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Abstract. Let f be transcendental and meromorphic in the plane. We
obtain sharp lower bounds for the growth of f , in terms of the minimum
spherical distance between the critical values of f . The extremal exam-
ples arise from elliptic functions.

1. Introduction

For a function f transcendental and meromorphic in the plane, the critical
values are those values taken by f at critical points of f , that is, multiple
poles of f and zeros of f ′. Together with the asymptotic values of f , values
a such that f(z) → a as z → ∞ along a path γa, the critical values play
an important role in iteration theory [3]. Our starting point is the following
theorem, in which

L(f) = lim inf
r→∞

T (r, f)
(log r)2

, L(f) = lim sup
r→∞

T (r, f)
(log r)2

,

where T (r, f) denotes the Nevanlinna characteristic [8].

Theorem 1.1 ([12]). Let f be transcendental and meromorphic in the plane,
with L(f) = 0. Then f has infinitely many critical values.

The same conclusion had earlier been proved for L(f) = 0 in [11]. Theo-
rem 1.1 is essentially sharp because of an example, with L(f) < ∞ and four
critical values, constructed by Bank and Kaufman [2, 10] from the Weier-
strass doubly periodic function (see §2).

For entire functions the sharp condition is [5]

(1) lim inf
r→∞

T (r, f)√
r

= 0.

If f is transcendental entire and satisfies (1) then ∞ is a limit point of
critical values of f , as may be seen [5] by applying the cos πλ theorem [9,
Theorem 6.7] and the argument of [16, p.287]. Examples such as cos µ

√
z,

with µ > 0, show that this result is sharp.

1991 Mathematics Subject Classification. 30D35.
This research was partly carried out during a visit by the author to Virginia Tech. He

thanks the Department of Mathematics for support and hospitality, and David Drasin and
John Rossi for helpful discussions.

1



2 J.K. LANGLEY

The present investigations arose from the following question: is there a
lower bound for L(f) in terms of the number of critical values of f? In
this direction we shall say that a critical point ζ of f lies over the set E if
f(ζ) ∈ E, and we note that if f is transcendental and meromorphic in the
plane such that all but finitely many critical points of f lie over a given set
of two values, then [6] the order of f is at least 1

2 , this result sharp because
of the examples cos µ

√
z and tan2√z. In Example 2.1 we modify the Bank-

Kaufman construction to obtain a transcendental meromorphic f with L(f)
finite and just three critical values.

Theorem 1.2. There exists a positive constant B with the following prop-
erty. Let a1, a2, a3 be distinct elements of the extended complex plane. If
f is transcendental and meromorphic in the plane such that all but finitely
many critical points of f lie over {a1, a2, a3}, then L(f) ≥ B.

Next, in Example 2.2 we show that there exist transcendental meromor-
phic f , with L(f) arbitrarily small, and with just four critical values. In
these examples, however, the minimum spherical distance between the crit-
ical values tends to 0 as L(f) tends to 0. We denote by

q(z, w) =
|z − w|√

(1 + |z|2)(1 + |w|2)
, q(z,∞) =

1√
(1 + |z|2)

,

the chordal distance between elements of the extended plane.

Theorem 1.3. There exists a positive absolute constant c0 with the following
property. Let {a1, . . . , aN} be a finite set of distinct elements of the extended
complex plane. Let

(2) α = sup{t > 0 : ∃a ∈ C ∪ {∞}, q(a, aj) > t, j = 1, . . . , N}.

Let f be a function transcendental and meromorphic in the plane such that
all but finitely many critical points of f lie over {a1, . . . , aN}. Then

(3) exp
(

−1
4L(f)

)
≥ c0α min{q(aj , aj′) : j 6= j′}.

It is obvious that in Theorem 1.3 we may take α ≥ b/
√

N , for some
positive absolute constant b. Hence (3) may be replaced by

√
N exp

(
−1

4L(f)

)
≥ c1 min{q(aj , aj′) : j 6= j′}.

Thus Theorem 1.3 shows that if L(f) is small then either the number of
critical values must be large or the minimum spherical distance between
them must be small.

The function of Example 2.2 has L(f) = δ arbitrarily small, and all its
critical points over a set {a1, . . . , a4}, where

min{q(aj , aj′) : j 6= j′} ∼ 4e−1/4δ, δ → 0.
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Further, in these examples α ≥ 1/
√

2− o(1) as δ → 0, and so Theorem 1.3
is essentially sharp.

Note that Theorem 1.2 follows at once from Theorem 1.3 and Nevan-
linna’s first fundamental theorem, since we may apply a Möbius map sending
a1, a2, a3 to 0, 1,∞.

We remark finally that the proof of Theorem 1.1 in [12] depended on
representations f(z) = czN (1+o(1)) in annuli, using a result from [15]. The
present approach is simpler and more geometric.

2. Functions of small growth with three or four critical
values

We modify the construction of Bank and Kaufman [2] (see also [10,
p.234]), starting with the Weierstrass doubly periodic function ℘(z), with
primitive periods

(4) ω1 = P, ω2 = 2πi = τω1, Re(P ) > 0, Im(τ) > 0.

The function w(z) = ℘(log z) is then meromorphic in 0 < |z| < ∞. Next,
set ω3 = ω1 + ω2 and ej = ℘(ωj/2), and

(5) u(ζ) = w(z), z + 1/z = ζ.

Since ℘ is even, (5) defines u as meromorphic on C \ {−2, 2}. Further,

(6) lim
ζ→2

u(ζ) = lim
z→1

℘(log z) = ∞, lim
ζ→−2

u(ζ) = lim
z→−1

℘(log z) = e2,

so that u extends to be meromorphic on C. The computation of [10, p.235]
gives

(7) (ζ2 − 4)u′(ζ)2 = ℘′(log z)2 = 4(u(ζ)− e1)(u(ζ)− e2)(u(ζ)− e3)

so that the only critical values of u are ∞, e1, e2, e3. Dividing (7) through
by (u− e1)(u− e2), we get m(r, u) = S(r, u). Also w(z) = ∞ at the points
log z = mP + n2πi, with m,n integers, and so u has poles at the points

ζm = emP + e−mP , m ∈ Z.

Using (4), we have |ζm| → ∞ and |ζm+1/ζm| → eRe(P ) as m → +∞, so that

(8) T (r, u) ∼ N(r, u) ∼ (2δ + o(1))(log r)2, r →∞, δ =
1

2Re(P )
.

We will use some basic facts from the theory of the elliptic modular function
[1, Chapter 3], in which

(9) ρ(τ) =
e3 − e1

e2 − e1
, τ =

2πi

P
.

Example 2.1.

Here we construct an example with just three critical values. Recall [1]
that ρ(τ) maps the upper half plane Im(τ) > 0 onto C \ {0, 1}. Choose τ

so that ρ(τ) = η + 1 = e2πi/3 + 1. Since e1 + e2 + e3 = 0 and η2 = −η − 1
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we get e3
1 = e3

2 = e3
3. Thus v(ζ) = u(ζ)3 has critical values 0,∞, e3

1, and (8)
gives L(v) < ∞.

Example 2.2.

We construct next an example with four critical values, and with L(f)
arbitrarily small. Let P be real and positive. Then (8) gives

(10) L(u) = L(u) = 1/P = 2δ.

By (4) and [1, pp.43-6] we have, as P →∞,

(11) τ → 0, ρ(τ) = 1− ρ(−1/τ) ∼ 16e−P/2 = 16e−1/4δ.

By (6) and (7), all roots of u(ζ) = e1, e3 are double, and the function

f(ζ) =
(

u(ζ)− e3

u(ζ)− e1

) 1
2

is meromorphic, with L(f) = L(f) = δ by (10). Finally, f has critical values
±1 and ±e4, in which

e4 =
(

e2 − e3

e2 − e1

)1/2

= (1− ρ(τ))1/2, |e4 − 1| ∼ 8e−1/4δ, δ → 0,

using (9) and (11). Thus the exponent in (3) is sharp.

3. Lemmas needed for Theorem 1.3

For a ∈ C and r > 0 set

C(a, r) = {z ∈ C : |z − a| = r}, B(a, r) = {z ∈ C : |z − a| < r},
and for K > 1 denote by A(r, K) the annulus

A(r, K) = {z ∈ C : r/K < |z| < Kr}.

Lemma 3.1. Let f be transcendental and meromorphic in the plane, and let
a ∈ C∪{∞} and P ∈ (0, 1) be such that f has at most finitely many critical
points ζ with q(a, f(ζ)) ≤ P , and no asymptotic values w with q(a,w) ≤ P .
Set X = {z ∈ C : q(a, f(z)) < P} and let Y be a component of X. Then:
(i) Y is bounded;
(ii) if Y ∗ = {z ∈ Y : 0 < q(a, f(z)) < P} contains no critical points of f
then Y is simply connected.

Next, let |z∗| = r be large, with q(a, f(z∗)) < P/2, and let L be that
component of the set {z ∈ C : q(a, f(z)) < P/2} which contains z∗. Then:
(iii) f maps L onto {w : q(a,w) < P/2};
(iv) L lies in the annulus A(r, d1), where d1 = e8π.

Proof. The proof of assertions (i) and (ii) of Lemma 3.1 is a modified version
of the argument of [16, p.287] (see also [13, pp.459-461]). To this end, assume
without loss of generality that a = ∞, and let Q =

√
1/P 2 − 1 and

W = {w ∈ C ∪ {∞} : Q < |w| ≤ ∞}.
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Then X = f−1(W ). Next, let b1, . . . , bm be the critical values of f in
Q < |w| < ∞, and set

V = W \
m⋃

j=1

{tei arg bj : Q ≤ t ≤ |bj |}.

Let C be a component of the set f−1(W ), let D be a component of f−1(V )
with D ⊆ C, and let H = {u ∈ C : eu ∈ V }. Take z0 ∈ D, with f(z0)
finite, and take that branch of the inverse function f−1 mapping w0 = f(z0)
to z0. Choose u0 ∈ H with eu0 = w0. Then the function h(u) = f−1(eu)
extends by the monodromy theorem to an analytic function on H, and
h(H) = D∗ = {z ∈ D : |f(z)| < ∞} [13, p.459].

If h is univalent on H then the image of the line Re(u) = M , with M large
and positive, is a level curve of f , tending to infinity in both directions, so
that h(u) →∞ as u →∞, u ∈ R. But this implies that ∞ is an asymptotic
value of f , which we have excluded by hypothesis.

Thus h is not univalent on H and a standard argument [16, p.287] shows
that h has period k2πi, for some minimal positive integer k. With M again
large and positive, the function h(k log ζ) = f−1(ζk) is analytic and univa-
lent on ∞ > |ζ| > M , and has a limit as ζ →∞, which must be finite since
f is transcendental. Let v lie on the finite boundary ∂H of H. Continuing
h along the boundary arcs of H and using the Phragmén-Lindelöf principle
shows that lim supu→v,u∈H∪∂H |h(u)| < ∞. Thus h(H) = D∗ = {z ∈ D :
|f(z)| < ∞} is bounded, and so is D.

Suppose now that C is unbounded. Then C must contain infinitely many
components Dn of the set f−1(V ). However, if the closures Em, En of two
distinct components Dm, Dn have non-empty intersection, then Em, En must
share a critical point of f , and there are only finitely many such critical
points available. This proves assertion (i) of Lemma 3.1.

Assertion (ii) is proved in the same way, but taking V = W . In this case
h(k log ζ) = f−1(ζk) is univalent on |ζ| > Q1/k.

To prove assertions (iii) and (iv) we apply a logarithmic change of vari-
ables used in [4, 7] and elsewhere. We know that all components of the set
{z ∈ C : q(∞, f(z)) < P} are bounded, and that all but finitely many of
them are simply connected. Hence, if z∗ and L are as in the hypotheses, we
may assume that if Lj is that component of the set {z ∈ C : q(∞, f(z)) < P}
which contains L, then Lj is simply connected and does not contain the ori-
gin, and g = 1/f maps Lj conformally onto the disc B(0, 1/Q), from which
(iii) follows at once. Let G be that branch of the inverse function g−1 map-
ping B(0, 1/Q) onto Lj . Thus

(12) L = G(B(0, 1/Q′)), Q′ =
√

4/P 2 − 1.

Further, φ = log G is defined and univalent on B(0, 1/Q). Since G = eφ

is univalent on B(0, 1/Q), it follows that φ maps B(0, 1/Q) onto a region
containing no disc of radius greater than π. Hence Koebe’s one-quarter
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theorem gives, for w,w1, w2 in B(0, 1/Q′),

|φ′(w)| ≤ 4π

1/Q− |w|
,

∣∣∣∣log
∣∣∣∣G(w1)
G(w2)

∣∣∣∣∣∣∣∣ ≤ 8π/Q′

1/Q− 1/Q′ =
8π

Q′/Q− 1
.

Since
Q′

Q
=

√
4− P 2

1− P 2
≥ 2,

assertion (iv) follows from (12). �

Our next lemma uses an idea which goes back at least to Valiron [17], but
which does not seem to suffice to get the right exponent on the left-hand
side of (3). It does, however, allow us to dispose of the case where f has an
asymptotic value.

Lemma 3.2. Let f be transcendental and meromorphic in the plane, with
at least one asymptotic value, and assume that L(f) is finite. Then f has
infinitely many critical values.

Proof. Assume that f is as in the hypotheses, but with finitely many critical
values. We may assume that f(z) → 0 as z → ∞ along a path γ → ∞.
Since L(f) is finite we have

lim inf
r→∞

n(r, f) + n(r, 1/f) + n(r, 1/(f − 1))
log r

< ∞.

Thus there exist a positive constant M and a sequence rn →∞ such that f
omits the values 0, 1,∞ on the annuli A(rn, e2M ). Then the family of func-
tions fn(z) = f(rnz) is normal on A(1, e2M ) by Montel’s theorem, and since
f(z) → 0 as z → ∞ on γ there exists a positive constant M1, independent
of n, such that |f(z)| ≤ M1 for rne−M ≤ |z| ≤ rneM . An application of
the two-constants theorem for subharmonic functions [16] now shows that
f(z) → 0 uniformly on the union of the circles C(0, rn). Thus 0 is the only
asymptotic value of f . Take a positive ε, so small that f has no critical
values in 0 < |w| < 2ε. Then for large n, the circle C(0, rn) lies in a simply
connected component of the set {z ∈ C : |f(z)| < ε}, by Lemma 3.1, and
this is plainly impossible. �

Lemma 3.3. There exists a positive constant d2 with the following property.
Let δ > 0 and let f be transcendental and meromorphic in the plane, with
L(f) < δ and with no asymptotic values. Let a ∈ C∪{∞} and let σ ∈ (0, 1)
be such that all but finitely many critical points z of f have q(a, f(z)) > σ.
Then there exists a sequence rn → ∞ such that the image of the circle
C(0, rn) under f has spherical diameter at most d2σ

−1e−1/4δ.

Proof. We may obviously assume without loss of generality that δ is small
and a = ∞. Since N(r, f) ≤ T (r, f) and L(f) < δ, there exists a sequence
rn → ∞ such that f has no poles in the annuli A(rn,K), where K = e1/4δ

is large. Hence Lemma 3.1 gives, for large n,

q(∞, f(z)) ≥ σ/2, z ∈ A(rn,K/d1), d1 = e8π.
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Thus, denoting positive absolute constants by dj , we have

|f(z)| ≤ d3σ
−1, sn = rnd1/K ≤ |z| ≤ tn = rnK/d1,

and we estimate the diameter of the image of C(0, rn) as in [14, Lemma 1].
Cauchy’s integral formula gives, for |w| = rn,

|f ′(w)| =

∣∣∣∣∣ 1
2πi

∫
|z|=tn

f(z)
(z − w)2

dz − 1
2πi

∫
|z|=sn

f(z)
(z − w)2

dz

∣∣∣∣∣ ≤ d4

σKrn
,

and the spherical diameter of the image of C(0, rn) is then at most∫
|z|=rn

|f ′(w)| |dw| ≤ 2πd4

σK
.

�

4. Proof of Theorem 1.3

Let a1, . . . , aN be distinct elements of the extended complex plane and
define α by (2). Choose a ∈ C ∪ {∞} with q(a, aj) > σ = α/2 for all j.

Let positive constants δ and ε be defined by

ε = min{q(aj , aj′) : j 6= j′}, e−1/4δ =
σε

32d2
=

αε

64d2
,

in which d2 is the positive constant of Lemma 3.3. Let f be transcendental
and meromorphic in the plane, such that all but finitely many critical points
of f lie over the set {a1, . . . , aN}, and assume that L(f) < δ. By Lemma
3.2 we may assume that f has no asymptotic values.

Lemma 3.3 now gives a sequence rn →∞ such that the image under f of
each circle C(0, rn) has spherical diameter at most ε/32. We may assume
that f(rn) → A ∈ C∪{∞} as n →∞. Now the open spherical disc of centre
A and radius ε/2 contains at most one of the aj . If q(aj , A) < ε/8 for some
j, then this j is unique and we set b = aj , ρ = ε/4. On the other hand, if
q(aj , A) ≥ ε/8 for every j, then we set b = A, ρ = ε/16. In either case, none
of the aj lie in {w : 0 < q(w, b) ≤ ρ}, and for large n the circle C(0, rn) lies
in a component Cn of the set {z ∈ C : q(f(z), b) < ρ}.

By Lemma 3.1, each Cn must be bounded, and so there must be infinitely
many distinct such Cn. But, by Lemma 3.1 again, all but finitely many of
the Cn are simply connected, and this is obviously a contradiction. This
proves Theorem 1.3.
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