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Zeros of derivatives of meromorphic functions

J.K. Langley

Abstract. The first part of this paper is an expanded version of a plenary
lecture of the same title, given by the author at the CMFT conference at
Bilkent University, Ankara, in June 2009. In the second part of the paper, a
considerably stronger version of one of the main results is proved.
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1. The Gol’dberg conjecture

The conjecture of A.A. Gol’dberg concerns the link between the poles of a mero-
morphic function and the zeros of its derivatives, which has been the target of
extensive research going back at least as far as Pólya [50]. Simple examples such
as f(z) = tan z show that f may have infinitely many poles while the first deriva-
tive has no zeros, and similar examples arise as quotients of linearly independent
solutions of the differential equation w′′+Aw = 0, where A is entire [34, Chapter
6]. Gol’dberg’s conjecture involves derivatives of at least second order.

Conjecture 1.1 (The Gol’dberg conjecture). Let the function f be transcenden-
tal and meromorphic in C, and let k ≥ 2. Then

N(r, f) ≤ N(r, 1/f (k)) + O(T (r, f)) (n.e.).

Here we are using the standard terminology of Nevanlinna theory [17, 20, 45],
in which T (r, f) denotes the Nevanlinna characteristic, while N(r, f) counts the
distinct poles of f and N(r, 1/f (k)) counts the poles of 1/f (k), which of course
are zeros of f (k), this time with multiplicity. Finally (n.e.) (“nearly everywhere”)
means as r →∞ outside a set of finite measure.

Thus the Gol’dberg conjecture asserts that the frequency of distinct poles of
f is controlled by the zeros of f (k), up to an error O(T (r, f)). For example,
f(z) = tan z satisfies

N(r, f) ∼ N(r, 1/f ′′) ∼ T (r, f) ∼ 2r

π
.
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Some support for the Gol’dberg conjecture is lent by:

Theorem 1.1 (Part of the Pólya shire theorem [20, 50]). Let the function f
be meromorphic in C with at least two distinct poles. Let w ∈ C be such that
the nearest pole of f to w is not unique. Then f (k) has a zero near w for all
sufficiently large k.

For f(z) = tan z the poles are at π/2 + nπ, n ∈ Z, and each pole is the centre
of a “shire”, an open vertical strip of width π. Near each point on the boundary
lines there are zeros of f (k) for k sufficiently large.

The Pólya shire theorem implies that if f has at least two poles then f (k) has
at least one zero for all large k, but it gives no information on the frequency of
zeros of any specific derivative.

2. Further results supporting the Gol’dberg conjecture

The following theorem is a combination of results of Frank, Steinmetz and Weis-
senborn [12, 16, 56].

Theorem 2.1 ([12, 16, 56]). Let the function f be transcendental and meromor-
phic in C, let k ≥ 2 and write

(1) L(w) = w(k) + ak−1w
(k−1) + . . .+ a0w,

where the coefficients aj are rational functions. Then either f is a rational func-
tion in solutions of the differential equation L(w) = 0, or

kN(r, f) ≤ N(r, f) +N(r, 1/L(f)) + O(T (r, f)) (n.e.).

See [7, 13, 36, 55] for further results on the zeros of linear differential polynomials
L(f). If we take all aj to be 0 then L(f) = f (k) and a transcendental function
f cannot be a rational function in solutions of L(w) = 0. Thus the Gol’dberg
conjecture holds if all poles have multiplicity at most k − 1, because a pole of
f is then counted at most k − 1 times in N(r, f). In particular this is the case
for the examples mentioned prior to Conjecture 1.1, since these have only simple
poles. The conjecture is also true if the multiplicities of the poles tend to infinity
since we then have

N(r, f) = O(N(r, f)) = O(T (r, f)).

The next result is due to Frank [11, 14] for n ≥ m+ 3 and to the author [35] for
n = m+ 2.

Theorem 2.2 ([11, 14, 35]). Let the function f be meromorphic in C. If f (m)

and f (n) have finitely many zeros, where 0 ≤ m ≤ n−2, then f has finitely many
poles and finite order, that is

(2) ρ(f) = lim sup
r→∞

log T (r, f)

log r
<∞,
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and f (m) = ReP with R a rational function and P a polynomial.

This result was conjectured by Hayman in 1959 [19], and related theorems of
Hayman, Clunie and others concerning the zeros of derivatives of entire functions
may be found in [20, Chapter 3]. The simple counterexample f(z) = 1/(ez + 1)
shows that the result fails for m = 0, n = 1. For n ≥ m+3 the proof of Theorem
2.2 uses Nevanlinna theory and a method of Frank involving properties of the
Wronskian determinant [11, 13, 14], while the techniques for n = m + 2 in [35]
are more asymptotic in character. The next result considers only one derivative,
but requires a growth restriction on f .

Theorem 2.3 ([37]). Let the function f be meromorphic of finite order in the
plane. If f (k) has finitely many zeros, for some k ≥ 2, then f has finitely many
poles and f (k) = ReP with R a rational function and P a polynomial.

This result is again false for k = 1, since we may take f(z) = tan z. Examples
constructed in [37] show that Theorem 2.3 fails for infinite order, but there is a
partial result [40] for finite lower order, that is if (2) holds with lim sup replaced
by lim inf, provided the multiplicities of the poles do not grow too fast.

3. Linear differential operators

The formulation of Theorem 2.1 suggests replacing f (k) in Theorem 2.3 by L(f),
as defined by (1) with k ≥ 2 and appropriate coefficients aj. Examples such as

f(z) =
1

1− ez
, f ′′(z)− f ′(z) =

2e2z

(1− ez)3
,

prompt the following conjecture.

Conjecture 3.1. If the function f is meromorphic of finite order in C and L(f)
has finitely many zeros, where k ≥ 2, aj ∈ C, then N(r, f) = O(r) as r →∞.

There is a partial result in [40], in which it is shown that N(r, f) = O(r3) unless
all roots of the auxiliary equation

xk + ak−1x
k−1 + . . .+ a0 = 0

are distinct and collinear. This result seems highly unlikely to be sharp.

4. The Mues conjecture

Hayman observed in [19] that the derivative of a transcendental meromorphic
function f in the plane takes every finite value, with at most one exception,
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infinitely often. It was conjectured by Mues [44] that the Nevanlinna deficiencies
of the derivatives satisfy ∑

a∈C

δ(a, f (m)) ≤ 1

for m ≥ 1, and this conjecture would follow from a positive resolution of the
Gol’dberg conjecture. For partial results in the direction of the Mues conjecture
see [30, 44, 58, 59, 60].

5. The Wiman conjecture

A meromorphic function on the plane is called real if it maps R into R ∪ {∞}.
The Laguerre-Pólya class LP consists of all entire functions f with the following
property: there exist real polynomials Pn with only real zeros, such that Pn → f
locally uniformly on C. An example is

exp(−z2) = lim
n→∞

(1− z2/n)n.

The Laguerre-Pólya theorem [33, 48] shows that f belongs to LP if and only if

f(z) = g(z)e−az2
where a ≥ 0 and g is a real entire function with real zeros and

genus at most 1.

It is a simple consequence of Rolle’s theorem and Hurwitz’ theorem that if the
function f ∈ LP is transcendental and k ≥ 0 then f (k) has only real zeros. The
converse assertion was conjectured by Pólya [49]: if f is real entire and f (k) has
only real zeros for all k ≥ 0 then f ∈ LP . A much stronger conjecture was
advanced by Wiman [1, 2]: for a real entire function f to belong to LP it suffices
that f and f ′′ have only real zeros. We identify a number of milestones in the
proof of these conjectures.

(i) (Levin and Ostrovskii 1960 [43]): if f is a real entire function and f and
f ′′ have only real zeros, then

log T (r, f) = O(r log r) as r →∞.

The paper [43] introduced a factorisation of the logarithmic derivative and the use
of the Tsuji characteristic [17, 57], techniques which have played a fundamental
role in most subsequent work on this subject.

(ii) (Hellerstein and Williamson 1977 [22, 23]): if the function f is real
entire, and all zeros of f , f ′ and f ′′ are real, then f ∈ LP (thus proving Pólya’s
conjecture).

(iii) (Sheil-Small 1989 [54]): Wiman’s conjecture is true for f of finite order,
that is, if (2) holds.

(iv) (Bergweiler, Eremenko and Langley 2003 [5]): Wiman’s conjecture
is true for f of infinite order (thus filling the gap between (i) and (iii)).
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Turning to higher derivatives, let the real entire function f have finitely many
non-real zeros, and write f = Ph, where P is a real polynomial and h is real
entire with real zeros.

(v) (Craven, Csordas and Smith 1987 [8, 9], Kim 1990 [32], Ki and Kim
2000 [31]): if h ∈ LP then f (k) has only real zeros, for all sufficiently large k.

(vi) (Edwards and Hellerstein 2002 [10]): if h 6∈ LP and h has finite order
then f (k) has at least two non-real zeros for each k ≥ 2.

(vii) (Bergweiler and Eremenko 2006 [4]): if h 6∈ LP and h has finite order
then the number of non-real zeros of f (k) tends to ∞ with k.

(viii) (Langley 2005 [38]): if h has infinite order, then f (k) has infinitely many
non-real zeros for k ≥ 3 (and for k = 2 by (iv)).

Combining (v), (vii) and (viii) leads to the following striking result: for a real
entire function f , the number of non-real zeros of the kth derivative f (k) tends
to a limit as k → ∞, and this limit is always either 0 or ∞. In particular, this
proves a conjecture of Pólya from 1943 [51].

The author’s Ph.D. student D.A. Nicks has several results related to the Wiman
conjecture, including the following [46]. Let f be a real entire function, let M > 0
and 1 ≤ j < k. Suppose that the non-real zeros of ff (j)f (k) have finite exponent
of convergence and are zeros of f of multiplicity at least k but at most M . Then
f ∈ LP (and so all zeros of all f (m), m ≥ 0, are real).

5.1. Some key ideas for the proof of the Wiman conjecture. Suppose
that f is a real entire function, and that f and f ′′ have only real zeros. Let

L(z) =
f ′(z)

f(z)
, F (z) = z − f(z)

f ′(z)
, F ′ =

ff ′′

f ′2
.

Here the Newton function F has no critical values in C \ R. It is then possible
to prove, using the Tsuji characteristic, the Levin-Ostrovskii factorisation of L
and normal families, that F also has no asymptotic values in C \R. If the upper
half-plane is denoted by H = {z ∈ C : Im z > 0} then one of Sheil-Small’s
decisive insights in [54] was that

(3) Y = {z ∈ H : L(z) ∈ H} ⊆ W = {z ∈ H : F (z) ∈ H}.

Moreover, the closure of Y contains no pole of L, since L has real poles with
positive residues [54]. If f 6∈ LP then it is possible to show [5, 54] that there
exists a zero b of L on the boundary of a component C of Y , and C ⊆ A for some
component A of W . The maximum principle implies that L(z) →∞ on a path
γ →∞ in C, from which it follows that F takes large values in A, both near to
b, which is a pole of F , and near to infinity. This contradicts the fact that F is
univalent on A, because we may analytically continue F−1 throughout H.
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5.2. Other linear differential operators. It is reasonable to ask whether
some result along the lines of the Wiman conjecture holds when the kth derivative
f (k) is replaced by L(f) as defined by (1) with real coefficients aj.

Theorem 5.1 ([39]). Let f be a real entire function and suppose that f and
f ′′ + Af have only real zeros, for some positive real number A. Then f ∈ LP .

No such result holds for A < 0, since we may write

f ′(z)

f(z)
= 1 + e−2z,

f ′′(z)− f(z)

f(z)
= e−4z,

which defines an entire function f of infinite order, and so not in LP , such that
f and f ′′ − f have no zeros at all.

The proof of Theorem 5.1 needs an analogue of the Newton function used in the
proof of the Wiman conjecture. For real entire f such that f and f ′′ + f have
only real zeros, write

L =
f ′

f
, T = tan z, F =

TL− 1

L+ T
, F ′ =

(1 + T 2)(f ′′ + f)

(L+ T )2f
.

Then F ′ has no zeros in H = {z ∈ C : Im z > 0}. Thus F has no non-real critical
values, but F might in principle have a non-real asymptotic value (±i). Also

F =
T |L|2 + L|T |2 − L− T

|L+ T |2

so we again get Sheil-Small’s property (3). Here the function F is obtained via
the Wronskian method developed by Frank for Theorem 2.2 [11, 13].

6. Non-real zeros of derivatives of meromorphic functions

This section concerns the analogue for the meromorphic case of the Wiman-Pólya
problem for entire functions. Let the function f be meromorphic on C (possibly
real), and assume that (some of) the derivatives of f have only real zeros. It may
then be asked whether f can be determined explicitly or, failing that, whether
some bound may be given for the frequency of non-real poles, in the spirit of the
Gol’dberg conjecture. A number of results were proved in the 1980s for functions
with real poles, including the following.

Theorem 6.1 (Hellerstein, Rossi and Williamson [24, 52]). Let the function f
be real meromorphic on C, not entire, with no zeros, and with only real poles.
If f ′ and f ′′ have only real zeros, then f(z) = (Az + B)−n, with A,B ∈ R and
n ∈ N.
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Theorem 6.2 (Hellerstein, Shen and Williamson [26]). Let the function f be
real meromorphic on C with only real zeros and poles, and at least one of each.
Assume that f ′ has no zeros and f ′′ has only real zeros. Then f is one of

A tan(az + b) +B,
az + b

cz + d
, A · (az + b)2 − 1

(az + b)2
,

where A,B, a, b, c, d ∈ R.

Note that f(z) = tan z satisfies the hypotheses of Theorem 6.2. Hellerstein, Shen
and Williamson [25] classified all strictly non-real meromorphic functions f in
the plane with only real poles such that f , f ′ and f ′′ all have only real zeros.
Here strictly non-real means that f is not a constant multiple of a real function.

Without the assumption of real poles, less is known. Hinkkanen considered
meromorphic functions f on C for which all derivatives f (k) (k ≥ 0) have only real
zeros (in analogy with Pólya’s conjecture for entire functions). Such functions
f have at most two distinct poles, by the Pólya shire theorem, but Hinkkanen
[27, 28, 29] showed that in fact they have no poles at all, apart from certain
rational functions f . The following result was proved in [41].

Theorem 6.3 ([41]). Let f be a real meromorphic function in the plane, not of
the form f = SeP with S a rational function and P a polynomial. Let k ≥ 2 be
an integer. Assume that:
(a) all but finitely many zeros of f and f (k) are real;
(b) the first derivative f ′ has finitely many zeros;
(c) there exists M ∈ (0,∞) such that if ζ is a pole of f of multiplicity mζ then

(4) mζ ≤M + |ζ|M ;

(d) if k = 2 then f ′/f has finite order.

Then f satisfies

(5) f(z) =
R(z)eicz − 1

AR(z)eicz − A
, where c ∈ (0,∞), A ∈ C \ R,

and

(6) R is a rational function with |R(x)| = 1 for all x ∈ R.

Moreover, we have k = 2 and all but finitely many poles of f are real.

Conversely, if f is given by (5) and (6) then f satisfies (a) and (b) with k = 2.

Of course if the function f is given by f = SeP with S a rational function and
P a polynomial then obviously f and all its derivatives have finitely many zeros.
Theorem 6.3 is related to Theorem 6.2, but does not assume that the poles of f
are real, and allows any k ≥ 2, although k = 2 turns out to be exceptional, and
the reality of the poles then arises as a conclusion (see [47] for a similar instance
of a former hypothesis becoming a conclusion). It turns out that hypotheses (c)
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and (d) of Theorem 6.3 may be deleted altogether, and the first derivative f ′

may be replaced by a higher derivative in (b).

Theorem 6.4. Let f be a real meromorphic function in the plane, not of the
form f = SeP with S a rational function and P a polynomial. Let µ and k be
integers with 1 ≤ µ < k. Assume that all but finitely many zeros of f and f (k)

are real, and that f (µ) has finitely many zeros. Then we have µ = 1 and k = 2
and f satisfies (5) and (6). Moreover, all but finitely many poles of f are real.

It is interesting that k = 2 plays an exceptional role in Theorems 6.3 and 6.4.
Together with the fact that the cases n ≥ m + 3 and n = m + 2 in Theorem
2.2 required different techniques in [11, 13, 14, 35], and some observations in [36,
p.81], this suggests that, at least for functions with poles, the second derivative
has a somewhat different character to its successors. The special nature of the
first derivative was already noted in the introduction.

Theorem 6.4 will be proved in Sections 8, 9 and 10.

7. Proof of Theorem 6.4: preliminaries

The proof of Theorem 6.4 depends on some standard facts from the Wiman-
Valiron theory [21]. Let the function g be transcendental and meromorphic
with finitely many poles in the plane. Then there exists a rational function R
with R(∞) = 0 such that h = g − R is a transcendental entire function. Let
h(z) =

∑∞
q=0 λqz

q be the Maclaurin series of h. For r > 0 define

µh(r) = max{|λq|rq : q = 0, 1, 2, . . .}, ν(r) = max{q : |λq|rq = µh(r)},

to be respectively the maximum term and central index of h. Let γ > 1/2. By
[21, Theorems 10 and 12], there exists a set E0 of finite logarithmic measure with
the following property. Let r be large, not in E0, and let z0 be such that |z0| = r
and |g(z0)| = M(r, g) = max{|g(z)| : |z| = r}. Then |h(z0)| ∼ M(r, h) and we
have

h(z) ∼
(
z

z0

)ν(r)

h(z0) and g(z) = h(z) + O(1) ∼ h(z) ∼
(
z

z0

)ν(r)

g(z0)

and
g′(z)

g(z)
=
h′(z) + O(1)

h(z) + O(1)
=
h′(z)

h(z)
(1 + O(1)) +

O(1)

z
∼ ν(r)

z

for | log(z/z0)| ≤ ν(r)−γ. We may then refer to ν(r) as the central index of g.

We require the following theorem [6] (see also [53]).

Theorem 7.1 ([6, 53]). Let k ≥ 2 and let F be a family of functions meromorphic
on a plane domain D such that ff (k) has no zeros in D, for each f ∈ F . Then
the family {f ′/f : f ∈ F} is normal on D.
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Next, let the function g be meromorphic in a domain containing the closed upper
half-plane H = {z ∈ C : Im z ≥ 0}. For t ≥ 1 let n(t, g) be the number of poles
of g, counting multiplicity, in {z ∈ C : |z − it/2| ≤ t/2, |z| ≥ 1}. The Tsuji
characteristic T(r, g) [17, 43, 57] is defined for r ≥ 1 by T(r, g) = m(r, g)+N(r, g),
where

m(r, g) =
1

2π

∫ π−sin−1(1/r)

sin−1(1/r)

log+ |g(r sin θeiθ)|
r sin2 θ

dθ and N(r, g) =

∫ r

1

n(t, g)

t2
dt.

Lemma 7.1 ([43]). Let the function g be meromorphic in H and assume that
m(r, g) = O(log r) as r →∞. Then, as R→∞,∫ ∞

R

∫ π

0

log+ |g(reiθ)|
r3

dθ dr = O

(
logR

R

)
.

8. Proof of Theorem 6.4: the growth of the logarithmic
derivative

Let the integers µ and k and the function f be as in the statement of Theorem
6.4. Since f is not of the form f = SeP with S a rational function and P a
polynomial, the logarithmic derivative L = f ′/f is transcendental. Set

(7) K =

(
f

f (µ)

)k (
f (k)

f

)µ

=
fk−µ(f (k))µ

(f (µ))k
.

Here we observe that if K is a rational function then f and f (k) have finitely
many zeros, since f (µ) has finitely many zeros, and this implies using Theorem
2.2 that f = SeP with S a rational function and P a polynomial, contrary
to hypothesis. We may therefore assume henceforth that K is transcendental.
Moreover, for j ∈ N, a pole of f is a pole of f (j)/f of multiplicity j. Thus K has
finitely many poles and non-real zeros, and the logarithmic derivative K ′/K is a
real meromorphic function with simple poles, all but finitely many of which are
real and have positive residue. Thus K ′/K has a Levin-Ostrovskii factorisation

(8)
K ′

K
= φψ.

which is determined as in [5, pp.978-979] so that: every pole of ψ is real and
simple and is a pole of K ′/K; the function φ has finitely many poles; either
ψ ≡ 1 or ψ maps the upper half-plane H = {z ∈ C : Im z > 0} into itself. In
particular ψ satisfies the Carathéodory inequality [42, Ch. I.6, Thm 8′]

(9)
1

5
|ψ(i)|sin θ

r
< |ψ(reiθ)| < 5|ψ(i)| r

sin θ
for r ≥ 1, θ ∈ (0, π).

The first task is to show that L has finite order, and the methods required will
depend on whether or not k is at least 3.

Proposition 8.1. If k ≥ 3 then the function L = f ′/f has order at most 1.
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To prove Proposition 8.1, assume for the rest of this section that k ≥ 3. Then
as in [41] the fact that f and f (k) have finitely many non-real zeros leads to

(10) T(r, L) = O(log r) as r →∞,

where T(r, L) denotes the Tsuji characteristic. This is proved by means of the
Wronskian method of Frank [11, 14] (see also [6, 13, 15]), but using Tsuji func-
tionals in place of those of Nevanlinna. We write, for j ≥ 0,

(11) Lj =
f (j+1)

f (j)
, Lj+1 = Lj +

L′j
Lj

.

Now let g be either K or 1/Lµ−1 = f (µ−1)/f (µ). Then (7), (10) and (11) lead at
once to

m(r, g) = O(log r) as r →∞.

Hence Lemma 7.1 and the fact that g is real give∫ ∞

R

m(r, g)

r3
dr = O

(
logR

R

)
as R→∞.

But g has finitely many poles and so we have, as R→∞,

T (R, g)

R2
≤ 2

∫ ∞

R

T (r, g)

r3
dr ≤ 2

∫ ∞

R

m(r, g)

r3
dr +O

(
logR

R2

)
= O

(
logR

R

)
.

Thus g has order at most 1. It now follows using (11) that Lj has order at most
1 for all j ≥ µ− 1. But (7) gives the formula

K ′

K
= (k − µ)

f ′

f
+ µ

f (k+1)

f (k)
− k

f (µ+1)

f (µ)
,

which now shows that L = f ′/f has order at most 1. This completes the proof
of Proposition 8.1.

9. The growth of the logarithmic derivative when k = 2

Assume throughout this section that k = 2. In this case Frank’s method as
employed in the proof of Proposition 8.1 is not available, and an alternative
approach based on Wiman-Valiron theory and normal families will be used.

Proposition 9.1. The function L = f ′/f has finite order.

To prove Proposition 9.1, observe first that since k = 2 we must have µ = 1.
Write

(12) F (z) = z − f(z)

f ′(z)
= z − 1

L(z)
, F ′ =

ff ′′

(f ′)2
= K,

where K is defined by (7) with µ = 1, k = 2.

Lemma 9.1. Suppose that φ is a rational function in (8). Then K has finite
order and so have F and L.
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Proof. The following argument is from [5, pp.989-990]. The function K is tran-
scendental with finitely many poles: as in Section 7 let ν(r) denote the central
index of K. Then there exist a set E0 of finite logarithmic measure and, for each
r ∈ [1,∞) \ E0, a point z0 such that |z0| = r and

K ′(z)

K(z)
∼ ν(r)

z
for z = z0e

it, −ν(r)−2/3 ≤ t ≤ ν(r)−2/3.

This leads at once to∫ 2π

0

∣∣∣∣K ′(reit)

K(reit)

∣∣∣∣5/6

dt ≥ ν(r)1/6r−5/6 as r →∞ with r 6∈ E0.

But (8) and (9) give, for some positive absolute constant c,∫ 2π

0

∣∣∣∣K ′(reit)

K(reit)

∣∣∣∣5/6

dt ≤ cM(r, φ)5/6|ψ(i)|5/6r5/6 as r →∞.

It follows that ν(r) ≤ M(r, φ)5r11 as r → ∞ with r 6∈ E0. Hence K has finite
order, and so have F and L by (12).

Assume for the remainder of this section that φ is transcendental in (8). It will be
shown that this assumption leads to a contradiction, which in view of Lemma 9.1
will establish Proposition 9.1. Denote by N = N(r) the central index of φ. Then
there exists a set E1 of finite logarithmic measure such that, if r ∈ [1,∞) \ E1

and |z1| = r, |φ(z1)| = M(r, φ) then

φ(z) ∼ φ(z1)

(
z

z1

)N(r)

for

∣∣∣∣log
z

z1

∣∣∣∣ ≤ N(r)−7/12.

Since φ is real it follows that for large r ∈ [1,∞) \ E1 there exists z0 with

(13) |z0| = r, N(r)−2/3 ≤ θ0 = arg z0 ≤ π −N(r)−2/3, |φ(z0)| ∼M(r, φ),

such that

(14) φ(z) ∼ φ(z0)

(
z

z0

)N(r)

for

∣∣∣∣log
z

z0

∣∣∣∣ ≤ N(r)−3/4.

Denote by cj, dj positive constants which are independent of r.

Lemma 9.2. There exists c1 ≥ 1 with the following property. Let R0 be large
and positive and for large r ∈ [1,∞) \ E1 let Ωr be the shorter arc of the circle
|z| = r joining z0 to ir, and let

Σr = Ωr ∪ {it : R0 ≤ t ≤ r}.
Then

max{|K ′(z)/K(z)| : z ∈ Σr} ≤ q(r) = M(r, φ)N(r)c1|ψ(z0)| → ∞(15)

as r →∞ with r ∈ [1,∞) \ E1.
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Proof. We may assume that ψ(H) ⊆ H, since otherwise (15) follows immedi-
ately from (8) and the fact that φ has finitely many poles. Let r ∈ [1,∞) \ E1

be large. For convenience we assume that N(r)−2/3 ≤ θ0 = arg z0 ≤ π/2 in (13);
the proof in the contrary case requires only trivial modifications. Then (9) and
(13) give

(16) |ψ(z0)| ≥
|ψ(i)| sin

(
N(r)−2/3

)
5r

≥ c2
rN(r)2/3

,

so that q(r) →∞ in (15), since c1 ≥ 1 and φ is transcendental.

We may write logψ(z) as a function of ζ = log z on H, which then maps the
strip 0 < Im ζ < π into itself. Bloch’s theorem gives

(17)

∣∣∣∣d logψ(reiθ)

dθ

∣∣∣∣ ≤ c3
θ

and

∣∣∣∣log
ψ(reiθ)

ψ(z0)

∣∣∣∣ ≤ c3 log
θ

θ0

≤ c4 logN(r)

for θ0 ≤ θ ≤ π/2, where c4 ≥ 1. In view of (8) it then follows that

max{|K ′(z)/K(z)| : z ∈ Ωr} ≤ q(r).

Now let 1 ≤ t ≤ r. Applying Bloch’s theorem again gives∣∣∣∣d logψ(is)

d log s

∣∣∣∣ ≤ c5

for 1 ≤ s ≤ r and so, using (17),

(18)

∣∣∣∣log
ψ(it)

ψ(z0)

∣∣∣∣ ≤ ∣∣∣∣log
ψ(it)

ψ(ir)

∣∣∣∣+ ∣∣∣∣log
ψ(ir)

ψ(z0)

∣∣∣∣ ≤ c5 log
r

t
+ c4 logN(r).

Let Q > c5 be an integer. Then there exists a rational function S0, with a pole
of multiplicity at most Q− 1 at infinity, such that

φ2 = φ− S0 and φ1(z) =
φ2(z)

zQ

are transcendental entire functions. Let R0 be large and positive. Then for
R0 ≤ t ≤ r we have

M(t, φ) ≤ tQM(t, φ1) +M(t, S0) ≤ 2tQM(r, φ1)

≤ 2

(
t

r

)Q

M(r, φ2) ≤ 4

(
t

r

)Q

M(r, φ).

Combining this with (8) and (18) then yields, since r is large and Q > c5,∣∣∣∣K ′(it)

K(it)

∣∣∣∣ ≤ 4

(
t

r

)Q

M(r, φ)
(r
t

)c5
N(r)c4|ψ(z0)| ≤ q(r),

which completes the proof of (15).
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The estimate (15) and integration of K ′/K now lead to

(19) | log |K(z)|| ≤ c6rq(r) + | log |K(iR0)|| ≤ 2c6rq(r) for all z ∈ Σr.

Lemma 9.3. Let r ∈ [1,∞) \ E1 be large. Then

(20) log |K(z)| ≤ c7rq(r) for |z − z0| ≤
r

N(r)3/4
.

Proof. Set

(21) R1 =
4r

N(r)3/4
.

The relations (12) and integration of (19) yield

(22) log

∣∣∣∣ f(z0)

f ′(z0)

∣∣∣∣ ≤ c8rq(r).

Let

g(z) = f(z0 +R1z), G(z) =
g(z)

g′(z)
=

f(z0 +R1z)

R1f ′(z0 +R1z)

for |z| < 1. Then (15), (21) and (22) imply that

(23) log |G(0)| ≤ log

∣∣∣∣ f(z0)

f ′(z0)

∣∣∣∣+ log
1

R1

≤ d1rq(r).

By (13) and (21) the functions g and g′′ have no zeros in |z| < 1, and so Theorem
7.1 gives d2 > 0, independent of r, such that

|G′(z)|
1 + |G(z)|2

≤ d2 for |z| ≤ 3

4
.

Hence (23) and [20, p.12] lead to

T (3/4, G) ≤ T0(3/4, G) + d3 + log+ |G(0)| ≤ d4 + log+ |G(0)| ≤ 2d1rq(r),

where T0 denotes the Ahlfors characteristic. Since G is analytic on |z| < 1 by
(13), it follows that

log |G(z)| ≤ d5rq(r) for |z| ≤ 1

2
.

This implies in turn that

log

∣∣∣∣ f(z)

f ′(z)

∣∣∣∣ ≤ d5rq(r) + logR1 ≤ d5rq(r) + log r ≤ 2d5rq(r)

for |z − z0| ≤ R1/2. Thus (12) and Cauchy’s estimate for derivatives yield

log |F (z)| ≤ 3d5rq(r), log |K(z)| ≤ 3d5rq(r) + d6 + log
1

R1

≤ 4d5rq(r)

for |z − z0| ≤ R1/4. In view of (21), this proves (20).
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To obtain a contradiction let r ∈ [1,∞) \ E1 be large, and recall the estimate
(14) for φ(z) near z0. For z as in (14), Bloch’s theorem, (8) and (13) yield

N(r)−2/3

2
≤ arg z ≤ π − N(r)−2/3

2
,

∣∣∣∣d logψ(z)

d log z

∣∣∣∣ ≤ d8N(r)2/3,

and

(24) ψ(z) ∼ ψ(z0),
K ′(z)

K(z)
= φ(z0)ψ(z0)

(
z

z0

)N(r)

(1 + ε(z)), ε(z) = O(1).

Choose z with

(25)

∣∣∣∣arg
z

z0

∣∣∣∣ ≤ N(r)−11/12, log

∣∣∣∣ zz0

∣∣∣∣ = N(r)−5/6,

and denote the straight line segment from z0 to z by Lz. Then simple geometric
considerations show that the angle between Lz and the ray arg t = arg z0 is small.
Thus integration along Lz gives, with N = N(r) and s = |t|,∫

Lz

tN(1 + ε(t)) dt =
1

N + 1
(zN+1 − zN+1

0 ) + O

(∫
Lz

|t|N |dt|
)

=
1

N + 1
(zN+1 − zN+1

0 ) + O

(∫ |z|

|z0|
sN ds

)
∼ zN+1

N + 1
.

Hence (13) and (24) yield, for z as in (25),

w = log
K(z)

K(z0)
∼ z0φ(z0)ψ(z0)

N + 1

(
z

z0

)N

, |w| ≥ rM(r, φ)|ψ(z0)|eN1/6

2N
.

Moreover the variation of argw as z varies over the arc given by (25) exceeds
2π, and so z may be chosen such that w is real and positive. But then (19) and
(20) give

c7rq(r) ≥ log |K(z)| ≥ log |K(z0)|+
rM(r, φ)|ψ(z0)|eN1/6

2N

≥ −2c6rq(r) +
rM(r, φ)|ψ(z0)|eN1/6

2N
.

Since q(r) is given by (15) and N = N(r) tends to infinity, this is a contradiction,
and Proposition 9.1 is proved.

10. Proof of Theorem 6.4: the growth of f

Proposition 10.1. The function f has finite order.

Proof. Assume that f has infinite order. Propositions 8.1 and 9.1 show that
L = f ′/f has finite order and so has the transcendental function K defined by
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(7). Moreover, the zeros of f have finite exponent of convergence, since f (µ) has
finitely many zeros. Hence there exist entire functions f1 and f2 such that

(26) f =
f1

f2

, L =
f ′

f
=
f ′1
f1

− f ′2
f2

, ρ(f1) <∞ = ρ(f2).

By standard estimates for logarithmic derivatives [18] there exist M1 > 0 and a
set E2 ⊆ [1,∞) of finite logarithmic measure such that

(27)

∣∣∣∣L(j)(z)

L(z)

∣∣∣∣+ ∣∣∣∣K ′(z)

K(z)

∣∣∣∣+ ∣∣∣∣ K ′(z)

K(z)− 1

∣∣∣∣+ ∣∣∣∣f ′1(z)f1(z)

∣∣∣∣ ≤ |z|M1

for j = 1, . . . , k and |z| = r ∈ [1,∞) \ E2.

Let ν(r) denote the central index of f2. Since ρ(f2) = ∞ and ν(r) is increasing,
the Wiman-Valiron theory (see Section 7) gives an unbounded set F0 ⊆ [1,∞)\E2

with the following properties. We have

(28) lim
r→∞,r∈F0

log ν(r)

log r
= ∞.

Moreover, for each r ∈ F0 there exists z0 such that |z0| = r and

f ′2(z)

f2(z)
∼ ν(r)

z
for z = z0e

it, −ν(r)−2/3 ≤ t ≤ ν(r)−2/3.

In view of (27) and (28) we obtain an interval ωr, of length 2ν(r)−2/3, such that

(29) L(z) =
f ′(z)

f(z)
∼ ν(r)

z
for z = reit, t ∈ ωr, r ∈ F0.

This leads at once to

(30)

∫
ωr

∣∣L(reit)
∣∣5/6

dt ≥ ν(r)1/6r−5/6 as r →∞ with r ∈ F0.

Let c denote a positive constant, not necessarily the same at each occurrence,
but independent of r, and let j ∈ N. By (27), (28), (29) and the well known
representation [20, Lemma 3.5]

(31)
f (j)

f
= Lj + Pj−1[L],

where Pj−1[L] is a polynomial in L and its derivatives, of degree at most j − 1,
we have

f (j)(z)

f(z)
= L(z)j

(
1 +

Pj−1[L](z)

L(z)j

)
= L(z)j

(
1 +

O(rc)

L(z)

)
for z = reit, t ∈ ωr, r ∈ F0.
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Hence using (7) we deduce that

K(z)− 1 =
O(rc)

L(z)
for z = reit, t ∈ ωr, r ∈ F0.

Writing
1

K − 1
=
K

K ′

(
K ′

K(K − 1)

)
=
K

K ′

(
K ′

K − 1
− K ′

K

)
we now obtain, using (8) and (27) again,

L(z) =
O(rc)

K(z)− 1
=
O(rc)K(z)

K ′(z)
=

O(rc)

φ(z)ψ(z)
for z = reit, t ∈ ωr, r ∈ F0.

But K is transcendental of finite order and so (8), (9) and the inequality

m(r, φ) ≤ m(r,K ′/K) +m(r, 1/ψ)

imply that φ is a rational function, not identically zero. Hence (9) gives∫
ωr

∣∣L(reit)
∣∣5/6

dt = O(rc) for r ∈ F0,

which contradicts (28) and (30). This proves Proposition 10.1.

We may now finish the proof of Theorem 6.4. Suppose first that µ = 1. Since f
has finite order and

n(r, f) = O(N(2r, f)) = O(T (2r, f))

as r →∞, the hypotheses of Theorem 6.3 are satisfied, and the result follows at
once.

Assume henceforth that µ ≥ 2, so that k ≥ 3. This time the fact that f has
finite order implies that f has finitely many poles, using Theorem 2.3. Hence
f (µ) = Sµe

Qµ , with Sµ a rational function and Qµ a non-constant real polynomial.

Suppose first that Qµ has degree 1. In this case integrating µ times shows that
f(z) = T1(z) + T2(z)e

a1z with T1 a polynomial, T2 6≡ 0 a rational function, and
a1 ∈ R \ {0}. Since L is transcendental we must have T1 6≡ 0. But elementary
considerations now show that f has infinitely many non-real zeros, which is a
contradiction.

We may therefore assume that Qµ has degree qµ ≥ 2. Since L and f/f (µ) have
order at most 1, by Proposition 8.1, it follows that we may write f = ΠeQµ ,
where Π is meromorphic with finitely many poles and with order at most 1. Let
ε ∈ (0, 1) be small. Then Gundersen’s estimates for logarithmic derivatives [18]
give rise to a set E3 ⊆ [1,∞) of finite logarithmic measure such that∣∣∣∣L(j)(z)

L(z)

∣∣∣∣+ ∣∣∣∣Π′(z)

Π(z)

∣∣∣∣ ≤ |z|ε and L(z) =
Π′(z)

Π(z)
+Q′

µ(z) ∼ Q′
µ(z)
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for j = 1, . . . , k and |z| = r ∈ [1,∞) \ E3. But for these z we then have, on
recalling (31),

f (µ)(z)

f(z)
= L(z)µ

(
1 +

Pµ−1[L](z)

L(z)µ

)
∼ L(z)µ ∼ Q′

µ(z)µ.

Hence f (µ)(z)/f(z), which has finitely many zeros, must be a rational function,
and consequently so must Π, which contradicts the assumption that f is not of
the form SeP with S a rational function and P a polynomial. The case µ ≥ 2 is
therefore impossible, which completes the proof of Theorem 6.4.

Acknowledgement. The author thanks the referee for several helpful suggestions
to improve the readability of the paper.
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