
Hence the general solution is

y = €*(Acos 2x + Bsin2x)

where A and B are arbitrary constants.
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