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Abstract

Let f be a function transcendental and meromorphic in the plane and let

ψ = a
(
f (m) + . . .+ a0f

) (
f (k) + . . .+ b0f

)n
− 1,

where a and the coefficients aj and bj are meromorphic functions of small growth compared
to f . Under appropriate conditions on the integers m, k and n, estimates are given for the
frequency of zeros of ψ in terms of the growth of f .
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MSC 2000: 30D35.

1 Introduction

The application of the Nevanlinna theory to the value distribution of meromorphic functions and
their derivatives goes back to the work of Milloux and beyond [8, Chapter 3], and has been much
influenced by the landmark paper [7] of Hayman. A conjecture of Hayman from [7] was settled
by the following result of Bergweiler and Eremenko [2].

Theorem 1.1 ([2]) Let f be transcendental and meromorphic in the plane, let n and k be
integers with n > k ≥ 1, and let b be a non-zero complex number. Then (fn)(k)−b has infinitely
many zeros.

Partial results for the case k = 1 had been proved earlier by a number of authors [3, 7, 9].
The following conjecture was advanced in [13], and represents a natural generalisation of the case
n = 2, k = 1 of Theorem 1.1.

Conjecture 1.1 ([13]) If f is transcendental and meromorphic in the plane and k is a positive
integer and b is a non-zero complex number, then ff (k) − b has infinitely many zeros.

The example f(z) = R(z)eP (z), where R is a rational function and P is a non-constant
polynomial, shows that ff (k) may have finitely many zeros: for k ≥ 2 there are no other
transcendental meromorphic functions in the plane with this property [4, 5, 11]. Obviously
Theorem 1.1 shows that Conjecture 1.1 is true for k = 1, and when f is entire the conjecture
has also been established for k = 2 [12]. Results related to Conjecture 1.1, concerning the value
distribution of f(f (k))n when k ≥ 1 and n ≥ 2, may be found in [13, 14].
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The following notational conventions will be used throughout this paper. If f is a function
transcendental and meromorphic in the plane then Λf will denote the set of all functions a
meromorphic in the plane such that T (r, a) = S(r, f), where S(r, f) as usual denotes any
quantity satisfying

S(r, f) = o(T (r, f)) as r →∞,

possibly outside a set of finite measure. It is well known that Λf is a field closed under differen-
tiation. The following theorem was proved in [1].

Theorem 1.2 ([1]) Let f be a function transcendental and meromorphic in the plane, and let

ψ = afGn − 1, (1)

where n ≥ 2 and

G = L[f ], L[w] = w(k) + bk−1w
(k−1) + . . .+ b0w, k ∈ N, a, bj ∈ Λf , a 6≡ 0. (2)

Assume that G 6∈ Λf but that φ ∈ Λf for every solution φ of L[w] = 0 which is meromorphic in
the plane. Then

T (r, f) ≤ d0N(r, 1/ψ) + S(r, f), (3)

where

d0 =
n(k + 1)

(1− δk)(n− 1)
, δk =

n(k + 1)

(n− 1)(1 + n(k + 1))
∈ (0, 1). (4)

In particular, taking G = f (k) in (2) shows that if f is a transcendental meromorphic function
and k ≥ 1 and n ≥ 2, then the differential monomial f(f (k))n takes every finite non-zero value
infinitely often. The first result of the present paper is a direct analogue of Theorem 1.2 but with
f replaced by a linear differential polynomial F in (1).

Theorem 1.3 Let f be a function transcendental and meromorphic in the plane. Let m, k and
n be integers satisfying

m ≥ 0, k ≥ 1, n ≥ 2, m+ 1 < (n2 − 2n)k + n2 − n. (5)

Define linear differential operators M and L by

M = Dm +
m−1∑
j=0

ajD
j, L = Dk +

k−1∑
j=0

bjD
j, D =

d

dz
, aj, bj ∈ Λf , (6)

where the operator M is the identity operator if m = 0. Assume that the homogeneous linear
differential equations

M [w] = 0, L[w] = 0, (7)

have no common local solution other than the trivial solution w = 0. Define F , G and ψ by

F = M [f ], G = L[f ], ψ = aFGn − 1, a ∈ Λf , a 6≡ 0, (8)

and assume that:
(a) neither F nor G belongs to Λf ;
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(b) if φ is meromorphic in the plane and satisfies φ = M [w] for some local solution w of L[w] = 0,
then φ ∈ Λf .

Then f satisfies (3), with

d0 =
s0

1− η

(
n(k + 1) +m

n− 1

)
, (9)

where

s0 = 1 + (mn+ k − 1)

(
n(k + 1) +m+ 2

n(k + 1) +m+ 1

)
, (10)

and

η =
(k +m+ 1)n

(n− 1)(n(k + 1) +m+ 1)
(11)

satisfies η ∈ (0, 1). If m = 0 then s0 may be replaced by 1 in (9).

A number of remarks are in order in connection with Theorem 1.3. First, an example in §11
will show that the hypothesis (b) cannot be deleted in Theorem 1.3.

Next, the assumption that the equations (7) have no non-trivial common local solution repre-
sents no real restriction in generality, since otherwise [6, Lemma D] there exist linear differential
operators N,N1, N2 with coefficients in Λf such that M = N1 ◦ N and L = N2 ◦ N , so that
F,G and ψ may be regarded as differential polynomials in the meromorphic function g = N [f ]:
note, however, that it is then possible that g ∈ Λf , in which case F,G, ψ ∈ Λf , from which it
follows at once that either ψ ≡ 0 or

N(r, 1/ψ) = S(r, f). (12)

Further, if n = 2 then the last condition of (5) forces m = 0 and so F = f as in Theorem 1.2,
while conversely if m = 0 then (5) is satisfied for any n ≥ 2 and k ≥ 1. Moreover, when m = 0
and consequently M is the identity operator, conditions (a) and (b) in Theorem 1.3 reduce to
the hypotheses of Theorem 1.2, and in this case the constant d0 in (9) agrees with that in (4).

Thus Theorem 1.3 is a direct generalisation of Theorem 1.2 to the case where f is replaced in
(1) by a linear differential polynomial F . Nevertheless, the assumptions (a) and (b) are strong,
and the following result addresses the question of what can be said when these hypotheses are
weakened to the simple assumption that neither F nor G vanishes identically: for the proof of this
result, however, the relatively strong hypothesis (12) on the frequency of zeros of ψ is required.

Theorem 1.4 Let f be a function transcendental and meromorphic in the plane. Let m, k and
n be integers satisfying (5), let the linear differential operators M and L be as in (6), and assume
again that the homogeneous linear differential equations (7) have no non-trivial common local
solution. Define F , G and ψ by (8) and assume that neither F nor G vanishes identically, and
that (12) holds. Then at least one of the following is true.
(i) The function f is a linear combination over C of local solutions of the equations (7).
(ii) The functions ψ′/ψ and G are in Λf , but ψ is not, and f, F and ψ satisfy

f = αψ + β, F = γ(ψ + 1), α, β, γ ∈ Λf , L[αψ] = 0, aγGn = 1.
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(iii) The functions ψ′/ψ and G′/G are in Λf , but ψ and G are not, and f, F and ψ satisfy

f = AG−n +BG, ψ = CGn+1, F = JG−n +KG,

in which
A,B,C, J,K ∈ Λf , L[AG−n] = 0, C = aK, aJ = 1.

In all three cases
N(r, f) = S(r, f). (13)

Examples will be given in §11 to show that each of the conclusions (i), (ii) and (iii) may
occur.

2 A lemma required for Theorems 1.3 and 1.4

The following fairly standard lemma is a refinement of [6, Lemma D].

Lemma 2.1 Let s, t be non-negative integers and let S and T be linear differential operators
over Λf , both not the zero operator, and of orders s and t respectively, such that the equations
S[w] = 0, T [w] = 0, have no nontrivial common local solution. Then there exist linear differential
operators U and V over Λf , of orders at most max{t − 1, 0} and max{s − 1, 0} respectively,
such that

1 = U ◦ S + V ◦ T,

in which 1 denotes the identity operator.

Proof. Assume without loss of generality that s ≥ t. The lemma is then established in a standard
way by induction on t, and is plainly true for t = 0 since in this case it is possible to take U = 0
and V of order 0. Assume now that t = n is a positive integer and that the lemma holds when one
of the operators has order less than n. By the division algorithm for linear differential operators
[10, p.126] there exist operators T1, T2 such that T1 has order s − t, while T2 has order u < t,
and

S = T1 ◦ T + T2.

Moreover, the equations T [w] = 0, T2[w] = 0, have no nontrivial common local solution since
such a common local solution would also solve S[w] = 0. In particular, T2 is not the zero
operator. By the induction hypothesis there exist linear differential operators X and Y over Λf ,
such that

1 = X ◦ T + Y ◦ T2 = X ◦ T + Y ◦ (S − T1 ◦ T ).

Here X and Y both have orders at most t− 1, using the fact that max{u− 1, 0} ≤ t− 1. Set
U = Y and V = X − Y ◦ T1. Then U and V have orders at most t− 1 and

max{t− 1, s− t+ t− 1} ≤ s− 1

respectively, thus completing the induction.
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3 Proof of Theorems 1.3 and 1.4: first steps

Assume the common hypotheses of Theorems 1.3 and 1.4, that is, that f is transcendental and
meromorphic in the plane, that the integers k,m and n satisfy (5), while F , G and ψ satisfy
(6) and (8) with FG 6≡ 0, and finally that the equations (7) have no non-trivial common local
solution. By (6) and Lemma 1 of [6], there exist linear differential operators P and Q of orders
k and m respectively, such that

P ◦M = Q ◦ L, P =
k∑

q=0

αqD
q, Q =

m∑
q=0

γqD
q,

H = P [F ] =
k∑

q=0

αqF
(q) = Q[G] =

m∑
q=0

γqG
(q), αq, γq ∈ Λf , αk = γm = 1. (14)

Suppose first that H ≡ 0. Then

(P ◦M)[f ] = (Q ◦ L)[f ] ≡ 0

by (8), and so f is a linear combination of local solutions of the homogeneous linear differential
equations M [w] = 0, L[w] = 0. In the setting of Theorem 1.4 this is conclusion (i), in which case
it is clear that (13) holds. Moreover, F = M [f ] = M [w] for some local solution w of L[w] = 0,
which with the hypotheses of Theorem 1.3 gives an immediate contradiction, since on the one
hand F = M [w] ∈ Λf while on the other hand F 6∈ Λf by assumption.

Assume henceforth that H 6≡ 0, so that f is not a linear combination of local solutions of the
homogeneous linear differential equations M [w] = 0, L[w] = 0. By Lemma 2.1 and the fact that
the equations (7) have no non-trivial common local solution, there also exist linear differential
operators R1, R2, each with coefficients in the field Λf , such that

1 = R1 ◦M +R2 ◦ L, f = R1[F ] +R2[G], (15)

in which 1 denotes the identity operator and the second relation follows from the first and (8).
Moreover by (6), (8) and Lemma 2.1 the operators R1, R2 have orders at most k − 1,m − 1
respectively. This leads to the following estimate for the growth of f in terms of ψ.

Lemma 3.1 The functions f and ψ satisfy

T (r, f) ≤ s0T (r, ψ) + S(r, f) as r →∞, (16)

where s0 is given by (10). If m = 0 in (6) then (16) holds with s0 = 1.

Proof. Define

Φ =
afHn

ψ + 1
=
fHn

FGn
=
R1[F ]

F

(
H

G

)n

+
R2[G]

G

(
H

G

)n−1
H

F

=
R1[F ]

F

(
Q[G]

G

)n

+
R2[G]

G

(
Q[G]

G

)n−1
P [F ]

F
, (17)
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using (8), (14) and (15). Then Φ 6≡ 0, and the lemma of the logarithmic derivative gives

m(r,Φ) = S(r, f). (18)

Next, the operators R1, R2, P and Q in (17) each have orders at most k − 1,m − 1, k and m
respectively, and the logarithmic derivatives F (j)/F,G(j)/G each have poles of multiplicity at
most j. Since the coefficients of P,Q,R1 and R2 are in Λf this implies that

N(r,Φ) ≤ (mn+ k − 1)N(r,Φ) + S(r, f). (19)

But poles of Φ can only arise from zeros of ψ + 1 or poles of a, f or the coefficients of P ◦M ,
since H = (P ◦M)[f ]. Moreover, a pole of f which is not a zero of a nor a pole of any of the
coefficients aj, bj is by (6) and (8) a pole of ψ of multiplicity at least n(k + 1) +m+ 1, so that

N(r, f) ≤
(

1

n(k + 1) +m+ 1

)
T (r, ψ) + S(r, f). (20)

Combining (18), (19) and (20) gives

T (r,Φ) ≤ (mn+ k − 1)(N(r, f) +N(r, 1/(ψ + 1))) + S(r, f)

≤ (mn+ k − 1)

(
n(k + 1) +m+ 2

n(k + 1) +m+ 1

)
T (r, ψ) + S(r, f). (21)

The definition (17) of Φ leads at once to

1

f
=

aHn

Φ(ψ + 1)
,

1

fn+1
=
Hn

fn
· a

Φ(ψ + 1)
. (22)

The second relation of (22) then yields

m(r, 1/f) ≤ m(r, 1/fn+1) ≤ m(r, 1/Φ) +m(r, 1/(ψ + 1)) + S(r, f),

while the first gives

N(r, 1/f) ≤ N(r, 1/Φ) +N(r, 1/(ψ + 1)) + S(r, f),

and combining the last two estimates with (21) proves (16). This completes the proof of Lemma
3.1, the last assertion holding since m = 0 gives F = f , H = G and Φ = 1.

4 Continuation of the proofs of Theorems 1.3 and 1.4

Differentiating (14) gives

H ′ =
H ′

H
P [F ] = P [F ]′ =

k+1∑
q=0

βqF
(q), βq = α′

q + αq−1, α−1 = αk+1 = 0, βk+1 = 1. (23)

Hence (14) and (23) lead to a linear differential equation

k+1∑
j=0

(
βj −

H ′

H
αj

)
w(j) = 0, (24)
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satisfied by w = F . Now write

F = uv, v =
1

aGn
, cj = βj −

H ′

H
αj. (25)

Using the standard convention, for integers j and q,(
j
q

)
=

j!

q!(j − q)!
(0 ≤ q ≤ j),

(
j
q

)
= 0 (otherwise),

substituting (25) into (24) yields

0 =
k+1∑
j=0

cjF
(j) =

k+1∑
j=0

cj

k+1∑
q=0

(
j
q

)
u(q)v(j−q). (26)

Dividing by v and reversing the order of summation in (26) now gives

0 =
k+1∑
q=0

u(q)Aq, Aq =
k+1∑
j=0

(
j
q

)
cj
v(j−q)

v
. (27)

In particular, using (23) and (25),

Ak+1 = ck+1 = 1, A0 =
k+1∑
j=0

cj
v(j)

v
=

k+1∑
j=0

(
βj −

H ′

H
αj

)
v(j)

v
. (28)

Two cases will now be considered, depending on whether or not A0 vanishes identically.

5 Case 1: suppose that A0 6≡ 0

From (8), (25) and (27),

u =
F

v
= aFGn = ψ + 1,

k+1∑
q=0

ψ(q)Aq = −A0,

and hence

− 1

ψ
= 1 +

1

A0

k+1∑
q=1

Bq, Bq = Aq
ψ(q)

ψ
. (29)

By (25), (27) and (29),

m(r, Aq) +m(r, Bq) = S(r, f), m(r, 1/ψ) ≤ m(r, 1/A0) + S(r, f). (30)

Next, (25), (27) and (29) give, for q = 0, . . . , k + 1,

Bq =
k+1∑
j=0

(
j
q

) (
βj −

H ′

H
αj

)
v(j−q)

v

ψ(q)

ψ
, v =

1

aGn
.
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In particular, poles of Bq can only arise from poles of a, poles of the βj and αj, poles of the
coefficients of F , G or H, zeros of a or G, zeros of H which are not zeros of G, zeros of ψ or
poles of f . Moreover, since αk+1 = 0 by (23), the total contribution to n(r, Bq) from the terms
H ′/H, v(j−q)/v, ψ(q)/ψ is at most k + 1. Hence (29) and (30) give

T (r, ψ) ≤ m(r, 1/ψ) +N(r, 1/ψ) +O(1)

≤ m(r, 1/A0) +N(r, 1/A0) + (k + 1)N(r, 1/ψ) + S(r, f)

≤ T (r, A0) + (k + 1)N(r, 1/ψ) + S(r, f)

≤ N(r, A0) + (k + 1)N(r, 1/ψ) + S(r, f). (31)

The same analysis leads to

N(r, A0) ≤ (k + 1)
(
N(r, f) +N(r, 1/G)

)
+N(r,G/H) + S(r, f). (32)

Since (14) gives

N(r,G/H) ≤ T (r,H/G) +O(1) ≤ m
(
N(r, f) +N(r, 1/G)

)
+ S(r, f),

(31) and (32) combine to yield

T (r, ψ) ≤ (k +m+ 1)
(
N(r, f) +N(r, 1/G)

)
+ (k + 1)N(r, 1/ψ) + S(r, f). (33)

But (6) and (8) imply that a zero of G which is not a pole of a nor of any of the aj or bj is a
zero of ψ + 1, and a zero of ψ′ of multiplicity at least n− 1, so that

N(r, 1/G) ≤ 1

n− 1
N(r, ψ/ψ′) + S(r, f) ≤ 1

n− 1
T (r, ψ′/ψ) + S(r, f)

≤ 1

n− 1
N(r, ψ′/ψ) + S(r, f) ≤ 1

n− 1

(
N(r, f) +N(r, 1/ψ)

)
+ S(r, f),

which on combination with (33) gives

T (r, ψ) ≤ (k +m+ 1)

(
1 +

1

n− 1

)
N(r, f) +

(
k + 1 +

k +m+ 1

n− 1

)
N(r, 1/ψ) + S(r, f)

=

(
(k +m+ 1)n

n− 1

)
N(r, f) +

(
n(k + 1) +m

n− 1

)
N(r, 1/ψ) + S(r, f). (34)

Substituting (20) into (34) leads to

(1− η)T (r, ψ) ≤
(
n(k + 1) +m

n− 1

)
N(r, 1/ψ) + S(r, f), (35)

where η is given by (11). But adding nk + (n− 1)(m+ 1) to both sides of (5) yields

nk + n(m+ 1) < (n− 1)(m+ 1) + (n2 − n)(k + 1), η =
(k +m+ 1)n

(n− 1)(n(k + 1) +m+ 1)
< 1.

Thus (16) and (35) together give (3) and (9) as in the conclusion of Theorem 1.3. Moreover,
(3) and (12) are incompatible and so, with the hypotheses of Theorem 1.4, Case 1 is impossible.

To complete the proofs of Theorems 1.3 and 1.4, it remains to prove that the case A0 ≡ 0
cannot arise with the hypotheses of Theorem 1.3, and in the setting of Theorem 1.4 to show that
A0 ≡ 0 leads to either conclusion (ii) or (iii).
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6 Case 2: suppose that A0 ≡ 0

Then (14), (23) and (28) give d ∈ C with

P [v]′ =
H ′

H
P [v], P [v] = dH = dQ[G] = dP [F ]. (36)

It follows using (6), (8), (14) and (25) that any zero of G which is not a pole of a nor of any of
the coefficients of P , M or L is a pole of P [v] but not of f or P [F ]. Hence

N(r, 1/G) = S(r, f). (37)

Similar considerations give (13) if d 6= 0. But if d = 0 then a zero of v which is not a pole of any
of the coefficients of P cannot have multiplicity greater than k − 1, by the existence-uniqueness
theorem for solutions of linear differential equations. Since a pole of f which is not a pole of a
nor of any of the coefficients of L is a zero of v of multiplicity at least n(k+ 1) > k, by (8) and
(25), it follows that (13) holds, whether or not d = 0. Combining (13) and (37) then gives

G(j)/G ∈ Λf for j ∈ N. (38)

7 Completion of the proof of Theorem 1.3

Assume the hypotheses (a) and (b) of Theorem 1.3 and that A0 ≡ 0. The equation (36) gives

P [v − dF ] = 0.

Write v − dF = M [W ] with W analytic on a suitably chosen small disc Ω. It follows at once
that (P ◦ M)[W ] = 0 on Ω, so that W is a linear combination over C of local solutions of
L[w] = 0,M [w] = 0, by the choice of P and Q in (14). Hence v − dF = M [w] for some local
solution of L[w] = 0, which implies by hypothesis (b) of Theorem 1.3 that v − dF = λ ∈ Λf ,
and hence d 6= 0, using (25), since G 6∈ Λf by assumption. But this gives, using (15), (25) and
(38),

F = λ1G
−n + λ2, f = R1[F ] +R2[G] = λ3G

−n + λ4 + λ5G, (39)

using λj to denote elements of Λf . Hence

F = M [f ] = λ6G
−n + λ7 + λ8G, λ8G = M [λ5G],

and since G 6∈ Λf combining this relation with (39) shows that λ8G = M [λ5G] = 0. Moreover
(38) and (39) now yield

G = L[f ] = λ9G
−n + λ10 + λ11G, λ9G

−n = L[λ3G
−n], λ10 = L[λ4].

Again since G 6∈ Λf it follows that λ9G
−n = L[λ3G

−n] = 0 and λ10 = L[λ4] = 0. But then f is
by (39) a linear combination over C of local solutions of L[w] = 0,M [w] = 0, and so H ≡ 0 in
(14), which contradicts the assumption made following (14) that H does not vanish identically.
This completes the proof of Theorem 1.3.
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8 Completion of the proof of Theorem 1.4

Assume the hypothesis (12) of Theorem 1.4 and that A0 ≡ 0. Then (12), (13) and (38) lead
immediately to

ψ(j)/ψ ∈ Λf and G(j)/G ∈ Λf for j ∈ N. (40)

At this point it becomes necessary to divide the proof into two further subcases, depending on
whether or not G ∈ Λf . For convenience the terms Aj, Bj, Cj, Dj, Ej will be used to denote
elements of the field Λf .

9 Subcase 2A: suppose that G ∈ Λf

In this case (8), (15) and (40) make it possible to write

F = γ(ψ + 1), f = αψ + β, G = L[αψ] + L[β] = A1ψ + L[β] = A1ψ + A2, (41)

with α, β, γ ∈ Λf and aγGn = 1. Since ψ 6∈ Λf by (16), it follows at once that L[αψ] = A1ψ = 0
in (41). This gives conclusion (ii) of Theorem 1.4.

10 Subcase 2B: suppose that G 6∈ Λf

Combining (8), (15) and (40) leads to

F = a−1G−n(ψ + 1), f = R1[F ] +R2[G] = B1ψG
−n +B2G

−n +B3G. (42)

To handle this case will require the following lemma.

Lemma 10.1 With the assumptions of this subcase, suppose that ψG−n, G−n and G are linearly
dependent over Λf . Then ψG−n−1 ∈ Λf , and f satisfies conclusion (iii) of Theorem 1.4.

Proof. Assume an identity
C1ψG

−n + C2G
−n + C3G = 0 (43)

with the Cj not all identically zero. Then C1C3 6≡ 0, by (16) and the assumption that G 6∈ Λf . If
C2 ≡ 0 then the first conclusion of Lemma 10.1 follows at once, so assume that C2 6≡ 0. Hence
the relation (43) may be written in the form

C4ψ = C5G
n+1 + 1, C4C5 6≡ 0. (44)

Differentiating (44) now gives(
C ′

4 +
ψ′

ψ
C4

)
ψ =

(
C ′

5 + (n+ 1)
G′

G
C5

)
Gn+1,

from which the first conclusion ψG−n−1 ∈ Λf of Lemma 10.1 follows at once using (40), unless

C ′
4 +

ψ′

ψ
C4 = 0. (45)
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But (45) implies that ψC4 is constant and ψ ∈ Λf , which contradicts (16).
Hence ψG−n−1 ∈ Λf , and in view of the second relation in (42) it now follows that

f = AG−n +BG, ψ = CGn+1, A,B,C ∈ Λf .

Using (8), (40) and the fact that G 6∈ Λf then gives

G = L[f ] = D1G
−n +D2G, D1G

−n = L[AG−n] = 0, F = M [f ] = JG−n +KG,

with J,K ∈ Λf , and using (8) again now leads to

CGn+1 = ψ = aKGn+1 + aJ − 1,

so that aJ = 1, aK = C, and f satisfies conclusion (iii) of Theorem 1.4. The proof of
Lemma 10.1 is now complete.

To complete the proof of Theorem 1.4 in Subcase 2B, observe first that it follows from (42),
on recalling (8) and using (40) again, that

G = E1ψG
−n + E2G

−n + E3G, E1ψG
−n = L[B1ψG

−n], E2G
−n = L[B2G

−n]. (46)

If E1, E2 are not both identically zero then the functions ψG−n, G−n and G are linearly depen-
dent over Λf , and Lemma 10.1 shows that f satisfies conclusion (iii) of Theorem 1.4. Assume
henceforth that E1 and E2 both vanish identically. Then (42) and (46) give

f = w1 +B3G, w1 = B1ψG
−n +B2G

−n, L[w1] = 0, (47)

and, using (8) and (40),

F = M [f ] = M [w1] +M [B3G] = E4ψG
−n + E5G

−n + E6G, E6G = M [B3G]. (48)

There are now two possibilities. If E6 does not vanish identically in (48) then (42) and (48)
imply that the functions ψG−n, G−n and G are linearly dependent over Λf , and Lemma 10.1
again shows that f satisfies conclusion (iii) of Theorem 1.4. On the other hand if E6 vanishes
identically in (48) then M [B3G] = 0 so that f satisfies conclusion (i) of Theorem 1.4 by (47),
which contradicts the assumption made following (14) that H = (P ◦M)[f ] = (Q ◦ L)[f ] does
not vanish identically. This completes the proof of Theorem 1.4.

11 Examples

In all six examples let m = k = 1 and n = 4. Then (5) is satisfied.
(I) Let

f(z) = e4z + e−z + 1, F (z) = f ′(z) + f(z) = 5e4z + 1, G(z) = f ′′(z)− 4f ′(z) = 5e−z.

Then

ψ(z) =
1

3125
F (z)G(z)4 − 1 =

e−4z

5
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has no zeros, and this example satisfies conclusion (i) of Theorem 1.4.
Moreover, in this case w = e4z is a solution of L[w] = w′′ − 4w′ = 0, and φ = M [w] =

w′ + w = 5e4z is not in Λf , so that the hypothesis (b) in Theorem 1.3 is not redundant.

(II) This example again satisfies conclusion (i) of Theorem 1.4, but with ψ constant. Here
f(z) = e4z + e−z and

F (z) = f ′(z)+f(z) = 5e4z, G(z) = f ′(z)−4f(z) = −5e−z, ψ(z) = F (z)G(z)4−1 = 3124.

(III) To obtain an example satisfying conclusion (ii) of Theorem 1.4, let

f(z) = ez + z, G(z) = f ′(z)− f(z) = 1− z, F (z) = f ′(z) = ez + 1,

and
a(z) = (1− z)−4, ψ(z) = a(z)F (z)G(z)4 − 1 = ez.

(IV) A slightly more complicated example shows that conclusions (i) and (ii) of Theorem 1.4 may
occur simultaneously. Let F,G, ψ be given by (8), where

f(z) = ez + z + 1, M = D =
d

dz
, L =

(
D +

1

1− z

)
◦ (D − 1), a(z) = (z − 1)4.

Since M [1] = 0 and L[ez + z] = 0 it is clear that f satisfies conclusion (i). But

F (z) = f ′(z) = ez + 1, G(z) =

(
D +

1

1− z

)
[−z] =

1

z − 1
, ψ(z) = F (z)− 1 = ez,

and so conclusion (ii) is also satisfied.

(V) Let

f(z) = e−4z + ez, G(z) = f ′(z) + 4f(z) = 5ez, F (z) = f ′(z) = −4e−4z + ez,

and

a(z) = − 1

2500
, ψ(z) = a(z)F (z)G(z)4 − 1 = −e

5z

4
.

This example satisfies conclusion (iii) of Theorem 1.4.

(VI) For an example which satisfies conclusions (i) and (iii) of Theorem 1.4, let F,G, ψ again be
given by (8), with this time

f(z) = e−4z + zez, M =

(
D − z + 2

z + 1

)
, L = (D − 1) ◦ (D + 4), a(z) =

−(z + 1)

625(5z + 6)
.

Here L[e−4z] = L[ez] = 0 and M [(z + 1)ez] = 0 so that conclusion (i) is satisfied. Moreover,

F (z) = −
(

5z + 6

z + 1

)
e−4z +

ez

z + 1
, G(z) = (D − 1)[(5z + 1)ez] = 5ez, ψ(z) =

−e5z

5z + 6
,

and so f also satisfies conclusion (iii).
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